dc.contributorSalazar Pulido, Luz Mary
dc.contributorOchoa Puentes, Cristian
dc.contributorBioquímica y Biología Molecular de las Micobacterias
dc.contributorSíntesis Orgánica Sostenible
dc.creatorRodriguez Afanador, Michael Daniela
dc.date.accessioned2022-06-08T17:11:08Z
dc.date.available2022-06-08T17:11:08Z
dc.date.created2022-06-08T17:11:08Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81534
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa Ca2+-ATPasa tipo P de CtpF de Mycobacterium tuberculosis (Mtb), es un transportador de membrana fundamental en la homeóstasis iónica y la viabilidad celular de la micobacteria; posee un sitio de unión cuya interacción con compuestos inhiben la función enzimática y la actividad micobacteriana. Teniendo en cuenta lo anterior, se postularon y estudiaron mediante estrategias in silico, compuestos con el núcleo pirrolo[1,2- a]quinoxalínico sustituido en la posición C-4 como posibles inhibidores de CtpF, ya que han mostrado en estudios anteriores un amplio perfil farmacológico, contra bacterias, virus, y con actividad antitumoral, sin embargo, su potencial antituberculoso no ha sido explorado. Consecuentemente, el objetivo de este trabajo fue diseñar, sintetizar y evaluar el efecto en la actividad Ca2+ -ATPasa de CtpF de algunos compuestos derivados del núcleo pirrolo[1,2-a]quinoxalínico con potencial antimicobacteriano. Se Identificaron los compuestos 4-(3,4-metilenedioxifenil)pirrolo[1,2-a]quinoxalina 4b y 4-(2-clorofenil)pirrolo[1,2-a]quinoxalina 4c como posibles inhibidores de CtpF por medio de un cribado virtual y acoplamiento molecular. La síntesis de ambas moléculas se realizó con el uso de Solventes de punto eutéctico bajo (DES) como disolventes y catalizadores, obteniendo tiempos de reacción cortos, alta pureza en los productos y procesos amigables con el ambiente, lo cual es una mejora en la síntesis de estos compuestos. Se estudió la inhibición de ambas moléculas sobre la actividad Ca2+ -ATPasa de CtpF, se obtuvo un 30.51% para 4c y 18.17% para 4b. El compuesto 4b presentó una Concentración Mínima Inhibitoria (CMI) interesante de 25 µg/mL, lo cual lo convierte en un candidato promisorio como posible antituberculoso. Ninguna de las moléculas presentó toxicidad sobre células eucariotas; por lo tanto, su optimización puede contribuir al desarrollo de nuevos compuestos antimicobacterianos. (Texto tomado de la fuente)
dc.description.abstractThe P-type Ca2+-ATPase of CtpF from Mycobacterium tuberculosis (Mtb), a membrane transporter essential for ionic homeostasis and cell viability of mycobacteria, possesses a binding site whose interaction with compounds inhibits enzymatic function and mycobacterial activity. Considering the above, compounds with the pyrrolo[1,2- a]quinoxalinic core substituted at the C-4 position were postulated and studied by in silico strategies as possible CtpF inhibitors, since they have shown in previous studies a broad pharmacological profile, against bacteria, viruses, and with antitumor activity, however, their antituberculosis potential has not been explored. Consequently, the aim of this work was to design, synthesize and evaluate the effect on the Ca2+-ATPase activity of CtpF of some compounds derived from the pyrrolo[1,2- a]quinoxaline cores with antimycobacterial potential. Compounds 4-(3,4- methylenedioxyphenyl)pyrrolo[1,2-a]quinoxalin 4b and 4-(2-chlorophenyl)pyrrolo[1,2- a]quinoxalin 4c were identified as potential CtpF inhibitors by virtual screening and molecular docking. The synthesis of both molecules was performed with the use of Low Eutectic Point Solvents (DES) as solvents and catalysts, obtaining short reaction times, high purity in the products and environmentally friendly processes, which is an improvement in the synthesis of these compounds. The inhibition of both molecules on the Ca2+ -ATPase activity of CtpF was studied, 30.51% was obtained for 4c and 18.17% for 4b. Compound 4b presented an interesting Minimum Inhibitory Concentration (MIC) of 25 µg/mL, which makes it a promising candidate as a possible antituberculous. None of the molecules showed toxicity on eukaryotic cells; therefore, their optimization may contribute to the development of new antimycobacterial compounds.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142– 9147. https://doi.org/10.1021/ja048266j
dc.relationAhmad, S., & Mokaddas, E. (2009). Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respiratory medicine, 103(12), 1777– 90
dc.relationAlós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004
dc.relationCaminero, J. A. (2006). Treatment of multidrug-resistant tuberculosis: evidence and controversies. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 10(8), 829–837.
dc.relationCampillo, N. E., Naranjo, P. G., & Paez, J. A. (2011). Presente y Futuro en el Descubrimiento de Fármacos para la Enfermedad de Chagas. Instituto de Química Médica. CSIC. http://www.anales.ranf.com/ojs/2012/01/08.htm
dc.relationChaudhary, K. kumar, & Mishra, N. (2016). A Review on Molecular Docking: Novel Tool for Drug Discovery Design of Novel small molecule mimics binding to quorum sensors in Ralstonia Solanacearum View project synthesis of nanocomposites for drug delivery View project Central Bringing Excellence in O. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem, 4(3), 1029.
dc.relationChingaté L, S. M. (2012). Análogos de péptidos antimicrobianos con potencial actividad como compuestos antituberculosos. Universidad Nacional de Colombia.
dc.relationCires Pujol, M. (2002). La resistencia a los antimicrobianos, un problema mundial. Revista Cubana de Medicina General Integral, 18(2), 165–168. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252002000200012&lng=es&nrm=iso&tlng=en
dc.relationColl, P. (2003). Fármacos con actividad frente a Mycobacterium tuberculosis. Tuberculosis, 299–307.
dc.relationCurvo, L., Teixeira, L., & Caseiro, F. (2005). Tuberculosis of the chest. European Journal of Radiology, 55(2), 158–172. https://doi.org/10.1016/j.ejrad.2005.04.014
dc.relationDe La Fuente-Salcido, N. M., Villarreal-Prieto, M., Ángel, M., León, D., Patricia, A., Pérez, G., Norma, D., & De La Fuente-Salcido, M. (2015). Evaluation of the activity of antimicrobial agents against the challenge of bacterial resistance. Revista Mexicana de Ciencias Farmacéuticas, 2(46), 1–16. http://www.scielo.org.mx/pdf/rmcf/v46n2/1870-0195-rmcf-46-02-00007.pdf
dc.relationDesplat, V., Moreau, S., Gay, A., Fabre, S. B., Thiolat, D., Massip, S., Macky, G., Godde, F., Mossalayi, D., Jarry, C., & Guillon, J. (2010). Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(2), 204–215. https://doi.org/10.3109/14756360903169881
dc.relationDover, L. G., Bhatt, A., Bhowruth, V., Willcox, B. E., & Besra, G. S. (2008). New drugs and vaccines for drug-resistant Mycobacterium tuberculosis infections. Expert Review of Vaccines, 7(4), 481–497. https://doi.org/10.1586/14760584.7.4.481
dc.relationDupont, C., Viljoen, A., Thomas, S., & Roquet-banères, F. (2017). Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY. American Society for Microbiology, August. https://doi.org/10.1128/AAC.01225-17
dc.relationEl-Elimat, T., Raja, H. A., Figueroa, M., Swanson, S. M., Falkinham, J. O., Lucas, D. M., Grever, M. R., Wani, M. C., Pearce, C. J., & Oberlies, N. H. (2015). Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. Journal of Antibiotics, 68(3), 191–196. https://doi.org/10.1038/ja.2014.125
dc.relationFabian, L. E. (2015). Diseño y síntesis de análogos quinoxalínicos con potencial actividad quimioterápica [Universidad de Buenos Aires]. http://repositoriouba.sisbi.uba.ar/gsdl/collect/posgrauba/index/assoc/HWA_1139.dir/1139.PDF
dc.relationFilimonov, D., Lagunin, A., Gloriozova, A., Rudik, D., Druzhilovskii, P., Pogodin, V., & Poroikov, V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource (No. 50; p. way2drug.com). Chemistry of Heterocyclic Compound. http://www.way2drug.com/passonline/definition.php
dc.relationGorocica, P., Jimenez, M. del C., Garfias, Y., Sada, I., & Lascurian, R. (2005). Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénes de la tuberculosis. Revista Del Instituto Nacional de Enfermedades Respiratorias, 18(2), 142–153
dc.relationGuillom, J., Dallemagnea, P., Pfeifferb, B., Renard, P., Manechez, D., Kervrand, A., & Raulv, S. (1998). Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists Jean Guillom, Patrick Dallemagnea, Bruno Pfeifferb, Pierre Renard b, Dominique Manechez~, Alain Kervrand, Sylvain Raulv,*. 33, 293–308.
dc.relationGuillon, J., Cohen, A., Gueddouda, N. M., Das, R. N., Moreau, S., Ronga, L., Savrimoutou, S., Basmaciyan, L., Monnier, A., Monget, M., Rubio, S., Garnerin, T., Azas, N., Mergny, J. L., Mullié, C., & Sonnet, P. (2017). Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 547–563. https://doi.org/10.1080/14756366.2016.1268608
dc.relationGuillon, J., Forfar, I., Mamani-Matsuda, M., Desplat, V., Saliège, M., Thiolat, D., Massip, S., Tabourier, A., Léger, J. M., Dufaure, B., Haumont, G., Jarry, C., & Mossalayi, D. (2007). Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorganic and Medicinal Chemistry, 15(1), 194–210. https://doi.org/10.1016/j.bmc.2006.09.068
dc.relationGuillon, J., Le Borgne, M., Rimbault, C., Moreau, S., Savrimoutou, S., Pinaud, N., Baratin, S., Marchivie, M., Roche, S., Bollacke, A., Pecci, A., Alvarez, L., Desplat, V., & Jose, J. (2013). Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a] quinoxaline derivatives as inhibitors of the human protein kinase CK2. European Journal of Medicinal Chemistry, 65, 205–222. https://doi.org/10.1016/j.ejmech.2013.04.051
dc.relationHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: un editor químico semantico avanzado, plataforma de visualización y analisis (1.2.0). Journal of Cheminformatics. http://avogadro.cc/
dc.relationHern, C. R. (2019). Determinación de características funcionales de CtpF, una Ca 2+ - ATPasa tipo P de Mycobacterium tuberculosis [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72633/1/1026577431.2019.pdf
dc.relationHorsburgh, R., Barry, C., & Lange, C. (2015). Treatment of tuberculosis. The New Engl and Journal of Medicine, 373(11), 2149–2160. https://doi.org/10.1056/NEJMra1413919
dc.relationJager, V., Dawson, R., Niekerk, C., Vanker, N., Merwe, L., Choi, J., & Diacon, A. (2020). Telacebec (Q203), a New Antituberculosis Agent To. New England Journal of Medicine, 382(13), 1278–1280. https://doi.org/10.1056/nejmc2001899
dc.relationJiménez, M. A., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R.(2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.
dc.relationKandasamy, S., Hassan, S., Gopalaswamy, R., & Narayanan, S. (2014). Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. Journal of Molecular Graphics and Modelling, 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011
dc.relationKant S, Maurya AK, Kushwaha RA, Nag VL, Prasad R. Multi-drug resistant tuberculosis: an iatrogenic problem. Biosci Trends. 2010 Apr;4(2):48-55. PMID: 20448341.
dc.relationKapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171, 165–176. https://doi.org/10.1016/j.cbi.2006.12.006
dc.relationKhalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M., & Salem, H. M. (2013). Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egyptian Journal of Chest Diseases and Tuberculosis, 62(2), 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008
dc.relationKlenc, J., Raux, E., Barnes, S., Sullivan, S., Duszynska, B., Bojarski, A. J., & Strekowski, L. (2009). Synthesis of 4-Substituted 2- ( 4-Methylpiperazino ) pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. Journal of Heterocyclic Chemistry, 46(November), 1259–1265. https://doi.org/10.1002/jhet
dc.relationKnechel, N. A. (2009). Tuberculosis: Pathophysiology, clinical features, and diagnosis. Critical Care Nurse, 29(2), 34–43. https://doi.org/10.4037/ccn2009968
dc.relationKontogiorgis, C. A., & Hadjipavlou, D. (2004). Current trends in quantitative structure activity relationships on fxa inhibitors: Evaluation and comparative analysis. In Medicinal Research Reviews (Vol. 24, pp. 687–747). https://doi.org/10.1002/med.20006
dc.relationKumar, A., Chaturvedi, V., Bhatnagar, S., Sinha, S., & Siddiqi, M. I. (2009). Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. Journal of Chemical Information and Modeling, 49(1), 35–42. https://doi.org/Doi 10.1021/Ci8003607
dc.relationJossefa, C. (2019). Infecciones. MSD Salud. https://www.msdsalud.es/cuidar-en/infecciones/infecciones-bacterianas/se-transmiten-infecciones-bacterianas.html
dc.relationLombardino, J. G., & Lowe, J. (2004). The role of the medicinal chemist drug discovery - then and now. 3(October). https://doi.org/10.1038/nrd1523
dc.relationLópez, F., Medina, J. L., & Castillo, R. (2018). Diseño de fármacos asistido por computadora. Educación Química, 17(4), 452. https://doi.org/10.22201/fq.18708404e.2006.4.66027
dc.relationMateo, A. J., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R. (2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.
dc.relationMdluli, K., Kaneko, T., & Upton, A. (2015). The Tuberculosis Drug Discovery and Development Pipeline and Emerging Drug Targets. Cold Spring Harb Perspect Med, 5(6), 1–24. https://doi.org/10.1007/978-3-642-27769-6_4970-1
dc.relationMedina, J. L. (2007). Aplicaciones exitosas de diseño de fármacos utilizando métodos computacionales. In Comunicaciones libres (pp. 1–8). Ciencia.
dc.relationMondal, S., Upamanyu, N., & Sen, D. (2013). Hybrid Computational Simulation and Modeling Assisted Structural Analysis of Anti-tubercular Molecules. Procedia Technology, 10, 53–61. https://doi.org/10.1016/j.protcy.2013.12.336
dc.relationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. P., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
dc.relationMurcia, G. D. (2009). Microbiologia para enfermeros (U. N. de Colombia (ed.); primera).
dc.relationMurima, P., de Sessions, P. F., Lim, V., Naim, A. N. M., Bifani, P., Boshoff, H. I. M., Sambandamurthy, V. K., Dick, T., Hibberd, M. L., Schreiber, M., & Rao, S. P. S. (2013). Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria. PLoS ONE, 8(7), 1–11. https://doi.org/10.1371/journal.pone.0069191
dc.relationNarwal, S., Kumar, S., & Verma, P. K. (2016). Synthesis and therapeutic potential of quinoline derivatives. Res Chem Intermed, 43, 1–34.
dc.relationNavarro, C. A. (2015). Estudio de disolventes ambientalmente amigables para la síntesis de 1,8-dioxo-octahidroxantenos y decahidroacridin-1,8-dionas [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/52085/
dc.relationNCBI. (2019). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/mesh/68007239
dc.relationNiu, M.-M., Qin, J.-Y., Tian, C.-P., Yan, X.-F., Dong, F.-G., Cheng, Z.-Q., Fida, G., Yang, M., Chen, H., & Gu, Y.-Q. (2014). Tubulin inhibitors: pharmacophore modeling, virtual screening and molecular docking. Acta Pharmacologica Sinica, 967–979. https://doi.org/10.1038/aps.2014.34
dc.relationNovoa, L., & Soto, C. Y. (2014). Mycobacterium tuberculosis p-type atpases: Possible targets for drug or vaccine development. BioMed Research International, 2014(January 2015). https://doi.org/10.1155/2014/296986
dc.relationNovoa, L., León, A., Patiño, M., Cuesta, J., Salazar, L. mary, Landsman, D., Mariño, L., & Soto, C. (2012). In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. https://doi.org/10.1186/1472-6807-12-25
dc.relationNunes, C., Booty, M. G., Carpenter, S. M., Jayaraman, P., Rothchild, A. C., & Behar, S. M. (2014). In search of a new paradigm for protective immunity to TB. Nature Reviews Microbiology, 12(4), 289–299. https://doi.org/10.1038/nrmicro3230
dc.relationOsborne, R. (2013). First novel anti-tuberculosis drug in 40 years. Nature Biotechnology, 31(2), 89–91. https://doi.org/10.1038/nbt0213-89
dc.relationPaz, R. (2010). Utilización de solventes eutécticos como medio de miscibilidad de compuestos bioactivos y polisacáridos. 65. https://ciad.repositorioinstitucional.mx/jspui/handle/1006/376
dc.relationPérez, R. M. (1998). Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. Información Terapéutica Del Sistema Nacional de Salud, 57–67. http://www.mscbs.gob.es/gl/biblioPublic/publicaciones/docs/bacterias.pdf
dc.relationPerkinElmer. (2011). ChemDraw Professional. https://perkinelmerinformatics.com/products/research/chemdraw/
dc.relationPerri, M., Aiello, F., Cione, E., Carullo, G., Amendola, L., Mazzotta, S., & Caroleo, M. C. (2019). Investigation of TNBC in vitro Antiproliferative Effects of Versatile Pirrolo[1,2-a]quinoxaline Compounds. Frontiers in Molecular Biosciences, 6(March), 1–5. https://doi.org/10.3389/fmolb.2019.00012
dc.relationPrasad, B., Kumar, K. S., Babu, P. V., Anusha, K., Rambabu, D., Kandale, A., Vanaja, G. R., Kalle, A. M., & Pal, M. (2012). AlCl 3 induced C – N bond formation followed by Pd / C – Cu mediated coupling – cyclization strategy : synthesis of pyrrolo [ 2 , 3- b ] quinoxalines as anticancer agents. Tetrahedron Letters, 53(45), 6059–6066. https://doi.org/10.1016/j.tetlet.2012.08.119
dc.relationQuiñones D., (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque "Una salud" Revista Cubana de Medicina Tropical, 69(3), 1–17. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009&lng=es&nrm=iso&tlng=es
dc.relationRamos, P. M., & Gil, J. (2017). Biorrefinerías basadas en explotaciones agropecuarias y forestales.Universidad de Zaragoza, November, 191.
dc.relationRub, C., & Konig, B. (2012). Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chemistry, 207890, 14. https://doi.org/10.1039/b000000x
dc.relationSaffioti, N. A., de Sautu, M., Ferreira-Gomes, M. S., Rossi, R. C., Berlin, J., Rossi, J. P. F. C., & Mangialavori, I. C. (2019). E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochimica et Biophysica Acta - Biomembranes, 1861(2), 366–379. https://doi.org/10.1016/j.bbamem.2018.11.001
dc.relationSánchez, L., & González, D. (2017). Topología y función de las subunidades intrínsecas de la membrana de las F1F0-ATP sintasa mitocondriales. TIP Revista Especializada En Ciencias Químico-Biológicas, 20(2), 29–47. https://doi.org/10.1016/j.recqb.2017.04.004
dc.relationSantivañez, M., Moreno, E., Monge, A., & Pérez, S. (2013). Quinoxalinas como potenciales agentes antimycobacterium tuberculosis: una revisión. In Rev Soc Quím Perú (Vol. 79, Issue 3). http://www.scielo.org.pe/pdf/rsqp/v79n3/a10v79n3.pdf
dc.relationSantos, P. (2010). Sistema de transporte ATPasa en vesículas de membranas de Mycobacterium tuberculosis involucrado en la regulación de la concentración de protones: posible blanco terapéutico de la acción de péptidos antimicrobianos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/3005/1/188110.2010.pdf
dc.relationSantos, P. (2020). ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77933
dc.relationSantos, P., Lopez, F., Ramírez, D., Caballero, J., Espinosa, M., Hernández-pando, R., & Soto, C. Y. (2019). Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorganic and Medicinal Chemistry, 115256. https://doi.org/10.1016/j.bmc.2019.115256
dc.relationSchrödinger LLC. (2021). Maestro. Schrödinger.
dc.relationSchrödinger, L. (2010). The PyMOL Molecular Graphics System, Version 1.7.4.
dc.relationSeddon, G., Lounnas, V., Mcguire, R., Bywater, R. P., Oliveira, L., & Vriend, G. (2012). Drug design for ever , from hype to hope. 137–150. https://doi.org/10.1007/s10822-011-9519-9
dc.relationShalini, P. (2016). Desarrollo de fármacos. Manual MSD. https://www.msdmanuals.com/es-co/professional/fármacología-clínica/conceptos-fármacoterapéuticos/desarrollo-de-fármacos
dc.relationSheen, P., Ferrer, P., Gilman, R. H., López-Llano, J., Fuentes, P., Valencia, E., & Zimic, M. J. (2009). Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 89(2), 109–13
dc.relationSheldon, R. A. (2005). Green solvents for sustainable organic synthesis: State of the art. Green Chemistry, 7(5), 267–278. https://doi.org/10.1039/b418069k
dc.relationSilverstein, R., Webster, F., & Kiemle, D. (n.d.). Spectrometric Identification of Organic Compunds 7th ed - R. Silverstein, et al., (Wiley, 2005) W (2).pdf (septima).
dc.relationSimithy, J., Reeve, N., Hobrath, J. V., Reynolds, R. C., & Calderón, A. I. (2014). Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis, 94(2), 152–158. https://doi.org/10.1016/j.tube.2013.12.004
dc.relationSmith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p
dc.relationTrott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
dc.relationVasava, M. S., Bhoi, M. N., Rathwa, S. K., Borad, M. A., Nair, S. G., & Patel, H. D. (2017). Drug development against tuberculosis: Past, present and future. Indian Journal of Tuberculosis, 64(4), 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002
dc.relationWorld Health Organization. (2021). Global tuberculosis report 2021. file:///C:/Users/Nuestro compu/Downloads/9789240037021-eng.pdf
dc.relationWorley, M., & Estrada, S. (2014). Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 34(11), 1187–1197. https://doi.org/10.1002/phar.1482
dc.relationZor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity : Theoretical and Experimental Studies. 308(236), 302–308.
dc.relationZumla, A., Nahid, P., & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature Reviews. Drug Discovery, 12(5), 388–404. https://doi.org/10.1038/nrd4001
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución