dc.contributorParra Suescún, Jaime Eduardo
dc.contributorLópez Herrera, Albeiro
dc.creatorMadrid Garcés, Tomás Antonio
dc.date.accessioned2021-06-02T19:03:35Z
dc.date.available2021-06-02T19:03:35Z
dc.date.created2021-06-02T19:03:35Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79600
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa producción agropecuaria actual es muy exigente en aspectos de calidad que se traduce en alimentos más seguros para los consumidores. En la avicultura se usan los antibióticos de manera profiláctica, conocidos como Antibióticos Promotores de Crecimiento (APC) con excelentes resultados productivos, pero con grandes dudas frente al tema de seguridad alimentaria por la proliferación de resistencia antimicrobiona y la llegada de estos microrganismos a la cadena alimenticia. Los fitobióticos se han presentado como una de las alternativas más efectivas a la hora de reemplazar los APC, dentro de estos extractos de plantas se encuentra el Aceite esencial de oregano (AEO) de Lippia origanoides, que viene demostrando sus propiedades en diferentes aspectos dentro de la producción avícola. El presente trabajo pretende estudiar el efecto de la adición de AEO sobre variables productivas, metabólicas, morfometría digestiva, células caliciformes, expresión molecular de enzimas y transportadores, y microbiota intestinal de pollos en un modelo de inflamación in vivo logrado mediante LPS de e coli. Se logró evidenciar que la adición de AEO mejora las variables zootécnicas (Ganancia acumulada de peso), metabolitos sanguíneos (glucosa, fosforo, calcio, colesterol, triglicéridos), morfometría digestiva (altura de vellosidades y profundad de criptas), células caliciformes (tipo de tinción), expresión molecular de enzimas y transportadores (MgA: maltasa-glucoamilasa; SI: sacarasa-isomaltasa; SGLT-1: sodium-glucose transporter; GLUT-5: glucose transporter-5; GLUT-2: glucose transporter-2) y modula positivamente la microbiota intestinal de pollos de engorde en un modelo inflación in vivo. El AEO se proyecta como un promotor nutricional de crecimiento con capacidad de reemplazar los APC.
dc.description.abstractCurrent agricultural production is very demanding in terms of quality, which translates into safer food for consumers. In poultry, antibiotics are used prophylactically, known as Growth Promoting Antibiotics (GAP) with excellent productive results, but with great doubts regarding the issue of food safety due to the proliferation of antimicrobial resistance and the arrival of these microorganisms to the chain food. Phytobiotics have been presented as one of the most effective alternatives when it comes to replacing GAP, within these plant extracts is the Essential Oil of oregano (AEO) from Lippia origanoides, which has been demonstrating its properties in different aspects within poultry production. The present study aims to study the effect of the addition of AEO on productive and metabolic variables, digestive morphometry, goblet cells, molecular expression of enzymes and transporters, and intestinal microbiota of chickens in an in vivo model of inflammation achieved by e coli LPS. It was possible to show that the addition of AEO improves the zootechnical variables (accumulated weight gain), blood metabolites (glucose, phosphorus, calcium, cholesterol, triglycerides), digestive morphometry (height of villi and depth of crypts), goblet cells (type of staining), molecular expression of enzymes and transporters (MgA: maltaseglucoamylase; SI: sucrase-isomaltase; SGLT-1: sodium-glucose transporter; GLUT-5: glucose transporter-5; GLUT-2: glucose transporter-2) and positively modulates the gut microbiota of broilers in an in vivo inflation model. AEO is projected as a nutritional growth promoter with the ability to replace GAPs
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherEscuela de biociencias
dc.publisherFacultad de Ciencias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302
dc.relationAbouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508
dc.relationAbouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508
dc.relationAbudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258
dc.relationAcosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045
dc.relationAl-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249
dc.relationAlagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454
dc.relationAldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdf
dc.relationAlegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=pt
dc.relationArango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdf
dc.relationArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdf
dc.relationArmed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdf
dc.relationBedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010
dc.relationBenedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819
dc.relationBengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093
dc.relationBetancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002
dc.relationBohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
dc.relationBonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004
dc.relationBorda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002
dc.relationBozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897
dc.relationBroch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641
dc.relationBueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383
dc.relationBurbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374
dc.relationChamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465K
dc.relationChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441
dc.relationChavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf
dc.relationChávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441
dc.relationCho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182
dc.relationChowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
dc.relationChowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
dc.relationCiro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748
dc.relationCiro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648
dc.relationCiro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdf
dc.relationCiro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359
dc.relationCosta, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026
dc.relationCrippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4
dc.relationCunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.html
dc.relationCuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739
dc.relationDella-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576
dc.relationDeng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976
dc.relationDerache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005
dc.relationDeriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007
dc.relationDerrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07
dc.relationDíaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticos
dc.relationDíaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917
dc.relationDrew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414
dc.relationEbert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442
dc.relationEcco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002
dc.relationEl-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946
dc.relationEllis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002
dc.relationElokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896
dc.relationEtxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.
dc.relationFAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdf
dc.relationFAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/es
dc.relationFaseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-x
dc.relationFasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329
dc.relationFENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/
dc.relationFernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17
dc.relationFernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039
dc.relationFontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772
dc.relationGaleano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.
dc.relationGangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4
dc.relationGao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
dc.relationGarcía-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006
dc.relationGarcía-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935
dc.relationGarcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228
dc.relationGarrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004
dc.relationGaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001
dc.relationGómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENG
dc.relationGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
dc.relationGottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175
dc.relationGotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdf
dc.relationGualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.
dc.relationHabib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062
dc.relationHaghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005
dc.relationHealth, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCC
dc.relationHernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709
dc.relationHooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
dc.relationHu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008
dc.relationHuamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009
dc.relationIclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf
dc.relationIebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.
dc.relationIljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354
dc.relationJang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009
dc.relationJha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.
dc.relationKachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585
dc.relationKalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376
dc.relationKarimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013
dc.relationKers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235
dc.relationKheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2
dc.relationKiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019
dc.relationKiller, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4
dc.relationKogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031
dc.relationKogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
dc.relationKollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &
dc.relationVenkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36
dc.relationLaniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297
dc.relationLawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09
dc.relationLázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057
dc.relationLeary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1
dc.relationLeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005
dc.relationLei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12
dc.relationLeiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102 Abbas, G., Iqbal, M. A., Riaz, M., Sajid, M., & Zahid, O. (2018). Comparative Effect of Different Levels of Probiotics ( Protexin ) on Hemato-chemical Profile in Broilers. Advances in Zoology and Botany, 6, 84–87. https://doi.org/10.13189/azb.2018.060302
dc.relationAbouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019a). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 1–7. https://doi.org/10.1017/S1751731119000508
dc.relationAbouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A. A., Wang, G., Wang, S., Wang, J., & Bian, G. (2019b). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal. https://doi.org/10.1017/S1751731119000508
dc.relationAbudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1), 691–695. https://doi.org/10.1080/09712119.2017.1383258
dc.relationAcosta, J. M., Arango, O., Álvarez, D. E., & Hurtado, A. M. (2019). Actividad biocida del aceite esencial de lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Informacion Tecnologica, 30(6), 45–54. https://doi.org/10.4067/S0718-07642019000600045
dc.relationAl-Zghoul, M. B., Alliftawi, A. R. S., Saleh, K. M. M., & Jaradat, Z. W. (2019). Expression of digestive enzyme and intestinal transporter genes during chronic heat stress in the thermally manipulated broiler chicken. Poultry Science. https://doi.org/10.3382/ps/pez249
dc.relationAlagawany, M., Abd El-Hack, M. E., Farag, M. R., Shaheen, H. M., Abdel-Latif, M. A., Noreldin, A. E., & Patra, A. K. (2018). The usefulness of oregano and its derivatives in poultry nutrition. World’s Poultry Science Journal, 74(3), 463–473. https://doi.org/10.1017/S0043933918000454
dc.relationAldapa-Vega, G., Pastelín-Palacios, R., Isibasi, A., Moreno-Eutimio, M., & López-Macías, C. (2016). Modulation of immune response by bacterial lipopolysaccharides. Revista Alergia México, 63(3), 293–302. https://www.redalyc.org/pdf/4867/486755025002.pdf
dc.relationAlegría Matos, P. H., Tafur Cabello, K. S., Lozano Miranda, A., Loza Munarriz, C., & Lozano Miranda, Z. (2015). Características clínicas y bioquímicas en pacientes con histología compatible con esteatohepatitis del Hospital Nacional Arzobispo Loayza, Lima, Perú en el 2010-2012. Revista de Gastroenterología Del Perú, 353(3), 236–242. http://www.scielo.org.pe/scielo.php?pid=S1022-51292015000300005&script=sci_arttext&tlng=pt
dc.relationArango Bedoya, Ó., Hurtado Benavides, A. M., Pantoja Daza, D., & Santacruz Chazatar, L. (2015). Actividad inhibitoria del aceite esencial de Lippia origanoides H.B.K sobre el crecimiento de Phytophthora infestans. Doi: Http://Dx.Doi.Org/10.15446/Acag.V64n2.42964, 116–124. https://www.redalyc.org/pdf/1699/169933767003.pdf
dc.relationArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22-02-00110.pdf
dc.relationArmed Forces Institute of Pathology (U.S.), E. (1994). Met́odos histotechnoloǵicos. El Registro de Patologiá de los Estados Unidos de Ameŕ́ica. https://www.worldcat.org/title/metodos-histotecnologicos/oclc/630264753 Aviagen. (2017). Ross 308 AP. Objetivo de rendimiento. http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross308AP-Broiler-PO-2017-ES.pdf
dc.relationBedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010
dc.relationBenedec, D., Oniga, I., Cuibus, F., Sevastre, B., Stiufiuc, G., Duma, M., Hanganu, D., Iacovita, C., Stiufiuc, R., & Lucaciu, C. M. (2018). Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 1041–1058. https://doi.org/10.2147/IJN.S149819
dc.relationBengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093
dc.relationBetancourt, L. L., Ariza, C. N., Díaz, G. G., & Afanador, G. T. (2012). Efecto de diferentes niveles de aceites esenciales de Lippia origanoides kunth en pollos de engorde Effect of different levels of essential oils of Lippia origanoides kunth in broiler chicken. Rev.MVZ Córdoba, 17(2), 3033–3040. Blajman, J. E., Zbrun, M. V., Astesana, D. M., Berisvil, A. P., Scharpen, A. R., Fusari, M. L., Soto, L. P., Signorini, M. L., Rosmini, M. R., & Frizzo, L. S. (2015). Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 47(4), 360–367. https://doi.org/10.1016/j.ram.2015.08.002
dc.relationBohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., & Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3
dc.relationBonassa, C. E. G., Pereira, J. A., Campos, F. G. C. M. de, Rodrigues, M. R., Sato, D. T., Chaim, F. D. M., & Martinez, C. A. R. (2015). Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cirurgica Brasileira, 30(5), 328–338. https://doi.org/10.1590/S0102-865020150050000004
dc.relationBorda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002
dc.relationBozakova, N., Dimitrov, D., Sotirov, L., Petrov, P., Gerzilov, V., & Koynarski, T. (2016). EFFECT OF IMMUNOMODULATOR IMMUNOBETA ON HISTOLOGICAL FEATURES OF INTESTINAL VILLI AND CRYPTS IN BROILER CHICKENS. Ciencia e Tecnica, 31(4), 141–149. https://www.researchgate.net/publication/303813897
dc.relationBroch, B., Nunes, V., Oliveira, de, Silva, da, Mara, I., & Souza, de. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina: Ciências Agrárias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641 Broch, J., Nunes, R. V., De Oliveira, V., Da Silva, I. M., De Souza, C., & Wachholz, L. (2017). Dry residue of cassava as a supplementation in broiler feed with or without addition of carbohydrases. Semina:Ciencias Agrarias, 38(4), 2641–2658. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2641
dc.relationBueno, J. P. R., De Mattos Nascimento, M. R. B., Da Silva Martins, J. M., Marchini, C. F. P., Gotardo, L. R. M., De Sousa, G. M. R., Mundim, A. V., Guimarães, E. C., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina:Ciencias Agrarias, 38(3), 1383–1392. https://doi.org/10.5433/1679-0359.2017v38n3p1383
dc.relationBurbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Carrasco, J. M. D., Casanova, N. A., & Miyakawa, M. E. F. (2019). Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 7(10), 1–15. https://doi.org/10.3390/microorganisms7100374
dc.relationChamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I. (2019). Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454. https://doi.org/10.1039/C8FO02465K
dc.relationChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441
dc.relationChavez, L. A., López Herrera, A., & Parra Suescún, J. E. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf
dc.relationChávez, L., López, A., & Parra, J. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/10.21071/az.v65i249.441
dc.relationCho, I., & Blaser, M. J. (2012, April 13). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. https://doi.org/10.1038/nrg3182
dc.relationChowdhury, S., Mandal, G. P., Patra, A. K., Kumar, P., Samanta, I., Pradhan, S., & Samanta, A. K. (2018). Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology, 236, 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
dc.relationChowdhury, S., Prasad, G., Kumar, A., & Kumar, P. (2018). Different essential oils in diets of broiler chickens : 2 . Gut microbes and morphology , immune response , and some blood pro fi le and antioxidant enzymes. 236(December 2017), 39–47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
dc.relationCiro Galeano, J. A., López Herrera, A., & Parra Suescún, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomia Medellin, 69(1), 7803–7811. https://doi.org/10.15446/rfna.v69n1.54748
dc.relationCiro, J. A., López, A., & Parra, J. (2015). La adición de cepas probióticas modula la secreción de mucinas intestinales eníleon de cerdos en crecimiento. CES Medicina Veterinaria y Zootecnia, 10(2), 150–159. https://doi.org/10.21615/3648
dc.relationCiro, J, López, A., & Parra, J. (2014). Lipopolisacaridos de E. Coli aumentan la expresion molecular de PBD-2 en yeyuno de lechones posdestete. Rev Fac Med Vet Zoot., 61(2), 142–152. http://www.scielo.org.co/pdf/rfmvz/v61n2/v61n2a04.pdf
dc.relationCiro, Johana, López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021. https://doi.org/10.3382/ps/pex359
dc.relationCosta, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–14. https://doi.org/10.1371/journal.pone.0171642 Cowieson, A. J., & Kluenter, A. M. (2018). Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology. https://doi.org/10.1016/J.ANIFEEDSCI.2018.04.026
dc.relationCrippen, T. L., Sheffield, C. L., Singh, B., Byrd, J. A., & Beier, R. C. (2019). How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 10, 2100. https://doi.org/10.3389/fmicb.2019.02100 Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97(1), 137–392. https://doi.org/10.1007/s13225-019-00427-4
dc.relationCunninghan J, K. B. (2013). Libros de medicina veterinaria : Cunningham: Fisiología Veterinaria (5a Ed.) (5th ed.). Elsevier. http://libros-medicina-veterinaria.blogspot.com/2016/09/cunningham-fisiologia-veterinaria-5-ed.html
dc.relationCuperus, T., Dijk, A. van, Dwarsb, M., & Haagsman, H. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental & Comparative Immunology, 61, 48–59. https://doi.org/10.1016/J.DCI.2016.03.008 De Rapper, S., Viljoen, A., & Van Vuuren, S. (2016). Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. https://doi.org/10.1155/2016/2752739
dc.relationDella-Pepa, T., Elshafie, H. S., Capasso, R., De Feo, V., Camele, I., Nazzaro, F., Scognamiglio, M. R., & Caputo, L. (2019). Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules, 24(14), 2576. https://doi.org/10.3390/molecules24142576
dc.relationDeng, H., Yang, S., Zhang, Y., Qian, K., Zhang, Z., Liu, Y., Wang, Y., Bai, Y., Fan, H., Zhao, X., & Zhi, F. (2018). Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Frontiers in Microbiology, 9, 2976. https://doi.org/10.3389/fmicb.2018.02976
dc.relationDerache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P., & Lalmanach, A. C. (2009). Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33(9), 959–966. https://doi.org/10.1016/j.dci.2009.03.005
dc.relationDeriu, E., Liu, J. Z., Pezeshki, M., Edwards, R. A., Ochoa, R. J., Contreras, H., Libby, S. J., Fang, F. C., & Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host and Microbe, 14(1), 26–37. https://doi.org/10.1016/j.chom.2013.06.007
dc.relationDerrien, M., Collado, M. C., Ben-Amor, K., Salminen, S., & De Vos, W. M. (2008). The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646–1648. https://doi.org/10.1128/AEM.01226-07
dc.relationDíaz-González, F. H., Nunes-Correa, M., Benedito-Castellote, J. L., & Ceroni da Silva, S. (2012). TRASTORNOS METABÓLICOS DE LOS ANIMALES DOMÉSTICOS (Rua Lobo d). Universidade Federal de Pelotas. https://www.passeidireto.com/arquivo/51551062/trastornos-metabolicos-de-los-animales-domesticos
dc.relationDíaz-López, E. A., Uribe-Velásquez, L. F., & Narváez-Solarte, W. V. (2014). Bioquímica sanguínea y concentración plasmática de corticosterona en pollo de engorde bajo estrés calórico - Dialnet. Revista de Medicina Veterinaria, 28, 31–42. https://dialnet.unirioja.es/servlet/articulo?codigo=4911917
dc.relationDrew, M. D., Syed, N. A., Goldade, B. G., Laarveldv, B., & Van Kessel, A. G. (2004). Effects of Dietary Protein Source and Level on Intestinal Populations of Clostridium perfringens in Broiler Chickens. Poultry Science, 83(3), 414–420. https://doi.org/10.1093/PS/83.3.414
dc.relationEbert, K., Ewers, M., Bisha, I., Sander, S., Rasputniac, T., Daniel, H., Antes, I., & Witt, H. (2018). Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. The Journal of Biological Chemistry, 293(6), 2115–2124. https://doi.org/10.1074/jbc.RA117.001442
dc.relationEcco, R., Brown, C., Susta, L., Cagle, C., Cornax, I., Pantin-Jackwood, M., Miller, P. J., & Afonso, C. L. (2011). In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Veterinary Immunology and Immunopathology, 141(3–4), 221–229. https://doi.org/10.1016/j.vetimm.2011.03.002
dc.relationEl-Deek, A., & El-Sabrout, K. (2019). Behaviour and meat quality of chicken under different housing systems. In World’s Poultry Science Journal (Vol. 75, Issue 1, pp. 105–114). Cambridge University Press. https://doi.org/10.1017/S0043933918000946
dc.relationEllis, J. C., Ballou, A. L., Hassan, H. M., Koci, M. D., Croom, W. J., Ali, R. A., & Mendoza, M. A. (2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 3(January), 1–12. https://doi.org/10.3389/fvets.2016.00002
dc.relationElokil, A. A., Abouelezz, K. F. M., Ahmad, H. I., Pan, Y., & Li, S. (2020). Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals, 10(5), 896. https://doi.org/10.3390/ani10050896
dc.relationEtxeberria, U., Milagro, F. I., González-Navarro, C. J., & Alfredo Martínez, J. (2016). Role of gut microbiota in obesity Title in Spanish: Papel en la obesidad de la microbiota intestinal ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA. Corresponding Author: Jalfmtz@unav.Es An Real Acad Farm, 82, 234–259.
dc.relationFAO. (2016). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA. http://www.fao.org/3/b-i5996s.pdf
dc.relationFAO, FIDA, UNICEF, PMA, & OMS. (2018). El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. (FAO). FAO. http://www.fao.org/publications/es FAO, OPS, WFP, & UNICEF. (2018). PANORAMA DE LA SEGURIDAD ALIMENTARIA Y NUTRICIONAL (O. W. y U. FAO (ed.)). http://www.fao.org/publications/es
dc.relationFaseleh Jahromi, M., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V., & Liang, J. B. (2016). Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60(7), 1099–1110. https://doi.org/10.1007/s00484-015-1103-x
dc.relationFasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/10.3382/ps/pev329
dc.relationFENAVI. (2020). Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. In Estadísticas - FENAVI - Federación Nacional de Avicultores de Colombia. https://fenavi.org/estadisticas/
dc.relationFernandes, J., Tellini, C., CONTINI, J. P., KOSMANN, R. C., LIMA, E. T. de, OTUTUMI, L. K., DOURADO, M. R., & Dourado, M. R. (2016). Probiótico dietético em um modelo de infecção experimental de enterite necrótica em frangos de corte. Revista Acadêmica: Ciência Animal, 14(756), 157. https://doi.org/10.7213/academica.14.2016.17
dc.relationFernandez-Alarcon, M. F., Trottier, N., Steibel, J. P., Lunedo, R., Campos, D. M. B., Santana, A. M., Pizauro, J. M., Furlan, R. L., & Furlan, L. R. (2017). Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poultry Science, 96(8), 2920–2930. https://doi.org/10.3382/ps/pex039
dc.relationFontané, L., Benaiges, D., Goday, A., Llauradó, G., & Pedro-Botet, J. (2018). Influence of the microbiota and probiotics in obesity. Clínica e Investigación En Arteriosclerosis (English Edition), 30(6), 271–279. https://doi.org/10.1016/j.artere.2018.10.002 Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5 SUPPL.), 14S-20S. https://doi.org/10.1177/0148607111413772
dc.relationGaleano, C. J., Herrera, L. A., Suescún La, P. J., Andrea Ciro Galeano, J., López Herrera, A., Parra Suescún, J., para correspondencia, A., & Andrea Ciro Galeano Johanaciro, J. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum Artículo original. Rev CES Med Zootec, 10(2), 150–159.
dc.relationGangadoo, S., Van, T. T. H., Dinev, I., Chapman, J., Moore, R. J., Stanley, D., & Hughes, R. J. (2017). Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Applied Microbiology and Biotechnology, 102(3), 1455–1466. https://doi.org/10.1007/s00253-017-8688-4
dc.relationGao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., Xu, J., & Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1
dc.relationGarcía-Hernández, Y., & García-Curbelo, Y. (2015). Uso de aditivos en la alimentación animal: 50 años de experiencia en el Instituto de Ciencia Animal. Revista Cubana de Ciencia Agrícola, 49(2), 173--177. http://www.redalyc.org/articulo.oa?id=193039698006
dc.relationGarcía-Sánchez, L., Melero, B., Diez, A. M., Jaime, I., Canepa, A., & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, 104935. https://doi.org/10.1016/j.prevetmed.2020.104935
dc.relationGarcia, J. S., Byrd, J. A., & Wong, E. A. (2018). Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poultry Science, 97, 3671–3680. https://doi.org/10.3382/ps/pey228
dc.relationGarrett, W. S., Gallini, C. A., Yatsunenko, T., Michaud, M., Dubois, A., Delaney, M. L., Punit, S., Karlsson, M., Bry, L., Glickman, J. N., Gordon, J. I., Onderdonk, A. B., & Glimcher, L. H. (2010). Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host and Microbe, 8(3), 292–300. https://doi.org/10.1016/j.chom.2010.08.004
dc.relationGaur, S., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., & Andrade, J. E. (2018). Effect of oregano essential oil and carvacrol on Cryptosporidium parvum infectivity in HCT-8 cells. Parasitology International, 67(2), 170–175. https://doi.org/10.1016/j.parint.2017.11.001
dc.relationGómez-Sánchez, M. D., Salinas-Hernández, R. M., Ávila-Ramos, F., García-Rodríguez, M. M., Ulín-Montejo, F., Osorio-Osorio, R., & González-Ríos, H. (2016). La suplementación con aceite de orégano no afecta la calidad sensorial de la carne de pollo The supplementation with oregano oil does not affect the sensory quality of chicken meat. Nacameh, 10(1), 1–16. https://dialnet.unirioja.es/servlet/articulo?codigo=6015224&info=resumen&idioma=ENG
dc.relationGomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., Carr, M., Modry, D., Todd, A., Torralba, M., Nelson, K. E., Stumpf, R. M., Wilson, B. A., Blekhman, R., White, B. A., & Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146
dc.relationGottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., Muller Fernandes, J. I., Gottardo, E. T., Burin Junior, Á. M., Lemke, B. V., Silva, A. M., Busatta Pasa, C. L., & Muller Fernandes, J. I. (2017). Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral Journal of Veterinary Sciences, 49(3), 175–184. https://doi.org/10.4067/S0719-81322017000300175
dc.relationGotteland, M. (2013). El papel de la microbiota intestinal en el desarrollo de la obesidad y de la diabetes de tipo-2. Rev. Chil. Endocrinol. Diabetes , 6(4), 155–162. https://www.researchgate.net/profile/Martin_Gotteland/publication/259800959_El_papel_de_la_microbiota_intestinal_en_el_desarrollo_de_la_obesidad_y_de_la_diabetes_de_tipo-2/links/5df78b04a6fdcc2837249b36/El-papel-de-la-microbiota-intestinal-en-el-desarrollo-de-la-obesidad-y-de-la-diabetes-de-tipo-2.pdf
dc.relationGualtero Escobar, D. F., Porras Gaviria, J. P., Bernau Gutiérrez, S., Buitrago Ramírez, D. M., & Castillo Perdomo, D. M. (2014). Purification and characterization of lipopolysaccharide from Eikenella corrodens 23834 and Porphyromonas gingivalis W83 . Rev. Colomb. Biotecnol, XVI(1), 34–44.
dc.relationHabib, I., Harb, A., Hansson, I., Vågsholm, I., Osama, W., Adnan, S., Anwar, M., Agamy, N., & Boqvist, S. (2020). Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens, 9(1), 62. https://doi.org/10.3390/pathogens9010062
dc.relationHaghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12(12), 1387–1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005
dc.relationHealth, A. (2017). the Intestinal Mucosa of Yellow Broilers. Hedin, C. R. H., Vavricka, S. R., Stagg, A. J., Schoepfer, A., Raine, T., Puig, L., Pleyer, U., Navarini, A., van der Meulen-de Jong, A. E., Maul, J., Katsanos, K., Kagramanova, A., Greuter, T., González-Lama, Y., van Gaalen, F., Ellul, P., Burisch, J., Bettenworth, D., Becker, M. D., … Rieder, F. (2019). Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. Journal of Crohn’s and Colitis, 13(5), 541–554. https://doi.org/10.1093/ECCO-JCC
dc.relationHernández-García, T., Rodríguez-Zapata, M., & Giménez-Pardo, C. (2017). La malnutrición un problema de salud global y el derecho a una alimentación adecuada. Revista de Investigación y Educación En Ciencias de La Salud (RIECS), 2(1), 3–11. https://doi.org/10.37536/riecs.2017.2.1.29 Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. In Science (Vol. 292, Issue 5519, pp. 1115–1118). American Association for the Advancement of Science. https://doi.org/10.1126/science.1058709
dc.relationHooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annual Review of Nutrition, 22(1), 283–307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
dc.relationHu, X., Guo, Y., Li, J., Yan, G., Bun, S., & Huang, B. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379–384. https://doi.org/10.4141/cjas2011-008
dc.relationHuamán-Castilla, N., Allcca, E., Arroyo, G., & Quintana, J. (2016). Microextracción en fase sólida (SMPE) de compuestos volátiles del género Origanum. Rev. Soc. Quím. Perú, 82(2), 105–113. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2016000200002&script=sci_arttext&tlng=en Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterología de México (English Edition), 78(4), 240–248. https://doi.org/10.1016/j.rgmxen.2014.02.009
dc.relationIclas, C. (2012). INTERNATIONAL GUIDIN PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS DECEMBER 2012 COUNCIL FOR INTERNATIONAL ORGANIZATION OF MEDICAL SCIENCES and THE INTERNATIONAL COUNCIL FOR LABORATORY AN NIMAL SCIENCE. https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf
dc.relationIebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: the two sides of the microbiota SuMMAry. New Microbiologica, 39, 1–12.
dc.relationIljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2020). Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, September 2019. https://doi.org/10.1038/s41385-020-0296-4 Itza-Ortiz, M., Segura-Correa, J., Parra-Suescún, J., Aguilar-Urquizo, E., & Escobar-Gordillo, N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universitaria, 29, 1–7. https://doi.org/10.15174/au.2019.2354
dc.relationJang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2017). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3–4), 304–315. https://doi.org/10.1016/j.anifeedsci.2006.06.009
dc.relationJha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Frontiers in Veterinary Science, 6, 82. https://doi.org/10.3389/fvets.2019.00082 Kabploy, K., Bunyapraphatsara, N., & Phumala, N. (2016). Original Article Effect of Antibiotic Growth Promoters on Anti-oxidative and Anti-inflammatory Activities in Broiler Chickens. Thai Journal of Veterinary Medicine, 46(1), 89–95.
dc.relationKachur, K., & Suntres, Z. (2019). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2019.1675585
dc.relationKalantar, M., Schreurs, N. M., Raza, S. H. A., Khan, R., Ahmed, J. Z., Yaghobfar, A., Shah, M. A., Kalantar, M. H., Hosseini, S. M., & Rahman, S. U. (2019). Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. Gene Reports, 15, 100376. https://doi.org/10.1016/j.genrep.2019.100376
dc.relationKarimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37–40. https://doi.org/10.1016/j.livsci.2017.06.013
dc.relationKers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235
dc.relationKheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2
dc.relationKiczorowska, B., Al-Yasiry, A. R. M., Samolińska, W., Marek, A., & Pyzik, E. (2016). The effect of dietary supplementation of the broiler chicken diet with Boswellia serrata resin on growth performance, digestibility, and gastrointestinal characteristics, morphology, and microbiota. Livestock Science, 191, 117–124. https://doi.org/10.1016/j.livsci.2016.07.019
dc.relationKiller, J., & Marounek, M. (2011). Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiologica, 56(2), 85–89. https://doi.org/10.1007/s12223-011-0022-4
dc.relationKogut, M. (2017). Gut health in poultry. https://doi.org/10.1079/PAVSNNR201712031
dc.relationKogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250, 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008
dc.relationKollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., Valipe, S., Darre, M., Hoagland, T., Schreiber, D., Khan, M. I., Donoghue, A., Donoghue, D., &
dc.relationVenkitanarayanan, K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987. https://doi.org/10.1128/AEM.07643-11 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. In Current Protocols in Bioinformatics: Vol. Chapter 10 (p. Unit 10.7.). John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1007s36
dc.relationLaniro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297
dc.relationLawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., & Dougan, G. (2009). Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infection and Immunity, 77(9), 3661–3669. https://doi.org/10.1128/IAI.00558-09
dc.relationLázaro, C., Rivera-De La Torre-Rivera, R. H., Vilchez-Perales, C., & Conte-Júnior, C. A. (2017). Parámetros productivos y sanguíneos en pollos de carne suplementados con cocarboxilasa Productive and blood performance of broiler supplemented with cocarboxylase. Revista Brasileira de Ciência Veterinária, 23(3–4), 200–205. https://doi.org/10.4322/rbcv.2016.057
dc.relationLeary, S., Underwood, W., Lilly, E., Anthony, R., Cartner, S., Corey, D., Clinic, A. V., Walla, W., Grandin, T., Collins, F., Greenacre, C., Gwaltney-brant, S., Mccrackin, M. A., Polytechnic, V., Meyer, R., State, M., Miller, D., Shearer, J., Yanong, R., … Division, A. W. (2013). AVMA Guidelines for euthanasia of animals 2013. In AVMA Guidelines for euthanasia. https://doi.org/10.1016/B978-012088449-0.50009-1
dc.relationLeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2, pp. 160–168). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.08.005
dc.relationLei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., & Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 78(16), 5763–5772. https://doi.org/10.1128/AEM.00327-12
dc.relationLeiva, J., Alonso, M. F., Rubio, M., & Ruiz-Bravo, A. (2018). Infecciones por Salmonella y Yersinia. Medicine (Spain), 12(50), 2941–2951. https://doi.org/10.1016/j.med.2018.02.011 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075. https://doi.org/10.1073/pnas.0504978102
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMicrobioma y parámetros intestinales, metabólicos y zootécnicos de pollos alimentados con aceite esencial de orégano (Lippia origanoides) en un modelo de inflamación intestinal in vivo
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución