| dc.relation | 1. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Prim [Internet]. 2018 Dec 8;4(1):43. Available from: http://www.nature.com/articles/s41572-018-0041-4
2. Covo P. Introducción a la historia de la esclerosis múltiple. Acta Neurológica Colomb. 2015;31(1):119–24.
3. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. Longo DL, editor. N Engl J Med [Internet]. 2018 Jan 11;378(2):169–80. Available from: http://www.nejm.org/doi/10.1056/NEJMra1401483
4. Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis - A quiet revolution. Nat Rev Neurol [Internet]. 2015;11(3):134–42. Available from: http://dx.doi.org/10.1038/nrneurol.2015.14
5. Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler J [Internet]. 2017 Jul;23(8):1123–36. Available from: http://journals.sagepub.com/doi/10.1177/1352458517694432
6. Romero M, Arango C, Alvis N, Suarez JC, Duque A. Costos de la Esclerosis Múltiple en Colombia. Value Heal [Internet]. 2011;14(5 SUPPL.):S48–50. Available from: http://dx.doi.org/10.1016/j.jval.2011.05.023
7. Azevedo CJ, Cen SY, Khadka S, Liu S, Kornak J, Shi Y, et al. Thalamic Atrophy in MS: An MRI Marker of Neurodegeneration Throughout Disease.
Ann Neurol [Internet]. 2018;n/a-n/a. Available from: http://dx.doi.org/10.1002/ana.25150
8. Bergsland N, Tyblova M, Krasensky J, Carl E. Thalamic Atrophy Is Associated with Development of Clinically. 2013;268(3):831–41.
9. Minagar A, Barnett MH, Benedict RHB, Pelletier D, Pirko I, Sahraian MA, et al. The thalamus and multiple sclerosis: Modern views on pathologic, imaging, and clinical aspects. Neurology. 2013;80(2):210–9.
10. Benedict RHB, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R. Prediction of Neuropsychological Impairment in Multiple Sclerosis. Arch Neurol. 2004;61(2):226.
11. Power BD, Wilkes FA, Hunter-Dickson M, van Westen D, Santillo AF, Walterfang M, et al. Validation of a protocol for manual segmentation of the thalamus on magnetic resonance imaging scans. Psychiatry Res - Neuroimaging [Internet]. 2015;232(1):98–105. Available from: http://dx.doi.org/10.1016/j.pscychresns.2015.02.001
12. Manjón J V., Coupé P. Volbrain: An online MRI brain volumetry system. Front Neuroinform. 2016;10(JUL):1–14.
13. Ashburner J, Friston KJ. Voxel Based Morphometry. Encycl Neurosci. 2009;471–7.
14. Ceccarelli A, Rocca MA, Pagani E, Colombo B, Martinelli V, Comi G, et al. A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage. 2008;42(1):315–22.
15. Cordovez M J, Gálvez G M, Rojas C G, Bravo C C, Cerda E A. Uso de volumetría y carga lesional en el seguimiento de pacientes con esclerosis múltiple. Experiencia local y revisión de la literature. Rev Chil Radiol. 2013;19(4):156–64.
16. McDonald WI, Compston A, Edan G, Goodkin D, Hartung H-P, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol [Internet]. 2001 Jul 1;50(1):121–7. Available from: https://doi.org/10.1002/ana.1032
17. Polman CH, Reingold SC, Edan G, Filippi M, Hartung H-P, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol [Internet]. 2005 Dec 1;58(6):840–6. Available from: https://doi.org/10.1002/ana.20703
18. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.
19. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteriaTHOMPSON, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, v. 17, n. 2, p. 162–173, 2018. Lancet Neurol. 2018;17(2):162–73.
20. Toro J, Cárdenas S, Fernando Martínez C, Urrutia J, Díaz C. Multiple sclerosis in Colombia and other Latin American Countries. Mult Scler Relat Disord. 2013;2(2):80–9.
21. Mejía-Buriticá L, Agudelo-Restrepo C, Gómez-Hoyos JC, Cabrera-Hemer DN. Genética de la esclerosis múltiple: Una perspectiva epidemiológica y molecular. Arch Med. 2009;5(1).
22. Gibby WA. Basic principles of magnetic resonance imaging. Neurosurg Clin N Am. 2005;16(1):1–64.
23. Traboulsee A, Simon JH, Stone L, Fisher E, Jones DE, Malhotra A, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am J Neuroradiol. 2016;37(3):394–401.
24. Herrero MT, Barcia C, Navarro JM. Functional anatomy of thalamus and basal ganglia. Child’s Nerv Syst. 2002;18(8):386–404.
25. Zivadinov R, Jakimovski D, Gandhi S, Ahmed R, Dwyer MG, Horakova D, et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev Neurother. 2016;16(7):777–93.
26. Deppe M, Krämer J, Tenberge JG, Marinell J, Schwindt W, Deppe K, et al.
Early silent microstructural degeneration and atrophy of the thalamocortical network in multiple sclerosis. Hum Brain Mapp. 2016;37(5):1866–79.
27. Radue EW, Bendfeldt K, Mueller-Lenke N, Magon S, Sprenger T. Brain atrophy: An in-vivo measure of disease activity in multiple sclerosis. Swiss Med Wkly. 2013;143(November):1–11.
28. Nourbakhsh B, Azevedo C, Maghzi AH, Spain R, Pelletier D, Waubant E. Subcortical grey matter volumes predict subsequent walking function in early multiple sclerosis. J Neurol Sci [Internet]. 2016;366:229–33. Available from: http://dx.doi.org/10.1016/j.jns.2016.04.054
29. Pareto D, Sastre-Garriga J, Alberich M, Auger C, Tintoré M, Montalban X, et al. Brain regional volume estimations with NeuroQuant and FIRST: a study in patients with a clinically isolated syndrome. Neuroradiology. 2019;61(6):667–74.
30. Chu R, Hurwitz S, Tauhid S, Bakshi R. Automated segmentation of cerebral deep gray matter from MRI scans: Effect of field strength on sensitivity and reliability. BMC Neurol. 2017;17(1).
31. Pontillo G, Lanzillo R, Russo C, Stasi MD, Paolella C, Vola EA, et al. Determinants of deep gray matter atrophy in multiple sclerosis: A multimodal MRI study. Am J Neuroradiol. 2019;40(1):99–106.
32. Tewarie P, Schoonheim MM, Schouten DI, Polman CH, Balk LJ, Uitdehaag BMJ, et al. Functional brain networks: Linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study. Hum Brain Mapp. 2015;36(2):603–18.
33. González MM, Salas-Pacheco JM, Arias-Carrión O. The yearly rate of Relative Thalamic Atrophy (yrRTA): A simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis. Front Aging Neurosci. 2014;6(AUG):1–6.
34. Rao SM, Glatt S, Hammeke TA, Michael P, Khatri BO, Rhodes AM, et al. and Neuropsychological Impairment. 1985;
35. Eskildsen SF, Coupé P, Fonov V, Manjón J V., Leung KK, Guizard N, et al. BEaST: Brain extraction based on nonlocal segmentation technique. Vol.
59, NeuroImage. 2012. p. 2362–73.
36. Chen Y-S, Chen L-F, Wang Y-T. Multiresolutional graph cuts for brain extraction from MR images. In: ProcSPIE [Internet]. 2013. Available from: https://doi.org/10.1117/12.2031540
37. Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC, et al. Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. Neuroimage [Internet]. 2011;55(3):1091–108. Available from: http://dx.doi.org/10.1016/j.neuroimage.2010.12.067
38. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology [Internet]. 2009/12/30. 2010 Jan 19;74(3):201–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20042704
39. Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R. Reliability of brain volume measurements: A test-retest dataset. Sci Data. 2014;1:1–9.
40. Fischl B. FreeSurfer. Neuroimage [Internet]. 2012;62(2):774–81. Available from: http://www.sciencedirect.com/science/article/pii/S1053811912000389
41. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage [Internet]. 2012;62(2):782–90. Available from: http://www.sciencedirect.com/science/article/pii/S1053811911010603
42. Popescu V, Battaglini M, Hoogstrate WS, Verfaillie SCJ, Sluimer IC, van Schijndel RA, et al. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis. Neuroimage [Internet]. 2012;61(4):1484–94. Available from: http://www.sciencedirect.com/science/article/pii/S1053811912003552
43. Chard DT, Parker GJM, Griffin CMB, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging [Internet]. 2002 Mar 1;15(3):259–67. Available from: https://doi.org/10.1002/jmri.10064
44. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. Neuroimage [Internet].
1999;9(2):179–94. Available from: http://www.sciencedirect.com/science/article/pii/S1053811998903950
45. Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC. Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. Neuroimage [Internet]. 2006;29(1):185–202. Available from: http://www.sciencedirect.com/science/article/pii/S1053811905005136
46. Manzini JL. Declaración De Helsinki: Principios Éticos Para La Investigación Médica Sobre Sujetos Humanos. Acta Bioeth. 2000;6(2):321–34.
47. Colombia M de SR de. Resolucion No 8430 de 1993 - 1. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. 1993;1–12.
48. Salud. P por el C de O internacionales de las CM (CIOMS) en colaboración con la OM de la. Pautas éticas internacionales para la investigación biomédica en seres humanos. 2002;
49. Bergsland N, Zivadinov R, Dwyer MG, Weinstock-Guttman B, Benedict RHB. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult Scler. 2016;22(10):1327–36.
50. Ogston SA, Lemeshow S, Hosmer DW, Klar J, Lwanga SK. Adequacy of Sample Size in Health Studies. Biometrics. 1991;47(1):347. | |