dc.creatorVelásquez Henao, Juan David
dc.creatorRueda Mejía, Viviana María
dc.creatorFranco Cardona, Carlos Jaime
dc.date.accessioned2019-07-03T15:50:12Z
dc.date.available2019-07-03T15:50:12Z
dc.date.created2019-07-03T15:50:12Z
dc.date.issued2013
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/73049
dc.identifierhttp://bdigital.unal.edu.co/37524/
dc.description.abstractThe combination of SARIMA and neural network models are a common approach for forecasting nonlinear time series. While the SARIMA methodology is used to capture the linear components in the time series, artifi cial neural networks are applied to forecast the remaining nonlinearities in the shocks of the SARIMA model. In this paper, we propose a simple nonlinear time series forecasting model by combining the SARIMA model with a multiplicative single neuron using the same inputs as the SARIMA model. To evaluate the capacity of the new approach, the monthly electricity demand in the Colombian energy market is forecasted and compared with the SARIMA and multiplicative single neuron models.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia Sede Medellín
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Dyna
dc.relationDyna
dc.relationDYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353
dc.relationVelásquez Henao, Juan David and Rueda Mejía, Viviana María and Franco Cardona, Carlos Jaime (2013) Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model. DYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353 .
dc.relationhttp://revistas.unal.edu.co/index.php/dyna/article/view/39344
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleElectricity demand forecasting using a sarimamultiplicative single neuron hybrid model
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución