dc.contributorTorres Osorio, Javier Ignacio
dc.contributorRestrepo-Parra, Elisabeth
dc.contributorPcm Computational Applications
dc.creatorBuitrago Torres, Iván David
dc.date.accessioned2021-11-08T22:40:54Z
dc.date.available2021-11-08T22:40:54Z
dc.date.created2021-11-08T22:40:54Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80663
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos estudios computacionales de fenómenos de adsorción han sido desarrollados principalmente para los procesos de adsorción de metales pesados o agua en derivados del carbón con propósito principalmente en almacenamiento o purificación, dada la falta de modelos que busquen recrear la adsorción en sistemas biológicos, en este trabajo se desarrolló un estudio experimental y se planteó una hipótesis que se corroboró mediante el desarrollo de un modelo de simulación computacional para la recreación de fenómenos de adsorción en semillas de tomate. Para lograr esto se obtuvieron, modelaron y analizaron las curvas isotérmicas de adsorción de agua en semillas de tomate a diferentes temperaturas y se determinaron los parámetros termodinámicos involucrados en el proceso de adsorción. Se planteó y desarrolló una hipótesis para la recreación computacional del proceso de adsorción mediante el método de Monte Carlo Gran Canónico. Los resultados obtenidos experimentalmente señalan un proceso de adsorción espontáneo y guiado por la entalpía, sin embargo, el modelo computacional demostró no ser el adecuado para la recreación de las isotermas de agua en semillas de tomate, pero sí para el proceso de adsorción en superficies de carbón activado. (Texto tomado de la fuente)
dc.description.abstractComputational studies of adsorption phenomena have been developed mainly for the adsorption processes of heavy metals or water in carbon derivatives mainly for storage or purification purposes, given the lack of models that seek to recreate adsorption in biological systems an experimental study was developed and a hypothesis was raised that was corroborated by developing a computational simulation model for the recreation of adsorption phenomena in tomato seeds. To achieve this, the isothermal water adsorption curves in tomato seeds were obtained, modeled and analyzed at different temperatures and the thermodynamic parameters involved in the adsorption process were determined. A hypothesis was proposed and developed for the computational recreation of the adsorption process using the Grand Canonical Monte Carlo method. The results obtained experimentally indicate a spontaneous adsorption driven by enthalpy, however, the computational model proved not to be adequate for the recreation of water isotherms in tomato seeds, but for the adsorption process on surfaces of activated carbon.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.publisherDepartamento de Física y Química
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationT. P. Labuza, “The Effect of Water Activity on Reaction Kinetics of Food Deterioration,” Food Technol., 1980
dc.relationI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918, doi: 10.1021/ja02242a004.
dc.relationA. L. D. Goneli, P. C. Corrêa, G. H. H. de Oliveira, C. F. Gomes, and F. M. Botelho, “Water sorption isotherms and thermodynamic properties of pearl millet grain,” Int. J. Food Sci. Technol., vol. 45, no. 4, pp. 828–838, 2010, doi: 10.1111/j.1365-2621.2010.02208.x.
dc.relationC. J. Lomauro, A. S. Bakshi, and T. P. Labuza, “Evaluation of food moisture sorption isotherm equations part I: Fruit, vegetable and meat products,” LWT - Food Sci. Technol., vol. 18, no. 2, pp. 111–117, 1985.
dc.relationN. Arslan and H. Toǧrul, “Moisture sorption isotherms for crushed chillies,” Biosyst. Eng., vol. 90, no. 1, pp. 47–61, 2005, doi: 10.1016/j.biosystemseng.2004.10.008.
dc.relationL. Mayor, R. Moreira, F. Chenlo, and A. M. Sereno, “Water sorption isotherms of fresh and partially osmotic dehydrated pumpkin parenchyma and seeds at several temperatures,” Eur. Food Res. Technol., vol. 220, no. 2, pp. 163–167, Feb. 2005, doi: 10.1007/s00217-004-1065-4.
dc.relationC. Chawla, D. Kaur, D. P. S. Oberoi, and D. S. Sogi, “Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp,” Dry. Technol., vol. 26, no. 10, pp. 1257–1264, 2008, doi: 10.1080/07373930802307225.
dc.relationN. A. Aviara and O. O. Ajibola, “Thermodynamics of moisture sorption in melon seed and cassava,” J. Food Eng., vol. 55, no. 2, pp. 107–113, Nov. 2002, doi: 10.1016/S0260-8774(02)00023-7.
dc.relationS. Kaya and T. Kahyaoglu, “Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed,” J. Food Eng., vol. 76, no. 2, pp. 139–147, 2006, doi: 10.1016/j.jfoodeng.2005.04.042.
dc.relationA. A. Wani, D. S. Sogi, U. S. Shivhare, I. Ahmed, and D. Kaur, “Moisture adsorption isotherms of watermelon seed and kernels,” Dry. Technol., vol. 24, no. 1, pp. 99–104, 2006, doi: 10.1080/07373930500538881.
dc.relationS. N. Sahu, A. Tiwari, J. K. Sahu, S. N. Naik, I. Baitharu, and E. Kariali, “Moisture sorption isotherms and thermodynamic properties of sorbed water of chironji (Buchanania lanzan Spreng.) kernels at different storage conditions,” J. Food Meas. Charact., vol. 12, no. 4, pp. 2626–2635, 2018, doi: 10.1007/s11694-018-9880-7.
dc.relationR. C. S. Thys, C. P. Z. Noreña, L. D. F. Marczak, A. G. Aires, and F. Cladera-Olivera, “Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis,” J. Food Eng., vol. 100, no. 3, pp. 468–473, 2010, doi: 10.1016/j.jfoodeng.2010.04.033.
dc.relationJ. D. Hoyos-Leyva, L. A. Bello-Pérez, and J. Alvarez-Ramirez, “Thermodynamic criteria analysis for the use of taro starch spherical aggregates as microencapsulant matrix,” Food Chem., vol. 259, pp. 175–180, 2018, doi: 10.1016/j.foodchem.2018.03.130.
dc.relationD. S. Sogi, U. S. Shivhare, S. K. Garg, and A. S. Bawa, “Water sorption isotherm and drying characteristics of tomato seeds,” Biosyst. Eng., vol. 84, no. 3, pp. 297–301, 2003, doi: 10.1016/S1537-5110(02)00275-1.
dc.relationS. Nagarajan, V. K. Pandita, D. K. Joshi, J. P. Sinha, and B. S. Modi, “Characterization of water status in primed seeds of tomato (Lycopersicon esculentum Mill.) by sorption properties and NMR relaxation times,” Seed Sci. Res., vol. 15, no. 2, pp. 99–111, Jun. 2005, doi: 10.1079/ssr2005200.
dc.relationS. Furmaniak, A. P. Terzyk, and P. A. Gauden, “The general mechanism of water sorption on foodstuffs - Importance of the multitemperature fitting of data and the hierarchy of models,” J. Food Eng., vol. 82, no. 4, pp. 528–535, 2007, doi: 10.1016/j.jfoodeng.2007.03.012.
dc.relationN. Arslan and H. Toǧrul, “The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity,” J. Stored Prod. Res., vol. 42, no. 2, pp. 112–135, 2006, doi: 10.1016/j.jspr.2005.01.001.
dc.relationH. Toǧrul and N. Arslan, “Moisture sorption isotherms and thermodynamic properties of walnut kernels,” J. Stored Prod. Res., vol. 43, no. 3, pp. 252–264, Jan. 2007, doi: 10.1016/j.jspr.2006.06.006.
dc.relationK. C. Rodrigues, H. W. da Silva, I. L. Silva, S. G. F. Dos Santos, D. P. da Silva, and R. S. Rodovalho, “Isotherms and thermodynamic properties of water adsorption in ‘cumari-do-pará’ pepper seeds,” Rev. Bras. Eng. Agric. e Ambient., vol. 24, no. 4, pp. 280–285, 2020, doi: 10.1590/1807-1929/agriambi.v24n4p280-285.
dc.relationI. Lynch and K. A. Dawson, “Protein-nanoparticle interactions,” Nano Today, vol. 3, no. 1–2, pp. 40–47, Feb. 2008, doi: 10.1016/S1748-0132(08)70014-8.
dc.relationJ. Puibasset and R. J. M. Pellenq, “Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: A Grand Canonical Monte Carlo simulation study of hysteresis,” J. Chem. Phys., vol. 122, no. 9, 2005, doi: 10.1063/1.1854129.
dc.relationJ. Puibasset and R. J.-M. Pellenq, “Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.,” J. Phys. Chem. B, vol. 112, no. 20, pp. 6390–6397, 2008, doi: 10.1021/jp7097153.
dc.relationN. Desbiens, A. Boutin, and I. Demachy, “Water Condensation in Hydrophobic Silicalite-1 Zeolite : A Molecular Simulation Study Water Condensation in Hydrophobic Silicalite-1 Zeolite : A Molecular Simulation Study,” J. Phys. Chem. B, vol. 5, pp. 24071–24076, 2005, doi: 10.1021/jp054168o.
dc.relationS. Ban, “Computer Simulation of Zeolites : Adsorption , Diffusion and Dealumination Computer Simulaties van Zeolieten : Adsorptie , Diffusie en Proefschrift door,” Zeolites, no. november, 2009.
dc.relationJ. K. Brennan, K. T. Thomson, and K. E. Gubbins, “Adsorption of Water in Activated Carbons:  Effects of Pore Blocking and Connectivity,” Langmuir, vol. 18, no. 14, pp. 5438–5447, 2002, doi: doi:10.1021/la0118560.
dc.relationA. Striolo, K. E. Gubbins, A. A. Chialvo, and P. T. Cummings, “Simulated water adsorption isotherms in carbon nanopores,” Mol. Phys., vol. 102, no. 3 PART II, pp. 243–251, 2004, doi: 10.1080/00268970410001668507.
dc.relationA. Striolo, A. A. Chialvo, K. E. Gubbins, and P. T. Cummings, “Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation,” J. Chem. Phys., vol. 122, no. 23, 2005, doi: 10.1063/1.1924697.
dc.relationA. Striolo, A. A. Chialvo, P. T. Cummings, and K. E. Gubbins, “Water Adsorption in Carbon-Slip Nanopores,” Langmuir, vol. 19, no. 11, pp. 8583–8591, 2003.
dc.relationJ.-C. Liu and P. A. Monson, “Monte Carlo Simulation Study of Water Adsorption in Activated Carbon,” Ind. Eng. Chem. Res., vol. 45, no. 16, pp. 5649–5656, 2006, doi: 10.1021/ie060162p.
dc.relationR. S. Neves, A. J. Motheo, R. P. S. Fartaria, and F. M. S. Silva Fernandes, “Modelling water adsorption on Au(210) surfaces: II. Monte Carlo simulations,” J. Electroanal. Chem., vol. 612, no. 2, pp. 179–185, Jan. 2008, doi: 10.1016/j.jelechem.2007.09.032.
dc.relationJ. Tóbik, A. Dal Corso, S. Scandolo, and E. Tosatti, “Organic molecular crystals in electric fields,” Surf. Sci., vol. 566–568, no. 1-3 PART 1, pp. 644–649, 2004, doi: 10.1016/j.susc.2004.06.116.
dc.relationB. Chen and J. I. Siepmann, “Transferable Potentials for Phase Equilibria. 3. Explicit-Hydrogen Description of Normal Alkanes,” J. Phys. Chem. B, vol. 103, no. 25, pp. 5370–5379, 1999, doi: 10.1021/jp990822m.
dc.relationH. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans, “Interaction models for water in relation to protein hydration,” Intermol. Forces, pp. 331–342, 1981, doi: 10.1007/978-94-015-7658-1_21.
dc.relationS. Konduiri, H. M. Tong, S. Chempath, and S. Nair, “Water in single-walled aluminosilicate nanotubes: Diffusion and adsorption properties,” J. Phys. Chem. C, vol. 112, no. 39, pp. 15367–15374, 2008, doi: 10.1021/jp8025144.
dc.relationG. Hummer, J. C. Rasaiah, and J. P. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube,” Nature, vol. 414, no. 6860, pp. 188–190, 2001, doi: 10.1038/35102535.
dc.relationK. E. Brennan, J. K.; Bandosz, T. J.; Thomson, K. T.; Gubbins, “Water in porous carbons. Colloids and surfaces,” Physico- Chem. Eng. Asp., vol. 187, pp. 187–188, 539–568, 2001.
dc.relationM. M. Mohanty and B. K. Pal, “Sorption behavior of coal for implication in coal bed methane an overview,” Int. J. Min. Sci. Technol., vol. 27, no. 2, pp. 307–314, 2017, doi: 10.1016/j.ijmst.2017.01.014.
dc.relationI. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies,” J. Hazard. Mater., vol. 154, no. 1–3, pp. 337–346, 2008, doi: 10.1016/j.jhazmat.2007.10.031.
dc.relationD. Mohan and C. U. Pittman, “Arsenic removal from water/wastewater using adsorbents-A critical review,” J. Hazard. Mater., vol. 142, no. 1–2, pp. 1–53, 2007, doi: 10.1016/j.jhazmat.2007.01.006.
dc.relationA. E. Raftery, N. Li, H. Sevcikova, P. Gerland, and G. K. Heilig, “Bayesian probabilistic population projections for all countries,” Proc. Natl. Acad. Sci., vol. 109, no. 35, pp. 13915–13921, Aug. 2012, doi: 10.1073/pnas.1211452109.
dc.relationS. Vijayavenkataraman, S. Iniyan, and R. Goic, “A review of climate change, mitigation and adaptation,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 878–897, 2012, doi: 10.1016/j.rser.2011.09.009.
dc.relationA. Orozco-Segovia, J. Márquez-Guzmán, M. E. Sánchez-Coronado, A. Gamboa De Buen, J. M. Baskin, and C. C. Baskin, “Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae),” Ann. Bot., vol. 99, no. 4, pp. 581–592, 2007, doi: 10.1093/aob/mcm001.
dc.relationK. Kikuzawa and H. Koyama, “Scaling of soil water absorption by seeds: an experiment using seed analogues,” Seed Sci. Res., vol. 9, no. 2, pp. 171–178, 1999, doi: 10.1017/S0960258599000197.
dc.relationE. J. Park et al., “Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage,” Plant J., vol. 40, no. 4, pp. 474–487, 2004, doi: 10.1111/j.1365-313X.2004.02237.x.
dc.relationY. Oladosu et al., “Principle and application of plant mutagenesis in crop improvement: A review,” Biotechnol. Biotechnol. Equip., vol. 30, no. 1, pp. 1–16, 2016, doi: 10.1080/13102818.2015.1087333.
dc.relationM. V. Busi et al., “MADS-box genes expressed during tomato seed and fruit development,” Plant Mol. Biol., vol. 52, no. 4, pp. 801–815, 2003, doi: 10.1023/A:1025001402838.
dc.relationS. Yanniotis and J. Blahovec, “Model analysis of sorption isotherms,” LWT - Food Sci. Technol., vol. 42, no. 10, pp. 1688–1695, 2009, doi: 10.1016/j.lwt.2009.05.010.
dc.relationM. Iqbal, N. Iqbal, I. A. Bhatti, N. Ahmad, and M. Zahid, “Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste,” Ecol. Eng., vol. 88, no. January 2018, pp. 265–275, 2016, doi: 10.1016/j.ecoleng.2015.12.041.
dc.relationK. G. Bhattacharyya and S. Sen Gupta, “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review,” Adv. Colloid Interface Sci., vol. 140, no. 2, pp. 114–131, 2008, doi: 10.1016/j.cis.2007.12.008.
dc.relationA. Özcan, E. M. Öncü, and A. S. Özcan, “Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 277, no. 1–3, pp. 90–97, 2006, doi: 10.1016/j.colsurfa.2005.11.017.
dc.relationS. Furmaniak, P. A. Gauden, A. P. Terzyk, G. Rychlicki, R. P. Wesołowski, and P. Kowalczyk, “Heterogeneous Do-Do model of water adsorption on carbons,” J. Colloid Interface Sci., vol. 290, no. 1, pp. 1–13, 2005, doi: 10.1016/j.jcis.2005.07.043.
dc.relationA. Di Lella et al., “Molecular simulation studies of water physisorption in zeolites,” Phys. Chem. Chem. Phys., vol. 8, no. 46, p. 5396, 2006, doi: 10.1039/b610621h.
dc.relationM. Trzpit et al., “The effect of local defects on water adsorption in silicalite-1 zeolite: A joint experimental and molecular simulation study,” Langmuir, vol. 23, no. 20, pp. 10131–10139, 2007, doi: 10.1021/la7011205.
dc.relationS. Source, “Solanaceae Source A global taxonomic resource for the nightshade family,” 2020. .
dc.relationA. A. Ferrari, E. A. De Nadai Fernandes, F. S. Tagliaferro, M. A. Bacchi, and T. C. G. Martins, “Chemical composition of tomato seeds affected by conventional and organic production systems,” J. Radioanal. Nucl. Chem., vol. 278, no. 2, pp. 399–402, 2008, doi: 10.1007/s10967-008-0808-2.
dc.relationF. Chen, “Plant development,” 2014. [Online]. Available: https://www.slideserve.com/nelia/plant-development.
dc.relationB. Ahmed, A. Rizvi, A. Zaidi, M. S. Khan, and J. Musarrat, “Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production,” RSC Adv., vol. 9, no. 8, pp. 4210–4225, 2019, doi: 10.1039/C8RA09305A.
dc.relationL. C. Toscano, A. L. Boiça Júnior, J. M. Santos, and J. B. S. A. Almeida, “Tipos de tricomas em genótipos de Lycopersicon,” Hortic. Bras., vol. 19, no. 3, pp. 336–338, 2001, doi: 10.1590/s0102-05362001000300009.
dc.relationY. Zhang et al., “The Roles of Different Types of Trichomes in Tomato Resistance to Cold, Drought, Whiteflies, and Botrytis,” Agronomy, vol. 10, no. 3, p. 411, Mar. 2020, doi: 10.3390/agronomy10030411.
dc.relationG. Clemente, “Efecto de la contraccion en la cinetica de secado de musculos de jamon.,” p. 323, 2003.
dc.relationM. Dorais, D. L. Ehret, and A. P. Papadopoulos, “Tomato (Solanum lycopersicum) health components: From the seed to the consumer,” Phytochem. Rev., vol. 7, no. 2, pp. 231–250, 2008, doi: 10.1007/s11101-007-9085-x.
dc.relationSeader, Separation process principles, vol. 36, no. 09. 1999.
dc.relationR. H. Perry, D. W. Green, and J. O. Maloney, Perry’s chemical engineers’ handbook. New York: McGraw-Hill, 1997.
dc.relationA. Casp and J. Abril, Procesos de conservación de alimentos Tecnología de alimentos. Mundi Prensa, 2003.
dc.relationS. P. Cauvain and L. S. Young, Bakery Food Manufacture and Quality. Oxford, UK: Blackwell Science Ltd, 2000.
dc.relationR. L. D’Arcy and I. C. Watt, “Analysis of sorption isotherms of non-homogeneous sorbents,” Trans. Faraday Soc., vol. 66, pp. 1236–1245, 1970, doi: 10.1039/tf9706601236.
dc.relationS. Brunauer, P. H. Emmett, and E. Teller, “Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 1, pp. 309–319, 1938, doi: citeulike-article-id:4074706.
dc.relationIUPAC, “REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS,” vol. 54, no. 11, 1982.
dc.relationC. R. Oswin, “The kinetics of package life. III. The isotherm,” J. Soc. Chem. Ind., vol. 65, no. 12, pp. 419–421, Dec. 1946, doi: 10.1002/jctb.5000651216.
dc.relationG. Halsey, “Physical adsorption on non-uniform surfaces,” J. Chem. Phys., vol. 16, no. 10, pp. 931–937, Oct. 1948, doi: 10.1063/1.1746689.
dc.relationE. A. Guggenheim, Application of statistical mechanics. Oxford Press, 1966.
dc.relationR. B. Anderson, “Modifications of the Brunuaer, Emmet and Teller equations,” Am. Chem. Soc., vol. 68, no. 7, pp. 686–691, 1946.
dc.relationA. International, AOAC: Official Methods of Analysis, 2016, vol. 552, no. c. 2016.
dc.relationJ. M. de Boer, The dynamical character of adsorption, Clarendon. Michigan: Oxford Press, 1953.
dc.relationC. van den Berg and S. Bruin, “Water Activity and Its Estimation in Food Systems: Theoretical Aspects,” in Water Activity: Influences on Food Quality, New York : Academic Press, 1981, pp. 1–61.
dc.relationW. A. M. McMinn and T. R. A. Magee, “Thermodynamic properties of moisture sorption of potato,” J. Food Eng., vol. 60, no. 2, pp. 157–165, 2003, doi: 10.1016/S0260-8774(03)00036-0.
dc.relationS. Lahsasni, M. Kouhila, and M. Mahrouz, “Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica),” Energy Convers. Manag., vol. 45, no. 2, pp. 249–261, Jan. 2004, doi: 10.1016/S0196-8904(03)00133-X.
dc.relationL. Hassini, E. Bettaieb, H. Desmorieux, S. S. Torres, and A. Touil, “Desorption isotherms and thermodynamic properties of prickly pear seeds,” Ind. Crops Prod., vol. 67, no. 1, pp. 457–465, 2015, doi: 10.1016/j.indcrop.2015.01.078.
dc.relationA. M. Pagano and R. H. Mascheroni, “Sorption isotherms for amaranth grains,” J. Food Eng., vol. 67, no. 4, pp. 441–450, 2005, doi: 10.1016/j.jfoodeng.2004.05.012.
dc.relationM. Venkatachalan and S. K. Sathe, “Chemical composition of selected edible nut seeds,” J. Agric. Food Chem., vol. 54, no. 13, pp. 4705–4714, 2006, doi: 10.1021/jf0606959.
dc.relationS. Kaya and T. Kahyaoglu, “Moisture sorption and thermodynamic properties of safflower petals and tarragon,” J. Food Eng., vol. 78, no. 2, pp. 413–421, 2007, doi: 10.1016/j.jfoodeng.2005.10.009.
dc.relationR. Moreira, F. Chenlo, M. D. Torres, and N. Vallejo, “Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits,” J. Food Eng., vol. 88, no. 4, pp. 514–521, 2008, doi: 10.1016/j.jfoodeng.2008.03.011.
dc.relationR. Moreira, F. Chenlo, M. D. Torres, and N. Vallejo, “Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits,” J. Food Eng., vol. 88, no. 4, pp. 514–521, 2008, doi: 10.1016/j.jfoodeng.2008.03.011.
dc.relationR. Bahar, S. Azzouz, R. Remond, S. Ouertani, M. T. Elaieb, and M. A. El Cafci, “Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): optimization of the processing parameters,” Heat Mass Transf. und Stoffuebertragung, vol. 53, no. 5, pp. 1541–1552, 2017, doi: 10.1007/s00231-016-1916-0.
dc.relationE. Alpizar-Reyes, H. Carrillo-Navas, R. Romero-Romero, V. Varela-Guerrero, J. Alvarez-Ramírez, and C. Pérez-Alonso, “Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.),” Food Bioprod. Process., vol. 101, pp. 166–176, 2017, doi: 10.1016/j.fbp.2016.11.006.
dc.relationS. Sahin and S. Sumnu, Physical Properties of Foods. New York, NY: Springer New York, 2006.
dc.relationE. O. Timmermann, “A B. E. T.-like three sorption stage isotherm,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 85, no. 7, p. 1631, 1989, doi: 10.1039/f19898501631.
dc.relationJ. Blahovec and S. Yanniotis, “Modified classification of sorption isotherms,” J. Food Eng., vol. 91, no. 1, pp. 72–77, Mar. 2009, doi: 10.1016/j.jfoodeng.2008.08.007.
dc.relationM. C. Ngono Mbarga, D. Bup Nde, A. Mohagir, C. Kapseu, and G. Elambo Nkeng, “Moisture Sorption Isotherms and Properties of Sorbed Water of Neem (Azadirichta indica A. Juss) Kernels,” J. Eng. Phys. Thermophys., vol. 90, no. 1, pp. 35–42, 2017, doi: 10.1007/s10891-017-1536-7.
dc.relationJ. S. Zeymer, P. C. Corrêa, G. H. H. De Oliveira, and F. M. Baptestini, “Thermodynamic properties of water desorption in lettuce seeds,” Semin. Agrar., vol. 39, no. 3, pp. 921–931, 2018, doi: 10.5433/1679-0359.2018v39n3p921.
dc.relationH. W. da Silva, R. S. Rodovalho, and I. L. Silva, “Hysteresis and thermodynamic properties of water sorption in ‘Malagueta’ pepper seeds,” Rev. Bras. Eng. Agric. e Ambient., vol. 22, no. 9, pp. 658–663, 2018, doi: 10.1590/1807-1929/agriambi.v22n9p658-663.
dc.relationX. Li, Z. Cao, Z. Wei, Q. Feng, and J. Wang, “Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China,” J. Stored Prod. Res., vol. 47, no. 1, pp. 39–47, 2011, doi: 10.1016/j.jspr.2010.10.001.
dc.relationS. M. Henderson, “A basic concept of equilibrium moisture,” Agric. Eng., vol. 33, no. 33, pp. 29–32, 1952.
dc.relationJ. Stencl and P. Homola, “Water sorption isotherms of leaves and stems of Trifolium pratense L.,” Grass Forage Sci., vol. 55, no. 2, pp. 159–165, 2000, doi: 10.1046/j.1365-2494.2000.00209.x.
dc.relationM. Erbaş, M. F. Ertugay, and M. Certel, “Moisture adsorption behaviour of semolina and farina,” J. Food Eng., vol. 69, no. 2, pp. 191–198, 2005, doi: 10.1016/j.jfoodeng.2004.07.017.
dc.relationC. Van den Berg, “Food-water relations: Progress and integration, comments and thoughts,” in Advances in Experimental Medicine and Biology, vol. 302, New York, United States: Plenum Press, 1991, pp. 21–28.
dc.relationG. H. Crapiste and E. Rotstein, “Prediction of Sorptional Equilibrium Data for Starch‐Containing Foodstuffs,” J. Food Sci., vol. 47, no. 5, pp. 1501–1507, 1982, doi: 10.1111/j.1365-2621.1982.tb04970.x.
dc.relationH. A. Iglesias and J. Chirife, “Prediction of the effect of temperature on water sorption isotherms of food material,” Int. J. Food Sci. Technol., vol. 11, no. 2, pp. 109–116, 1976, doi: 10.1111/j.1365-2621.1976.tb00707.x.
dc.relationS. Furmaniak, A. P. Terzyk, R. Gołembiewski, P. A. Gauden, and L. Czepirski, “Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity,” Food Res. Int., vol. 42, no. 8, pp. 1203–1214, 2009, doi: 10.1016/j.foodres.2009.06.004.
dc.relationC. W. Vertucci and A. C. Leopold, “Water binding in legume seeds.,” Plant Physiol., vol. 85, pp. 224–231, 1987, doi: 10.1104/pp.85.1.224.
dc.relationS. Furmaniak and P. A. Gauden, “Improving the fundamental ideas of Dubinin, Serpinsky and Barton–further insights into theoretical description of water adsorption on carbons,” Ann. Univ. Mariae Curie-Skłodowska, vol. LX, no. 11, pp. 151–182, 2005, [Online]. Available: http://oskar.chem.umk.pl/web_page/pdf/2005_05.pdf.
dc.relationM. Ginzburg, “Measurements of ion concentrations and fluxes in Dunaliella parva,” J. Exp. Bot., vol. 32, no. 2, pp. 321–332, 1981, doi: 10.1093/jxb/32.2.321.
dc.relationM. Peleg, “Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms,” J. Food Process Eng., vol. 16, no. 1, pp. 21–37, 1993, doi: 10.1111/j.1745-4530.1993.tb00160.x.
dc.relationS. E. Smith and S. E. Smith, “The Sorption of Water Vapor by High Polymers,” J. Am. Chem. Soc., vol. 69, no. 3, pp. 646–651, 1947, doi: 10.1021/ja01195a053.
dc.relationE. Tsami, “Net isosteric heat of sorption in dried fruits,” J. Food Eng., vol. 14, no. 4, pp. 327–335, 1991, doi: 10.1016/0260-8774(91)90022-K.
dc.relationJ. Chirife, R. Boquet, C. F. Fontan, and H. A. Iglesias, “A New Model for Describing the Water Sorption Isotherm of Foods,” J. Food Sci., vol. 48, no. 4, pp. 1382–1383, 1983, doi: 10.1111/j.1365-2621.1983.tb09245.x.
dc.relationE. Sancho, “Analysis of a Model for Water Sorption Phenomena in Foods,” vol. 47, 1982, doi: 10.1111/j.1365-2621.1982.tb04989.
dc.relationD. P. Landau and K. Binder, A Guide to Monte-Carlo Simulations in Statatistical Physics, vol. 369, no. 1. .
dc.relationI. O. Bohachevsky, M. E. Johnson, Myron L. Stein, and M. L. Stein, “Generalized Simulated Annealing for Function Optimization,” Technometrics, vol. 28, no. 3, pp. 209–217, 1986, doi: 10.2307/1269076.
dc.relationC. Tsallis and D. A. Stariolo, “Generalized Simulated Annealing,” vol. 233, pp. 395–406, 1995, doi: 10.1016/S0378-4371(96)00271-3.
dc.relationD. Nicholson and N. G. Parsonage, “Computer Simulation and the Statistical Mechanics of Adsorption,” p. 398, 1982.
dc.relationD. Frenkel and B. Smit, “Understanding Molecular Simulation,” Understanding Molecular Simulation (Second Edition). pp. 23–61, 2002, doi: http://dx.doi.org/10.1016/B978-012267351-1/50025-0.
dc.relationP. A. Bonnaud, B. Coasne, and R. J. M. M. Pellenq, “Molecular simulation of water confined in nanoporous silica,” J. Phys. Condens. Matter, vol. 22, no. 28, 2010, doi: 10.1088/0953-8984/22/28/284110.
dc.relationC. Fan, D. D. Do, and D. Nicholson, “New Monte Carlo simulation of adsorption of gases on surfaces and in pores: A concept of multibins,” J. Phys. Chem. B, vol. 115, no. 35, pp. 10509–10517, 2011, doi: 10.1021/jp205497s.
dc.relationD. Shen, M. Bülow, F. Siperstein, M. Engelhard, and A. L. Myers, “Comparison of experimental techniques for measuring isosteric heat of adsorption,” Adsorption, vol. 6, no. 4, pp. 275–286, 2000, doi: 10.1023/A:1026551213604.
dc.relationB. Smit and J. I. Siepmann, “Simulating the adsorption of alkanes in zeolites,” Science (80-. )., vol. 264, no. 5162, pp. 1118–1120, 1994, doi: 10.1126/science.264.5162.1118.
dc.relationT. J. H. Vlugt, R. Krishna, and B. Smit, “Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite,” J. Phys. Chem. B, vol. 103, no. 7, pp. 1102–1118, 1999, doi: 10.1021/jp982736c.
dc.relationL. Greenspan, “Humidity Fixed Points of Binary Saturated Aqueous Solutions.,” J Res Natl Bur Stand Sect A Phys Chem, vol. 81 A, no. 1, pp. 89–96, Jan. 1977, doi: 10.6028/jres.081A.011.
dc.relationA. Vashisth and S. Nagarajan, “Characterization of water binding and germination traits of magnetically exposed maize (Zea mays L.) seeds equilibrated at different relative humidities at two temperatures,” Indian J. Biochem. Biophys., vol. 46, no. 2, pp. 184–191, 2009.
dc.relationW. Wolf, W. E. L. Spiess, and G. Jung, “Standardization of Isotherm Measurements (Cost-Project 90 and 90 BIS),” Prop. Water Foods, pp. 661–679, 1985, doi: 10.1007/978-94-009-5103-7_40.
dc.relationD. G. Hyams, “CurveExpertBasic.” Hyams Development, p. 213, 2020, [Online]. Available: https://www.curveexpert.net/support/documentation/.
dc.relationA. M. Slavutsky and M. A. Bertuzzi, “Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum,” Appl. Clay Sci., vol. 108, pp. 144–148, 2015, doi: 10.1016/j.clay.2015.02.011.
dc.relationA. H. Al-Muhtaseb, W. A. M. McMinn, and T. R. A. Magee, “Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics,” J. Food Eng., vol. 62, no. 2, pp. 135–142, 2004, doi: 10.1016/S0260-8774(03)00202-4.
dc.relationE. Grunwald and J. E. Leffler, Rates and Equilibria of Organic Reactions: As Treated by Statistical, Thermodynamic, and Extrathermodynamic Methods. Wiley, 1963.
dc.relationD. Apostolopoulos and S. G. Gilbert, “Water Sorption of Coffee Solubles by Frontal Inverse Gas Chromatography: Thermodynamic Considerations,” J. Food Sci., vol. 55, no. 2, pp. 475–487, 1990, doi: 10.1111/j.1365-2621.1990.tb06790.x.
dc.relationR. R. Krug, W. G. Hunter, and R. A. Grieger, “Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect,” J. Phys. Chem., vol. 80, no. 21, pp. 2341–2351, 1976, doi: 10.1021/j100562a007.
dc.relationC. Beristain, H. Garcia, and E. Azuara, “Enthalpy-Entropy compensation in food vapor adsorption,” J. Food Eng., vol. 30, no. 3–4, pp. 405–415, Nov. 1996, doi: 10.1016/S0260-8774(96)00011-8.
dc.relationNIST, “SPC/E Water Reference Calculations,” 2016. https://www.nist.gov/mml/csd/chemical-informatics-research-group/spce-water-reference-calculations-10a-cutoff (accessed Dec. 18, 2020).
dc.relationG. R. Birkett and D. D. Do, “Simulation study of water adsorption on carbon black: The effect of graphite water interaction strength,” J. Phys. Chem. C, vol. 111, no. 15, pp. 5735–5742, 2007, doi: 10.1021/jp068479q.
dc.relationJ. C. Liu and P. A. Monson, “Does water condense in carbon pores?,” Langmuir, vol. 21, no. 22, pp. 10219–10225, 2005, doi: 10.1021/la0508902.
dc.relationW. A. Steele, “The interaction of rare gas atoms with graphitized carbon black,” J. Phys. Chem., vol. 82, no. 7, pp. 817–821, 1978, doi: 10.1021/j100496a011.
dc.relationB. Coasne, Adsorption and Structure of Argon in Activated Porous Carbons, vol. 01. 2011.
dc.relationD. D. Do and H. D. Do, “Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data,” J. Phys. Chem. B, vol. 110, no. 35, pp. 17531–17538, 2006, doi: 10.1021/jp062386r.
dc.relationC. L. Mccallum et al., “A Molecular Model for Adsorption of Water on Activated Carbon : Comparison of Simulation and Experiment,” Langmuir, vol. 15, no. 6, pp. 533–544, 1999, doi: 10.1021/la9805950.
dc.relationF. P. Schmidt, “Optimizing Adsorbents for Heat Storage Applications : Estimation of Thermodynamic Limits and Monte Carlo Simulations of Water Adsorption in Nanopores,” no. January 2004, 2014.
dc.relationA. Ozgur Yazaydin, “Molecular simulation of the adsorption of organics from water,” WORCESTER POLYTECHNIC INSTITUTE, 2007.
dc.relationJ. Lan, D. Cheng, D. Cao, and W. Wang, “Silicon nanotube as a promising candidate for hydrogen storage: From the first principle calculations to grand canonical monte carlo simulations,” J. Phys. Chem. C, vol. 112, no. 14, pp. 5598–5604, 2008, doi: 10.1021/jp711754h.
dc.relationK. Aparecida-De-Sousa, O. Resende, A. L. Duarte-Goneli, T. A. De Souza Smaniotto, and D. E. Cabral De Oliveira, “Propriedades termodinâmicas de dessorção de água das sementes de nabo forrageiro,” Acta Sci. - Agron., vol. 37, no. 1, pp. 11–19, 2015, doi: 10.4025/actasciagron.v37i1.19333.
dc.relationO. O. Ajibola, “Thin-layer drying of melon seed,” J. Food Eng., vol. 9, no. 4, pp. 305–320, 1989, doi: 10.1016/0260-8774(89)90037-X.
dc.relationS. S. H. Rizvi, Thermodynamic Properties of Foods in Dehydration, 3rd ed. CRC Press, 2005.
dc.relationM. Kruk and M. Jaroniec, “Gas adsorption characterization of ordered organic-inorganic nanocomposite materials,” Chem. Mater., vol. 13, no. 10, pp. 3169–3183, 2001, doi: 10.1021/cm0101069.
dc.relationJ. A. Teixeira da Silva and J. Dobránszki, “Magnetic fields: how is plant growth and development impacted?,” Protoplasma, vol. 253, no. 2, pp. 231–248, 2016, doi: 10.1007/s00709-015-0820-7.
dc.relationJ. Torres, A. Socorro, and E. Hincapié, “Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.),” Bioelectromagnetics, vol. 39, no. 5, pp. 343–351, 2018, doi: 10.1002/bem.22120.
dc.relationM. R. Cruz, A. M. D. Canteli, F. A. P. Voll, L. C. B. Zuge, and A. de P. Scheer, “Statistical evaluation of models for sorption and desorption isotherms for barleys,” Acta Sci. - Technol., vol. 40, no. 1, Sep. 2018, doi: 10.4025/actascitechnol.v40i1.37689.
dc.relationC. Igathinathane, A. R. Womac, S. Sokhansanj, and L. O. Pordesimo, “Moisture sorption thermodynamic properties of corn stover fractions,” Trans. ASABE, vol. 50, no. 6, pp. 2151–2160, 2007, doi: 10.13031/2013.24075.
dc.relationF. Cladera-Olivera, L. D. F. Marczak, C. P. Z. Noreña, and A. C. Pettermann, “Modeling water adsorption isotherms of pinhão (Araucaria angustifolia seeds) flour and thermodynamic analysis of the adsorption process,” J. Food Process Eng., vol. 34, no. 3, pp. 826–843, Jun. 2011, doi: 10.1111/j.1745-4530.2009.00437.x.
dc.relationF. A. Adekola and I. A. Oba, “Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells,” Appl. Water Sci., vol. 7, no. 6, pp. 2727–2736, 2017, doi: 10.1007/s13201-016-0491-3.
dc.relationA. Striolo, A. A. Chialvo, P. T. Cummings, and K. E. Gubbins, “Simulated water adsorption in chemically heterogeneous carbon nanotubes,” J. Chem. Phys., vol. 124, no. 7, 2006, doi: 10.1063/1.2171349.
dc.relationN. Arslan and H. Toǧrul, “The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity,” J. Stored Prod. Res., vol. 42, no. 2, pp. 112–135, 2006, doi: 10.1016/j.jspr.2005.01.001.
dc.relationD. D. Do and H. D. Do, “Model for water adsorption in activated carbon,” Carbon N. Y., vol. 38, no. 5, pp. 767–773, 2000, doi: 10.1016/S0008-6223(99)00159-1.
dc.relationY. He and N. A. Seaton, “Monte Carlo Simulation and Pore-Size Distribution Analysis of the Isosteric Heat of Adsorption of Methane in Activated Carbon,” no. 12, pp. 8297–8301, 2005.
dc.relationP. Pendleton, S. H. Wu, and A. Badalyan, “Activated carbon oxygen content influence on water and surfactant adsorption,” J. Colloid Interface Sci., vol. 246, no. 2, pp. 235–240, 2002, doi: 10.1006/jcis.2001.8052.
dc.relationK. Kaneko, T. Katori, K. Shimizu, N. Shindo, and T. Maeda, “Changes in the molecular adsorption properties of pitch-based activated carbon fibres by air oxidation,” J. Chem. Soc. Faraday Trans., vol. 88, no. 9, pp. 1305–1309, 1992, doi: 10.1039/FT9928801305.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiseño de un modelo para simulación computacional de curvas isotérmicas de adsorción de agua en semillas de tomate
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución