dc.contributorVillada Castillo, Héctor Samuel
dc.contributorSerna Cock, Liliana
dc.contributorCiencia y Tecnología de Biomoléculas de Interés Agroindustrial - CYTBIA
dc.creatorGómez López, Rudy Alberto
dc.date.accessioned2021-09-02T23:21:57Z
dc.date.accessioned2022-09-21T14:50:57Z
dc.date.available2021-09-02T23:21:57Z
dc.date.available2022-09-21T14:50:57Z
dc.date.created2021-09-02T23:21:57Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80090
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3373427
dc.description.abstractEl almidón termoplástico (TPS) ha surgido como importante alternativa para la producción de materiales de empaque amigables con el ambiente, debido su bajo costo y biodegradabilidad. Sin embargo, uno de los grandes problemas es la retrogradación que disminuye su vida útil. El objetivo de este trabajo fue evaluar el efecto co-plastificante de la isosorbida con glicerol sobre las propiedades mecánicas, térmicas, fisicoquímicas, microestructurales y retrogradación en películas de TPS y en mezclas de TPS/PLA. El análisis de los materiales obtenidos se realizó mediante SEM, calorimetría de diferencial de barrido (DSC), análisis termogravimétrico (TGA), difracción de rayos X (DRX), FTIR, pruebas mecánicas de tensión y absorción de humedad. Además, se analizó el efecto del tiempo en las propiedades térmicas, físico-químicas, microestructurales y mecánicas. La evolución de la retrogradación del TPS se modeló mediante la aplicación de la ecuación de Avrami. Los parámetros cinéticos indicaron que la presencia de isosorbida causó una reducción de la velocidad de retrogradación (k) y un mecanismo (n) de recristalización instantáneo mediante un proceso combinado de nucleación térmico y atérmico. La presencia de isosorbida promovió una mayor interacción mediante enlaces de hidrógeno entre las cadenas de almidón y las moléculas de isosorbida, que fueron verificados mediante análisis por espectroscopia infrarrojo por transformada de Fourier (FTIR). Estos cambios en el mecanismo de cristalización del TPS afectaron las propiedades mecánicas y microestructurales del material. En las mezclas de TPS/PLA, la isosorbida fue empleada como plastificante en diferentes proporciones. En las imágenes SEM, se evidenció que la mayor parte de las estructuras cristalinas nativas fueron desestructuradas. Independientemente del plastificante, los espectros FTIR de todas las películas de TPS/PLA mostraron que la isosorbida provocó cambios en las bandas de absorción que sugirieron una reducción de la cristalinidad del almidón nativo, concordando con los resultados de DRX, que además indicaron la formación de estructuras cristalinas diferentes (tipo EH). El tratamiento M-i5 (relación glicerol/isosorbida 25/5) presentó propiedades mecánicas balaceadas y se seleccionó para realizar seguimiento de envejecimiento. Los cambios en las bandas de absorción de 1018 y 995 cm-1 sugirieron que la co-plastificación con isosorbida es capaz de frenar la retrogradación en las muestras de M-i5. La cristalinidad de las películas co-plastificadas con isosorbida pasó de 4.3% a 4.9%, lo cual representa una menor variación en comparación al uso de glicerol como único plastificante. En las películas que contenían isosorbida, la resistencia a la tensión (σ) presentó menor variación. Aunque la elongación se redujo notablemente en los primeros 8 días de almacenamiento, la variación fue menor que en las películas con glicerol. Las películas plastificadas con isosorbida absorbieron menor cantidad agua que las películas control (3.2 vs 5.2%, respectivamente), lo cual afectó favorablemente su estabilidad térmica inicial. En general se pudo establecer que la incorporación de isosorbida como plastificante del glicerol, incluso en pequeñas cantidades (relación 25:5 glicerol/isosorbida), podría aumentar la estabilidad estructural y, por ende, las propiedades macroscópicas de las películas de TPS/PLA. Esto es posible gracias a que las ventajas de cada uno de los plastificantes se complementan, mientras que las desventajas (migración, débiles enlaces de hidrógeno entre plastificante-almidón) se reducen, proporcionando un efecto sinérgico que afecta positivamente el comportamiento de la mezcla de TPS/PLA (Texto tomado de la fuente).
dc.description.abstractThermoplastic starch (TPS) has emerged as an important alternative for the production of environmentally friendly packaging materials, due to its low cost and biodegradability. However, one of the big problems is retrogradation that decreases its useful life. The objective of this work was to evaluate the co-plasticizing effect of isosorbide with glycerol on the mechanical, thermal, physicochemical, microstructural and retrogradation properties in TPS films and in TPS / PLA mixtures. The analysis of the materials obtained was carried out using SEM, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FTIR, mechanical stress and moisture absorption tests. In addition, the effect of time on thermal, physicochemical, microstructural and mechanical properties was analyzed. The evolution of TPS retrogradation was modeled by applying the Avrami equation. The kinetic parameters indicated that the presence of isosorbide caused a reduction in the retrogradation rate (k) and an instantaneous recrystallization mechanism (n) through a combined thermal and athermic nucleation process. The presence of isosorbide promoted a greater interaction through hydrogen bonds between the starch chains and the isosorbide molecules, which were verified by Fourier transform infrared spectroscopy (FTIR) analysis. These changes in the crystallization mechanism of TPS affected the mechanical and microstructural properties of the material. In the TPS / PLA mixtures, isosorbide was used as plasticizer in different proportions. In the SEM images, it was evident that most of the native crystalline structures were unstructured. Regardless of the plasticizer, the FTIR spectra of all the TPS / PLA films showed that isosorbide caused changes in the absorption bands that suggested a reduction in the crystallinity of the native starch, in agreement with the XRD results, which also indicated the formation of different crystal structures (EH type). The M-i5 treatment (glycerol / isosorbide ratio 25/5) presented balanced mechanical properties and was selected for monitoring aging. Changes in the 1018 and 995 cm-1 absorption bands suggested that co-plasticization with isosorbide is able to slow down retrogradation in M-i5 samples. The crystallinity of the films co-plasticized with isosorbide went from 4.3% to 4.9%, which represents a lower variation compared to the use of glycerol as the only plasticizer. In the films containing isosorbide, the tensile strength (σ) presented less variation. Although the elongation was markedly reduced in the first 8 days of storage, the variation was less than in the glycerol films. The films plasticized with isosorbide absorbed less water than the control films (3.2 vs 5.2%, respectively), which favorably affected their initial thermal stability. In general, it was established that the incorporation of isosorbide as a glycerol plasticizer, even in small amounts (ratio 25: 5 glycerol / isosorbide), could increase the structural stability and, therefore, the macroscopic properties of TPS / PLA films. This is possible thanks to the fact that the advantages of each of the plasticizers complement each other, while the disadvantages (migration, weak hydrogen bonds between plasticizer-starch) are reduced, providing a synergistic effect that positively affects the behavior of the TPS/PLA mixture.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.publisherFacultad de Ingeniería y Administración
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAbdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012003 Abera, G., Woldeyes, B., Demash, H. D., & Miyake, G. (2020). The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. International Journal of Biological Macromolecules, 155, 581–587. https://doi.org/10.1016/j.ijbiomac.2020.03.218 Acioli-Moura, R., & Sun, X. S. (2008). Thermal Degradation and Physical Aging of Poly(lactic acid) and its Blends With Starch. Polymer Engineering & Science, 48(4), 829–836. https://doi.org/10.1002/pen Adamus, J., Spychaj, T., Zdanowicz, M., & Jędrzejewski, R. (2018). Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Industrial Crops and Products, 123(January), 278–284. https://doi.org/10.1016/j.indcrop.2018.06.069 Ahmed, I., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Amphiphilic Plasticizer on Properties of Thermoplastic Starch Films. Polymer-Plastics Technology and Engineering, 0(0), 1–11. https://doi.org/10.1080/03602559.2017.1298803 Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254–262. https://doi.org/10.1016/j.carbpol.2016.02.035 Altayan, M. M., Al Darouich, T., & Karabet, F. (2017). On the Plasticization Process of Potato Starch: Preparation and Characterization. Food Biophysics, 12(4), 397–403. https://doi.org/10.1007/s11483-017-9495-2 Arboleda, G. A., Montilla, C. E., Villada, H. S., & Varona, G. A. (2015). Obtaining a flexible film elaborated from cassava thermoplastic starch and polylactic acid. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/627268 Area, M. R., Montero, B., Rico, M., Barral, L., Bouza, R., & López, J. (2020). Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. International Journal of Biological Macromolecules, 164, 2028–2037. https://doi.org/10.1016/j.ijbiomac.2020.08.075 Area, M. R., Rico, M., Montero, B., Barral, L., Bouza, R., López, J., & Ramírez, C. (2019). Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydrate Polymers, 206(October 2018), 726–733. https://doi.org/10.1016/j.carbpol.2018.11.055 Arrieta, A., Palencia, M., & Pestana, R. (2018). New Composite Biopolymer with Conductive Properties Obtained from Cassava and Poly Starch (3, 4-Ethylenedioxythiophene). Indian Journal of Science and Technology, 11(2), 1–10. https://doi.org/10.17485/ijst/2018/v11i2/117345 ASTM, I. (2008a). Standard test method for compositional analysis by thermogravimetry. ASTM, I. (2008b). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM, I. (2010). Standard test method for tensile properties of thin plastic sheeting. Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H., & Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers, 10(9), 977. https://doi.org/10.3390/polym10090977 Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441–448. https://doi.org/10.1016/j.carbpol.2015.08.093 Backes, E. H., Pires, L. de N., Costa, L. C., Passador, F. R., & Pessan, L. A. (2019). Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites. Journal of Composites Science, 3(2), 52. https://doi.org/10.3390/jcs3020052 Baran, A., Vrábel, P., Kovaľaková, M., Hutníková, M., Fričová, O., & Olčák, D. (2020). Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. Journal of Applied Polymer Science, 137(33), 48964. https://doi.org/10.1002/app.48964 Battegazzore, D., Bocchini, S., Nicola, G., Martini, E., & Frache, A. (2015). Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate. Carbohydrate Polymers, 119, 78–84. https://doi.org/10.1016/j.carbpol.2014.11.030 Berski, W., Witczak, M., & Gambu, H. (2018). International Journal of Biological Macromolecules The retrogradation kinetics of starches of different botanical origin in the presence of glucose syrup. 114, 1288–1294. https://doi.org/10.1016/j.ijbiomac.2018.04.019 Breuninger, W. F., Piyachomkwan, K., & Sriroth, K. (2009). Tapioca / Cassava Starch : Production and Use. Starch, 541–568. https://doi.org/10.1016/B978-0-12-746275-2.00012-4 Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729–735. Castillo, L. A., López, O. V., García, M. A., Barbosa, S. E., & Villar, M. A. (2019). Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01877 Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Famá, L. (2020). Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydrate Polymers, 244, 116495. https://doi.org/10.1016/j.carbpol.2020.116495 Cheng, L. H., Karim, A. A., & Seow, C. C. (2006). Effects of water‐glycerol and water‐sorbitol interactions on the physical properties of konjac glucomannan films. Journal of Food Science, 71(2), E62–E67. Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., & Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93–104. https://doi.org/10.3390/polym6010093 Choi, J. S., & Park, W. H. (2004). Effect of biodegradable plasticizers on thermal and mechanical properties of poly (3-hydroxybutyrate). Polymer Testing, 23(4), 455–460. Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121 Chuang, L., Panyoyai, N., Katopo, L., Shanks, R., & Kasapis, S. (2016). Calcium chloride effects on the glass transition of condensed systems of potato starch. Food Chemistry, 199, 791–798. https://doi.org/10.1016/j.foodchem.2015.12.076 Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018 Cuevas-Carballo, Z. B., Duarte-Aranda, S., & Canché-Escamilla, G. (2019). Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). Journal of Polymers and the Environment, 27(11), 2607–2617. https://doi.org/10.1007/s10924-019-01540-w Decaen, P., Rolland-Sabaté, A., Colomines, G., Guilois, S., Lourdin, D., Della Valle, G., & Leroy, E. (2020). Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydrate Polymers, 230(June), 115591. https://doi.org/10.1016/j.carbpol.2019.115591 Delbecq, F., Khodadadi, M. R., Rodriguez Padron, D., Varma, R., & Len, C. (2020). Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 482(September 2019). https://doi.org/10.1016/j.mcat.2019.110648 Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1–17. https://doi.org/10.3390/polym11071084 Dong, W., Zou, B., Yan, Y., Ma, P., & Chen, M. (2013). Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/ poly(butylene adipate-co-terephthalate) blends. International Journal of Molecular Sciences, 14(10), 20189–20203. https://doi.org/10.3390/ijms141020189 Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Effect of various plasticizers and concentration on the physical , thermal , mechanical , and structural properties of cassava-starch-based films. Starch‐Stärke, 69(2), 1–11. https://doi.org/10.1002/star.201500366 Esmaeili, M., Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co‐plasticized thermoplastic starch blends. Polymers for Advanced Technologies, 29(12), 2880–2889. Esmaeili, Mohsen, Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. October 2016. https://doi.org/10.1002/pi.5319 Esmaeili, Mohsen, Pircheraghi, G., Bagheri, R., & Altstädt, V. (2018). Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polymers for Advanced Technologies, 30(4), 839–851. https://doi.org/10.1002/pat.4517 Espejo, L. (2011). Modificación estructural de Poli (Acido Láctico)(PLA) mediante extrusión reactiva: estudio preliminar en mezclador interno escala laboratorio. Universidad Politécnica de Catalanuya. Estevez-Areco, S., Guz, L., Famá, L., Candal, R., & Goyanes, S. (2019). Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids, 96, 518–528. https://doi.org/10.1016/J.FOODHYD.2019.05.054 European Bioplastics. (2018). What are bioplastics? https://www.european-bioplastics.org/bioplastics/ Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. In Advanced Drug Delivery Reviews (Vol. 107, pp. 367–392). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.06.012 Fekete, E., Bella, É., Csiszár, E., & Móczó, J. (2019). Improving physical properties and retrogradation of thermoplastic starch by incorporating agar. International Journal of Biological Macromolecules, 136, 1026–1033. https://doi.org/10.1016/j.ijbiomac.2019.06.109 Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2018). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. https://doi.org/10.1002/app.45751 Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60–68. https://doi.org/10.1016/j.carbpol.2016.03.082 Gamarano, D. de S., Pereira, I. M., da Silva, M. C., Mottin, A. C., & Ayres, E. (2019). Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polymer Bulletin. https://doi.org/10.1007/s00289-019-02999-2 Gao, W., Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181. Gao, Wei, Liu, P., Li, X., Qiu, L., Hou, H., & Cui, B. (2019). The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules, 133, 1175–1181. https://doi.org/10.1016/j.ijbiomac.2019.04.193 Garalde, R. A., Thipmanee, R., Jariyasakoolroj, P., & Sane, A. (2019). The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Heliyon, 5(3), e01251. https://doi.org/10.1016/j.heliyon.2019.e01251 Genovese, L., Dominici, F., Gigli, M., Armentano, I., Lotti, N., Fortunati, E., Siracusa, V., Torre, L., & Munari, A. (2018). Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, 157, 100–107. https://doi.org/10.1016/j.polymdegradstab.2018.10.004 George, W. (2004). Handbook of plasticizers. In Chem. Tech. Publishing. Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442–447. https://doi.org/10.1016/j.ijbiomac.2018.02.007 Giroto, A. S., Garcia, R. H. S., Colnago, L. A., Klamczynski, A., Glenn, G. M., & Ribeiro, C. (2020). Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. International Journal of Biological Macromolecules, 144, 143–150. https://doi.org/10.1016/j.ijbiomac.2019.12.094 González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., & Famá, L. (2017). Influence of extrusion process conditions on starch film morphology. LWT, 84, 520–528. https://doi.org/10.1016/j.lwt.2017.06.027 González, K., Iturriaga, L., González, A., Eceiza, A., & Gabilondo, N. (2020). Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. European Polymer Journal, 123, 109415. https://doi.org/10.1016/j.eurpolymj.2019.109415 González, K., Martin, L., González, A., Retegi, A., Eceiza, A., & Gabilondo, N. (2017). D-isosorbide and 1,3-propanediol as plasticizers for starch-based films: Characterization and aging study. Journal of Applied Polymer Science, 134(20), 1–10. https://doi.org/10.1002/app.44793 Halley, P. J., & Avérous, L. R. (2014). Starch polymers: From the field to industrial products. Hammami, N., Jarroux, N., Robitzer, M., Majdoub, M., & Habas, J. P. (2016). Optimized synthesis according to one-step process of a biobased thermoplastic polyacetal derived from isosorbide. Polymers, 8(8). https://doi.org/10.3390/polym8080294 Hornung, P. S., do Prado Cordoba, L., da Silveira Lazzarotto, S. R., Schnitzler, E., Lazzarotto, M., & Ribani, R. H. (2017). Brazilian Dioscoreaceas starches: Thermal, structural and rheological properties compared to commercial starches. Journal of Thermal Analysis and Calorimetry, 127(3), 1869–1877. https://doi.org/10.1007/s10973-016-5747-5 Hulleman, S. H. D., Kalisvaart, M. G., Janssen, F. H. P., Feil, H., & Vliegenthart, J. F. G. (1999). Origins of B-type crystallinity in glycerol-plasticized, compression-moulded potato starches. Carbohydrate Polymers, 39(4), 351–360. https://doi.org/10.1016/S0144-8617(99)00024-7 Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24(February), 100480. https://doi.org/10.1016/j.fpsl.2020.100480 Ismail, S., Mansor, N., Majeed, Z., & Man, Z. (2016). Effect of Water and [Emim][OAc] as Plasticizer on Gelatinization of Starch. Procedia Engineering, 148, 524–529. https://doi.org/10.1016/j.proeng.2016.06.542 Ismail, S., Mansor, N., & Man, Z. (2017). A Study on Thermal Behaviour of Thermoplastic Starch Plasticized by [Emim] Ac and by [Emim] Cl. Procedia Engineering, 184, 567–572. https://doi.org/10.1016/j.proeng.2017.04.138 Isotton, F. S., Bernardo, G. L., Baldasso, C., Rosa, L. M., & Zeni, M. (2015). The plasticizer effect on preparation and properties of etherified corn starchs films. Industrial Crops and Products, 76, 717–724. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2015.04.005 Ivanič, F., Jochec-Mošková, D., Janigová, I., & Chodák, I. (2017). Physical properties of starch plasticized by a mixture of plasticizers. European Polymer Journal, 93(October 2016), 843–849. https://doi.org/10.1016/j.eurpolymj.2017.04.006 Jeziorska, R., Szadkowska, A., Spasowka, E., Lukomska, A., & Chmielarek, M. (2018). Characteristics of Biodegradable Polylactide/Thermoplastic Starch/Nanosilica Composites: Effects of Plasticizer and Nanosilica Functionality. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/4571368 Jullanun, P., & Yoksan, R. (2020). Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 88, 106522. https://doi.org/10.1016/j.polymertesting.2020.106522 Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575–581. https://doi.org/10.1016/j.ijbiomac.2016.05.028 Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775–781. https://doi.org/10.1016/J.IJBIOMAC.2019.08.185 Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069–3082. https://doi.org/10.1002/app.1758 Khan, B., Bilal, M., Niazi, K., Hussain, A., & Jahan, Z. (2017). Influence of Carboxylic Acids on Mechanical Properties of Thermoplastic Starch by Spray Drying. Fibers and Polymers, 18(1), 64–73. https://doi.org/10.1007/s12221-017-6769-8 Kim, H. Y., Lamsal, B., Jane, J. lin, & Grewell, D. (2020). Sheet-extruded films from blends of hydroxypropylated and native corn starches, and their characterization. Journal of Food Process Engineering, 43(3), 1–8. https://doi.org/10.1111/jfpe.13216 Kmetty, Á., Litauszki, K., & Réti, D. (2018). Characterization of different chemical blowing agents and their applicability to produce poly(lactic acid) foams by extrusion. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101960 Kutz, M., Dearmitt, C., Plastics, P., Rothon, R., Consultants, R., Abyss, I., Innovator, A., Innovation, C., View, F., & Dearmitt, C. (2016). Applied Plastics Engineering Handbook (M. Kutz (ed.); 2nd ed., Issue May). Lai, J. C., Rahman, W. A. W. A., Averous, L., & Tim, T. H. (2016). Study and characterisation of the post processing ageing of sago pith waste biocomposites | Request PDF. Sains Malaysiana. https://www.researchgate.net/publication/303699771_Study_and_characterisation_of_the_post_processing_ageing_of_sago_pith_waste_biocomposites Liu, Y, Fan, L., Mo, X., Yang, F., & Pang, J. (2017). Effects of nanosilica on retrogradation properties and structures of thermoplastic cassava starch. Journal of Applied Polymer Science, 135(2), 45687. https://doi.org/10.1002/app.45687 Liu, Yuxin, Fan, L., Pang, J., & Tan, D. (2020). Effect of tensile action on retrogradation of thermoplastic cassava starch/nanosilica composite. Iranian Polymer Journal, 29(2), 171–183. https://doi.org/10.1007/s13726-020-00782-z Lumdubwong, N. (2019). Applications of Starch-Based Films in Food Packaging. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22481-5 Ma, X, Yu, J., He, K., & Wang, N. (2007). The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromolecular Materials and Engineering, 292(4), 503–510. https://doi.org/10.1002/mame.200600445 Ma, Xiaofei, & Yu, J. (2004). The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/Staerke, 56(11), 545–551. https://doi.org/10.1002/star.200300256 Maniglia, B. C., Tessaro, L., Ramos, A. P., & Tapia-Blácido, D. R. (2019). Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocolloids, 89, 143–152. https://doi.org/10.1016/j.foodhyd.2018.10.038 Martin, O., & Avérous, L. (2001). Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6 Meite, N., Konan, L. K., Bamba, D., Goure-Doubi, B. I. H., & Oyetola, S. (2018). Structural and Thermomechanical Study of Plastic Films Made from Cassava-Starch Reinforced with Kaolin and Metakaolin. Materials Sciences and Applications, 09(01), 41–54. https://doi.org/10.4236/msa.2018.91003 Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398. https://doi.org/10.1039/c3ta12555f Mikus, P.-Y., Coqueret, X., Alix, S., Krawczak, P., Soulestin, J., Lacrampe, M. F., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450–457. https://doi.org/10.1016/j.carbpol.2014.06.087 Mina, J. H., Valadez, A., Herrera-Franco, P. J., & Toledano, T. (2012). Influence of aging time on the structural changes of cassava thermoplastic starch. Materials Research Society Symposium Proceedings, 1372, 21–27. https://doi.org/10.1557/opl.2012.129 Mina, J., Valadez-González, A., Herrera-Franco, P., Zuluaga, F., & Delvasto, S. (2013). Preparation and physical-chemical and mechanical characterization of ternary blends of polylactide (PLLA), polycaprolactone (PCL) and thermoplastic starch (TPS). Revista Latinoamericana de Metalurgia y Materiales, 33(1), 82–91. Moghaddam, M. R. A., Razavi, S. M. A., & Jahani, Y. (2018). Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends. Journal of Polymers and the Environment, 26(8), 3202–3215. https://doi.org/10.1007/s10924-018-1206-7 Montilla-buitrago, C. E., Gómez-lópez, R. A., & Solanilla-duque, J. F. (2021). Effect of Plasticizers on Properties , Retrogradation , and Processing of Extrusion-Obtained Thermoplastic Starch : A Review. Starch‐Stärke, 2100060, 1–15. https://doi.org/10.1002/star.202100060 Müller, P., Bere, J., Fekete, E., Nagy, B., Kállay, M., Gyarmati, B., & Pukánszky, B. (2016). Interactions , structure and properties in PLA / plasticized starch blends. Polymer, 103, 9–18. https://doi.org/10.1016/j.polymer.2016.09.031 Müller, Péter, Imre, B., Bere, J., Móczó, J., & Pukánszky, B. (2015). Physical ageing and molecular mobility in PLA blends and composites. Journal of Thermal Analysis and Calorimetry, 122(3), 1423–1433. https://doi.org/10.1007/s10973-015-4831-6 Nawab, A., Alam, F., Haq, M. A., & Hasnain, A. (2016). Biodegradable film from mango kernel starch: Effect of plasticizers on physical, barrier, and mechanical properties. Starch/Staerke, 68(9–10), 919–928. https://doi.org/10.1002/star.201500349 Nguyen, H. P., & Lumdubwong, N. (2016). Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers, 154, 112–120. https://doi.org/10.1016/j.carbpol.2016.08.034 Niaounakis, M. (2015). Recycling. In Biopolymers: Processing and Products (pp. 481–530). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00016-7 Niaounakis, M., Kontou, E., & Xanthis, M. (2011). Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 119(1), 472–481. https://doi.org/10.1002/app.32644 Niazi, M. B. K., Zijlstra, M., & Broekhuis, A. A. (2015). Influence of plasticizer with different functional groups on thermoplastic starch. Journal of Applied Polymer Science, 132 (22)(22), 1–12. https://doi.org/10.1002/app.42012 Niazi, M., & Broekhuis, A. (2016). Oxidized potato starch based thermoplastic films: Effect of combination of hydrophilic and amphiphilic plasticizers. Starch/Staerke, 68(7–8), 785–795. https://doi.org/10.1002/star.201500227 Niranjana Prabhu, T., & Prashantha, K. (2018). A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites, 39(7), 2499–2522. https://doi.org/10.1002/pc.24236 Orozco S., D. M., & Cadavid C., M. A. (2008). Test de Kruskal- Wallis (p. 14). Palai, B., Biswal, M., Mohanty, S., & Nayak, S. K. (2019). In situ reactive compatibilization of polylactic acid ( PLA ) and thermoplastic starch ( TPS ) blends ; synthesis and evaluation of extrusion blown films thereof. Industrial Crops & Products, 141(August), 111748. https://doi.org/10.1016/j.indcrop.2019.111748 Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. In Starch/Staerke (Vol. 62, Issue 8, pp. 389–420). https://doi.org/10.1002/star.201000013 Pushpadass, H. A., & Hanna, M. A. (2009). Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Industrial and Engineering Chemistry Research, 48(18), 8457–8463. https://doi.org/10.1021/ie801922z Qin, Y., Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of Silane Treatment on Mechanical Properties. Materials, 12(1705), 1–13. Qin, Yang, Zhang, H., Dai, Y., Hou, H., & Dong, H. (2019). Effect of alkali treatment on structure and properties of high amylose corn starch film. Materials, 12(10). https://doi.org/10.3390/MA12101705 Ren, J., Dang, K. M., Pollet, E., & Avérous, L. (2018). Preparation and Characterization of Thermoplastic Potato Starch / Halloysite Nano-Biocomposites : Effect of Plasticizer Nature and Nanoclay Content. Polymers Article, 10(8). https://doi.org/10.3390/polym10080808 Ren, J., Zhang, W., Lou, F., Wang, Y., & Guo, W. (2017). Characteristics of starch-based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starch/Staerke, 69(1–2), 1–8. https://doi.org/10.1002/star.201600161 Rico, M., Rodríguez-Llamazares, S., Barral, L., Bouza, R., & Montero, B. (2016). Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 149, 83–93. https://doi.org/10.1016/j.carbpol.2016.04.087 Ridhwan, J., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. International Journal of Biological Macromolecules, 97, 606–615. https://doi.org/10.1016/j.ijbiomac.2017.01.079 Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stäbler, A., & Lazzeri, A. (2019). Thermal, mechanical, and rheological properties of biocomposites made of poly(Lactic acid) and potato pulp powder. International Journal of Molecular Sciences, 20(3), 1–17. https://doi.org/10.3390/ijms20030675 Santos, F. A. dos, & Tavares, M. I. B. (2013). Preparo e caracterização de filmes obtidos a partir de poli(ácido lático) e celulose microcristalina. Polímeros, 23(ahead), 0–0. https://doi.org/10.1590/s0104-14282013005000021 Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364–372. https://doi.org/10.1016/j.carbpol.2014.09.004 Seligra, P. G., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66–74. https://doi.org/10.1016/j.carbpol.2015.11.041 Shamsuri, A. A., & Daik, R. (2012). Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films. BioResources, 7(4), 4760–4775. https://doi.org/10.15376/biores.7.4.4760-4775 Shanks, R., & Kong, I. (2012). Thermoplastic Starch. In Thermoplastic elastomers (pp. 96–116). IntechOpen. Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19–22. https://doi.org/10.1016/j.carbpol.2012.09.038 Surya, I., Olaiya, N. G., Rizal, S., Zein, I., Aprilia, N. A. S., Hasan, M., Yahya, E. B., Sadasivuni, K. K., & Khalil, H. P. S. A. (2020). Plasticizer enhancement on the miscibility and thermomechanical properties of polylactic acid-chitin-starch composites. Polymers, 12(1). https://doi.org/10.3390/polym12010115 Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61–68. https://doi.org/10.1016/j.indcrop.2011.11.036 Tian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006 Turco, R., Ortega-Toro, R., Tesser, R., Mallardo, S., Collazo-Bigliardi, S., Boix, A. C., Malinconico, M., Rippa, M., Di Serio, M., & Santagata, G. (2019). Poly (lactic acid)/thermoplastic starch films: Effect of cardoon seed epoxidized oil on their chemicophysical, mechanical, and barrier properties. Coatings, 9(9), 1–20. https://doi.org/10.3390/coatings9090574 Valero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: Avances Y Perspectivas Biopolymers: Progress and Prospects. SciELO Colómbia, 181(0012–7353), 171–180. http://www.revistas.unal.edu.co/index.php/dyna/article/viewFile/20642/42269 Van Oosterhout, J. T., & Gilbert, M. (2003). Interactions between PVC and binary or ternary blends of plasticizers. Polymer, 44(26), 8081–8094. Van Soest, J. J. G., Benes, K., De Wit, D., & Vliegenthart, J. F. G. (1996). The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer, 37(16), 3543–3552. https://doi.org/10.1016/0032-3861(96)00165-6 van Soest, J. J. G., De Wit, D., Tournois, H., & Vliegenthart, J. F. G. (1994). Retrogradation of Potato Starch as Studied by Fourier Transform Infrared Spectroscopy. Starch ‐ Stärke, 46(12), 453–457. https://doi.org/10.1002/star.19940461202 Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., & Vliegenthart, J. F. G. (1996). Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydrate Polymers, 29(3), 225–232. https://doi.org/10.1016/0144-8617(96)00011-2 Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D., Vliegenthart, J. F. G., Wita, D. De, & Vliegenthartb, J. F. G. (1996). Crystallinity in starch bioplastics. Industrial Crops and Products, 5(1), 11–22. https://doi.org/10.1016/0926-6690(95)00048-8 Van Soest, J. J. G., Vliegenthart, J. F. G., Soest, J. J. G. Van, & Vliegenthart, J. F. G. (1997). Crystallinity in starch plastics : consequences for material properties. Trends in Biotechnology, 15(June), 208–213. https://doi.org/10.1016/S0167-7799(97)01021-4 Varona Beltran, G. A. (2014). Estabilidad Estructural de una Película Flexible Obtenida a Partir de Almidón Termoplástico con Ácido Esteárico. Revista Facultad Nacional de Agronomía, 67 (2), 502–504. Vazifehasl, Z., Hemmati, S., Zamanloo, M., & Dizaj, S. M. (2013). New Series of Dimethacrylate-Based Monomers on Isosorbide as a Dental Material : Synthesis and Characterization. International Journal of Composite Materials, 3(4), 100–107. https://doi.org/10.5923/j.cmaterials.20130304.03 Vieira, A., Altenhofen, M., Oliveira, L., Beppu, M. M., Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011 Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. https://doi.org/10.3390/ma2020307 WagnerJr, J. R., & GilesJr, H. F. (2014). Single Screw Extruder. In Extrusion (Second Edition). https://www.sciencedirect.com/topics/engineering/single-screw-extruder Warren, F. J., Gidley, M. J., & Flanagan, B. M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure - A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate Polymers, 139, 35–42. https://doi.org/10.1016/j.carbpol.2015.11.066 Winuk, A. J., Rane, S. Y., & Terry, J. (2012). U.S. Patent Application. Wypych, G. (2017). Handbook of Plasticizers. In G. Wypych (Ed.), ChemTec Publishing (Third Edit, Vol. 3). ChemTec Publishing. Xie, F., Flanagan, B. M., Li, M., Sangwan, P., Truss, R. W., Halley, P. J., Strounina, E. V., Whittaker, A. K., Gidley, M. J., Dean, K. M., Shamshina, J. L., Rogers, R. D., & McNally, T. (2014). Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 111, 841–848. https://doi.org/10.1016/j.carbpol.2014.05.058 Xie, F., Liu, P., & Yu, L. (2014). Processing of plasticized starch-based materials: state of the art and perspectives. In Starch polymers. Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007 Yang, Q., Yang, Y., Luo, Z., Xiao, Z., Ren, H., Li, D., & Yu, J. (2016). Effects of Lecithin Addition on the Properties of Extruded Maize Starch. Journal of Food Processing and Preservation, 40(1), 20–28. https://doi.org/10.1111/jfpp.12579 Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), 1–9. https://doi.org/10.1002/app.41808 Zaaba, N. F., & Ismail, H. (2019). A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends. In Polymer-Plastics Technology and Materials (Vol. 58, Issue 18, pp. 1945–1964). Taylor & Francis. https://doi.org/10.1080/25740881.2019.1599941 Zdanowicz, M. (2020). Starch treatment with deep eutectic solvents, ionic liquids and glycerol. A comparative study. Carbohydrate Polymers, 229, 115574. https://doi.org/10.1016/j.carbpol.2019.115574 Zdanowicz, M., Staciwa, P., Jedrzejewski, R., & Spychaj, T. (2019). Sugar alcohol-based deep eutectic solvents as potato starch plasticizers. Polymers, 11(9). https://doi.org/10.3390/polym11091385 Zdanowicz, M., Staciwa, P., & Spychaj, T. (2019). Low Transition Temperature Mixtures (LTTM) Containing Sugars as Potato Starch Plasticizers. Starch/Staerke, 71(9–10), 1900004. https://doi.org/10.1002/star.201900004 Zhang, B., Xie, F., Zhang, T., Chen, L., Li, X., Truss, R. W., Halley, P. J., Shamshina, J. L., McNally, T., & Rogers, R. D. (2016). Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polymers, 146, 67–79. https://doi.org/10.1016/j.carbpol.2016.03.056 Zhang, H., Sun, B., Zhang, S., Zhu, Y., & Tian, Y. (2015). Inhibition of wheat starch retrogradation by tea derivatives. Carbohydrate Polymers, 134, 413–417. https://doi.org/https://doi.org/10.1016/j.carbpol.2015.08.018 Zhang, K., Zhang, K., Cheng, F., Lin, Y., Zhou, M., & Zhu, P. (2019). Aging properties and hydrophilicity of maize starch plasticized by hyperbranched poly(citrate glyceride). Journal of Applied Polymer Science, 136(1), 1–8. https://doi.org/10.1002/app.46899 Zhang, L., Wang, X.-F., Liu, H., Yu, L., Wang, Y., Simon, G. P., & Qian, J. (2018). Effect of plasticizers on microstructure, compatibility and mechanical property of hydroxypropyl methylcellulose/hydroxypropyl starch blends. International Journal of Biological Macromolecules, 119, 141–148. https://doi.org/10.1016/J.IJBIOMAC.2018.07.064 Zhang, Y., Zhang, Y., Li, B., Xu, F., Zhu, K., Tan, L., Wu, G., Dong, W., & Li, S. (2019). Retrogradation behavior of amylopectin extracted different jackfruit cultivars seeds in presence on the same amylose. LWT, 114, 108366. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108366 Zhong, Yajie, Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002 Zhong, Yuyue, Li, Y., Liang, W., Liu, L., Li, S., Xue, J., & Guo, D. (2018). Comparison of gelatinization method, starch concentration, and plasticizer on physical properties of high-amylose starch films. Journal of Food Process Engineering, 41(2), 1–8. https://doi.org/10.1111/jfpe.12645 Zhu, F. (2015). Composition, structure, physicochemical properties and Modifications of Cassava Starch. Carbohydrate Polymers, 122, 456–480. https://doi.org/10.1016/j.carbpol.2014.10.063 Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4), 303–316. https://doi.org/10.1177/0095244307085787 Zuo, Y., Gu, J., Cao, J., Wei, S., Tan, H., & Zhang, Y. (2015). Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites. Journal Wuhan University of Technology, Materials Science Edition, 30(5), 1108–1114. https://doi.org/10.1007/s11595-015-1280-9 Zuo, Y., Gu, J., Tan, H., & Zhang, Y. (2015). Thermoplastic Starch Prepared with Different Plasticizers : Relation between Degree of Plasticization and Properties. Journal of Wuhan University of Technology-Mater, 30(2), 423–428. https://doi.org/10.1007/s11595-015-1164-z
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto de la isosorbida sobre los cambios estructurales de películas de almidón termoplástico de yuca y ácido poliláctico
dc.typeTesis


Este ítem pertenece a la siguiente institución