dc.contributor | Moreno Guáqueta, Sonia | |
dc.contributor | Pérez Flórez, Alejandro | |
dc.contributor | Estado Sólido y Catálisis Ambiental | |
dc.creator | Guzmán Gómez, Cristian Camilo | |
dc.date.accessioned | 2022-08-31T15:38:24Z | |
dc.date.available | 2022-08-31T15:38:24Z | |
dc.date.created | 2022-08-31T15:38:24Z | |
dc.date.issued | 2022-07-06 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82215 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La presente investigación centró su atención en la síntesis y caracterización fisicoquímica de los sólidos obtenidos a partir de la modificación de arcillas naturales por procesos de delaminación, y la posterior obtención de catalizadores de hierro soportado, para ser empleados en la degradación de amoxicilina presente en agua.
Para obtener soportes catalíticos con óptimas propiedades texturales y fisicoquímicas, se seleccionó como mineral de partida, una arcilla natural tipo bentonita proveniente del Valle del Cauca – Colombia. Esta fue modificada empleando tres metodologías de delaminación y caracterizada por difracción de rayos X (DRX) y sortometría de N2 a 77K. Mientras que los catalizadores fueron caracterizados además por reducción con H2 a temperatura programada. Logrando un aumento en el área superficial, buena distribución de poro y elevada dispersión de la fase activa seleccionada (Fe: 1, 3 y 5%).
La actividad catalítica de los catalizadores fue evaluada en la degradación de amoxicilina presente en agua, seguida por cromatografía líquida acoplada a espectrometría de masas.
Los resultados revelaron que los soportes obtenidos a través de la delaminación de la arcilla son materiales mesoporosos, con elevada área superficial y volumen de poro importante. Estas propiedades redundan en un incremento de la dispersión de la fase activa y, en consecuencia, mejor actividad catalítica en la degradación de amoxicilina. La serie de catalizadores sintetizados a partir de la bentonita delaminada empleando clorhidrol BD2.2, resulta en los materiales más activos en la degradación de amoxicilina hasta productos de menor masa molecular, comparada con los catalizadores obtenidos sobre arcilla sin modificar, y, en relación con los catalizadores con mayor porcentaje de hierro, el que logró mayor degradación (98%) al cabo de 60 minutos, fue el catalizador BD2.2 5% Fe. Este comportamiento está relacionado con las propiedades texturales exhibidas por el soporte y la reducibilidad de la fase activa del catalizador. (Texto tomado de la fuente) | |
dc.description.abstract | This current investigation focus its attention on the synthesis and physical-chemical characterization of the solids obtained from the modification of natural clays through delamination processes, and finally the obtaining of supported iron catalysts, to be used in the amoxicillin degradation present in water.
To get catalytic supports with optimal properties of texture and physical-chemical, it was selected as a starting ore, a natural clay of bentonite type from Valle del Cauca – Colombia. This was modified using three delamination methodologies that were characterized by X-Ray diffraction (XRD) and sortometry of N2 at 77K. While the catalytic were characterized by reduction with H2 at programmed temperature. Achieving a rise in the superficial area, good pore distribution, and high dispersion of the active phase that had been selected before (Fe: 1, 3, and 5%).
The catalytic activity of the catalysts was tested in the amoxicillin degradation present in water, followed by liquid chromatography coupled to mass spectrometry.
The results revealed that the obtained supports through clay delamination are mesoporous materials with a high surface area and an important pore volume. These properties redound in the raise of the dispersion of the active phase, as and consequence, better catalytic activity in the amoxicillin degradation. The group of synthesized catalysts starting with delaminated Bentonite using hydrochloride BD2.2 results in materials more active in the amoxicillin degradation and, among the catalysts with mayor percent of iron, the one that achieved more degradation (98%) after 60 minutes, was the catalyst BD2.2 5% Fe. This behavior is related to properties of texture that showed by the support and the reducibility of the catalyst active phase. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Departamento de Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Casallas, L., Franco, J. (2017). Tesis de pregrado. Facultad de ciencias. Universidad de Ciencias Aplicadas y Ambientales. | |
dc.relation | UNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017.Unicef/Who 2019, 140. | |
dc.relation | Ameta, S. C. (2018). Introduction, In: Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology: PAHER University, Udaipur, Rajasthan, India, 1-12. | |
dc.relation | Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303-320. | |
dc.relation | Jaimes, J. y Vera, J. (2020). Los contaminantes emergentes de las aguas residuales de la industrial farmacéutica y su tratamiento por medio de la ozonización. Informador Técnico, 84 (2). https://doi.org/10.23850/22565035.2305 | |
dc.relation | Elizalde, A., Gómez, L. M., Galar, M., Islas, H., Dublán, O., & SanJuan, N. (2016). Environmental Health Risk - Hazardous Factors to Living Species. doi:10.5772/62049 | |
dc.relation | Rubi Juarez, H. (2020). Procesos de Oxidación Avanzada y Electroquímicos para Remover Edulcorantes Artificiales del Agua. Instituto de Ingeniería y Tecnología. | |
dc.relation | Meléndez, J., García, Y., Galván, V., de León, L. D., Vargas, K., Mejía, J., & Ramírez, R. (2020). Contaminantes emergentes. Problemática ambiental asociada al uso de antibióticos. Nuevas técnicas de detección, remediación y perspectivas de legislación en América Latina. Revista de Salud Ambiental, 20(1), 53-61. | |
dc.relation | World Health Organization (2012). Pharmaceuticals in Drinking- Water. WHO Library Cataloguing-in-Publication Data. ISBN 978 92 4 150208 5. | |
dc.relation | Golovko, O., Örn, S., Sörengård, M., Frieberg, K., Nassazzi, W., Lai, F. Y., & Ahrens, L. (2021). Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of the Total Environment, 754, 142122. | |
dc.relation | Li, F., Chen, L., Bao, Y., Zheng, Y., Huang, B., Mu, Q., ... & Wen, D. (2020). Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water. Science of the Total Environment, 747, 141275. | |
dc.relation | Botero, A., Martínez, D., Boix, C., Rincón, R., Castillo, N., Arias, L., & Hernandez, F. (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842-853. | |
dc.relation | Aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental toxicology and chemistry, 35(4), 823-835. | |
dc.relation | Kumar, M., Jaiswal, S., Sodhi, K., Shree, P., Singh, D., Agrawal, P., & Shukla, P. (2019). Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environment international, 124, 448-461. | |
dc.relation | Ahmed, M., Zhou, J., Ngo, H., Guo, W., Thomaidis, N., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of hazardous materials, 323, 274-298. | |
dc.relation | Fair, R., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 6, PMC-S14459. | |
dc.relation | Szultka, M., Krzeminski, R., Jackowski, M., & Buszewski, B. (2014). Identification of in vitro metabolites of amoxicillin in human liver microsomes by LC–ESI/MS. Chromatographia, 77(15), 1027-1035. | |
dc.relation | WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation. November 2018 ISBN: ISBN 978-92-4-151488-0 | |
dc.relation | Barreto, R. (2017). Tesis de pregrado. Facultad de Ingeniería. Universidad Nacional Autónoma de México. | |
dc.relation | Briceño, M., & Casas, M. (2020). Tesis de pregrado. Facultad de Ingeniería. Fundación Universidad de América. | |
dc.relation | Sanabria, N. (2009). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia. | |
dc.relation | Yang, Y., Ok, Y., Kim, K., Kwon, E., & Tsang, Y. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303-320. | |
dc.relation | Thomas, N., Dionysiou, D., & Pillai, S. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404, 124082. | |
dc.relation | Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. | |
dc.relation | Fast, S., Gnaneswar, V., Truax, D., Martin, J., & Magbanua, B. (2017). Environmental Processes, 4, 283-302. | |
dc.relation | Pesqueira, J., Pereira, M., & Silva, A. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. Journal of Cleaner Production, 261, 121078 | |
dc.relation | Giwa, A., Yusuf, A., Balogun, H. A., Sambudi, N., Bilad, M., Adeyemi, I., & Curcio, S. (2021). Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process Safety and Environmental Protection, 146, 220-256. | |
dc.relation | Iervolino, G., Zammit, I., Vaiano, V., & Rizzo, L. (2020). Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: a critical review. Heterogeneous Photocatalysis, 225-264. | |
dc.relation | Liu, X., Sang, Y., Yin, H., Lin, A., Guo, Z., & Liu, Z. (2018). Progress in the mechanism and kinetics of Fenton reaction. MOJ Ecol. Environ. Sci, 3, 11-15. | |
dc.relation | Wang, J., & Bai, Z. (2017). Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 312, 79-98. | |
dc.relation | Arslan, I. (2003). A review of the effects of dye‐assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology, 119(6), 345-353. | |
dc.relation | Fenton, Henry. J. (1894). Journal of the Chemical Society. 65 (1894) 899. | |
dc.relation | Rey Barroso, A. (2010). Tesis de doctorado. Instituto de Catálisis y Petroleoquímica (CSIC). | |
dc.relation | García, J., Castellanos, M., Uscátegui, Á., Fernández, J., Pedroza, A. & Daza, C.. (2012).Universitas Scientiarum, 17(3), p.303. | |
dc.relation | Babuponnusami, A., Muthukumar, K. (2014). Journal of Environmental Chemical Engineering, 2(1), 557–572.doi:10.1016/j.jece.2013.10.011. | |
dc.relation | Hamd, W., & Dutta, J. (2020). Heterogeneous photo-Fenton reaction and its enhancement upon addition of chelating agents. Nanomaterials for the Detection and Removal of Wastewater Pollutants, 303-330. | |
dc.relation | Chamarro, E., Marco, A., & Esplugas, S. (2001). Use of Fenton reagent to improve organic chemical biodegradability. Water research, 35(4), 1047-1051. | |
dc.relation | Luna, A., Chiavone, O., Machulek Jr, A., de Moraes, J., & Nascimento, C. (2012). Photo-Fenton oxidation of phenol and organochlorides (2, 4-DCP and 2, 4-D) in aqueous alkaline medium with high chloride concentration. Journal of environmental management, 111, 10-17. | |
dc.relation | Yanquin, K. C. (2019). Tesis de pregrado.Universidad Nacional del Comahue. | |
dc.relation | Guggenheim, S. & Martin, R. (1995). Definition of Clay and Clay minerals, Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees, Clays and Clay Minerals 43 (1995) 255-256. | |
dc.relation | Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1-2), 1–63. doi:10.1016/s0927-796x(00)00012-7 | |
dc.relation | Ross, C. S., & Shannon, E. V. (1926). THE MINERALS OF BENTONITE AND RELATED CLAYS AND THEIR PHYSICAL PROPERTIES1. Journal of the American Ceramic Society, 9(2), 77–96. doi:10.1111/j.1151-2916.1926.tb18305.x | |
dc.relation | Amaya, J. (2019). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia. | |
dc.relation | Besoain, E. Mineralogía de Arcillas y Suelos (1985). Instituto Interamericano Cooperación para la Agricultura (3) 124-150. | |
dc.relation | Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford Univ. Press, UK. | |
dc.relation | Cortés, J. (2019). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia. | |
dc.relation | Sanabria, N., Molina, R., & Moreno, S. (2012). Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. International journal of photoenergy, 2012. | |
dc.relation | Gamba Vasquez, O. A. (2010). Facultad de Ciencias. Universidad Nacional de Colombia. | |
dc.relation | Tobajas, M., Belver, C., & Rodriguez, J. (2017). Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chemical Engineering Journal, 309, 596-606 | |
dc.relation | Muñoz, H. (2018). Tesis de pregrado Facultad de Ciencias. Universidad Nacional de Colombia. | |
dc.relation | Suzuki, K., Toshiaki, M., Kaoru, K., Hiroshi, S., & Shozo, I. (1988). Preparation of delaminated clay having a narrow micropore distribution in the presence of hidroxyaluminum cations and polyvinil alcohol. Clays and Clay Minerals , 36 (2), 147–152. https://doi.org/10.1346/ccmn.1988.0360208 | |
dc.relation | Pinnavaia, T. (1984). Heterogeneous Catalysis, Ed., B. L. Shapiro, Texas A & M Univ. Press, College Station, TX, p. 142. | |
dc.relation | Occelli, M., Landau, S., & Pinnavai, T. (1984). Cracking Selectivity of a Delaminated Clay Catalyst. Journal of Catalysis, 90 (2), 256–260. https://doi.org/10.1016/0021-9517(84)90253-7. | |
dc.relation | Pinnavaia, T. J., Tzou, M.-S., Landau, S. D., & Raythatha, R. H. (1984). On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. Journal of Molecular Catalysis, 27(1-2), 195–212. doi:10.1016/0304-5102(84)85080-4 | |
dc.relation | Lewis, R., & Kuroda, H. (1989). Delaminated layered materials. Solid State Ionics, 32-33, 373–377. doi:10.1016/0167-2738(89)90243-9 | |
dc.relation | Chen, J., Hausladen, M., & Yang, R. (1995). Delaminated Fe2O3-pillared clay: its preparation, characterization, and activities for selective catalytic reduction of NO by NH3. Journal of Catalysis, 151(1), 135-146. | |
dc.relation | Franco, F., Pérez, L., & Pérez, J. L. (2004). The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. Journal of Colloid and Interface Science, 274(1), 107-117. | |
dc.relation | Luckham, P. and S. Rossi, The Colloidal and Rheological Properties of Bentonite Suspensions. Vol. 82. 1999. 43-92. | |
dc.relation | Liu, P. (2007). Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2), 64-76. | |
dc.relation | Chen, J., Hausladen, M., & Yang, R. (1995). Delaminated Fe2O3-Pillared Clay: Its Preparation, Characterization, and Activities for Selective Catalytic Reduction of No by NH3. Journal of Catalysis, 151 (1), 135–146. https://doi.org/10.1006/jcat.1995.1016 | |
dc.relation | Boxiong, S., Yan, Y., Jianhong, C., & Xiaopeng, Z. (2013). Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction NOX with NH3. Microporous and Mesoporous Materials, 180 , 262–269. https://doi.org/10.1016/j.micromeso.2013.07.004 | |
dc.relation | Teixeira, A. P. C., Tristão, J. C., Araujo, M. H., Oliveira, L. C., Moura, F. C., Ardisson, J. D., ... & Lago, R. M. (2012). Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society, 23(9), 1579-1593. | |
dc.relation | Cornell, R., W.; Schwertmann, U.; The Iron Oxides, 1st; Wiley-VCH: New York, 1996. | |
dc.relation | Penagos, P, & Barrera, A. (2019). Tesis de pregrado. Facultad de Ingeniería Química. Fundación Universidad de América. | |
dc.relation | Velásquez, K. (2013). Tesis de pregrado. Universidad Autónoma del Estado de México. | |
dc.relation | Ñungo-Moreno, J., Carriazo, J. G., Moreno, S., & Molina, R. A. (2011). Degradación fotocatalítica de fenol empleando arcillas pilarizadas con Al-Fe y Al-Cu. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35(136), 295-302. | |
dc.relation | Ayodele, O., Lim, J., & Hameed, B. (2012). Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Applied Catalysis A: General, 413-414, 301–309. doi:10.1016/j.apcata.2011.11.023. | |
dc.relation | Weng, X., Sun, Q., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere, 103, 80–85. doi:10.1016/j.chemosphere.2013.11. | |
dc.relation | Zha, S., Cheng, Y., Gao, Y., Chen, Z., Megharaj, M., & Naidu, R. (2014). Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chemical Engineering Journal, 255, 141–148. doi:10.1016/j.cej.2014.06.057 | |
dc.relation | Machado, S., Pacheco, J., Nouws, H., Albergaria, J., & Delerue-Matos, C. (2016). Green zero-valent iron nanoparticles for the degradation of amoxicillin. International Journal of Environmental Science and Technology, 14(5), 1109–1118. doi:10.1007/s13762-016-1197-7. | |
dc.relation | Kalantary, R. R., Farzadkia, M., Kermani, M., & Rahmatinia, M. (2018). Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology. Journal of Environmental Chemical Engineering, 6(4), 4644–4652. doi:10.1016/j.jece.2018.06.043. | |
dc.relation | Zhao, J., Sun, Y., Zhang, Y., Zhang, B.-T., Yin, M., & Chen, L. (2020). Heterogeneous activation of persulfate by activated carbon supported iron for efficient amoxicillin degradation. Environmental Technology & Innovation, 101259. doi:10.1016/j.eti.2020.101259. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Efecto del contenido de hierro en arcillas delaminadas para el tratamiento de aguas contaminadas con amoxicilina | |
dc.type | Trabajo de grado - Maestría | |