dc.contributorCuervo Prado, Paola Andrea
dc.contributorGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)
dc.creatorLozano Oviedo, John Jair
dc.date.accessioned2022-08-31T20:56:47Z
dc.date.available2022-08-31T20:56:47Z
dc.date.created2022-08-31T20:56:47Z
dc.date.issued2022-08-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82230
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl presente estudio pretende aportar nuevas metodologías para la síntesis de núcleos pirazolopiridínicos, tetrahidropirazoloquinolinicos y tetrahidropirazoloisoquinolinicos, por medio de estrategias multicomponentes que involucran 5-aminopirazoles, cetonas cíclicas y olefinas ricas en electrones, empleando calentamiento convencional e inducido por microondas, en donde la exploración sintética condujo a una metodología novedosa que permite la obtención regioselectiva de las estructuras isómericas estudiadas. Por otra parte, esta investigación busca aportar moléculas bioactivas que puedan emplearse para el tratamiento de algunos trastornos del sistema nervioso central que involucran al receptor GABA-A, por lo tanto, se realizó una evaluación in silico de los prototipos propuestos que incluye una indagación de las propiedades farmacocinéticas, farmacodinámicas y afinidad por el receptor, exhibiendo un comportamiento promisorio como potenciales moduladores alostéricos del receptor GABA-A.
dc.description.abstractThe present study aims to provide new methodologies for the synthesis of pyrazolopyridine, tetrahydropyrazoloquinoline and tetrahydropyrazoloisoquinoline nuclei, through multicomponent strategies involving 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using conventional and microwave-induced heating, where synthetic exploration led to a novel methodology that allows regioselective obtaining of the isomeric structures studied. On the other hand, this research seeks to provide bioactive molecules that can be used for the treatment of some disorders of the central nervous system that involve the GABA-A receptor, therefore, an in silico evaluation of the proposed prototypes was carried out, which includes an investigation of pharmacokinetic and pharmacodynamic properties and affinity for the receptor, exhibiting promising behavior as potential allosteric modulators of the GABA-A receptor
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationOlsen, R. W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60 (3), 243–260. https://doi.org/10.1124/pr.108.00505.
dc.relationMedel, J.; Cortijo, L.; Gasca, E.; Tepetlan, P.; Pérez, A.; Ramos, F. Receptor GABAA: Implicaciones Farmacológicas a Nivel Central. Arch. neurociencias (México, D.F.) 2011, 16 (1), 40–45.
dc.relationPhulera, S.; Zhu, H.; Yu, J.; Claxton, D. P.; Yoder, N.; Yoshioka, C.; Gouaux, E. Cryo-EM Structure of the Benzodiazepine-Sensitive Α1β1γ2S Tri-Heteromeric GABAA Receptor in Complex with GABA. Elife 2018, 7. https://doi.org/10.7554/eLife.39383.
dc.relationCedillo Ildefonso, B. Generalidades de La Neurobiología de La Ansiedad. Rev. Electrónica Psicol. Iztacala 2017, 20 (1), 239.
dc.relationBotto, A.; Acuña, J.; Jiménez, J. P. La Depresión Como Un Diagnóstico Complejo: Implicancias Para El Desarrollo de Recomendaciones Clínicas. Rev. Med. Chil. 2014, 142 (10), 1297–1305. https://doi.org/10.4067/S0034-98872014001000010.
dc.relationSullivan, P. F.; Neale, M. C.; Kendler, K. S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157 (10), 1552–1562. https://doi.org/10.1176/APPI.AJP.157.10.1552.
dc.relationCaspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H. L.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science (80-. ). 2003, 301 (5631), 386–389. https://doi.org/10.1126/SCIENCE.1083968.
dc.relationDiaz Villa, B. A.; González González, C. Actualidades En Neurobiología de La Depresión. Rev Lationam Psiquitría 2012, 11 (3), 106–115.
dc.relationHeim, C.; Nemeroff, C. B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biol. Psychiatry 2001, 49 (12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X.
dc.relationGavernet, L. Introducción a La Química Medicinal; Editorial de la Universidad Nacional de La Plata (EDULP): Ciudad de la plata, 2021. https://doi.org/10.35537/10915/114312.
dc.relationMedina-Franco, J. L.; Fernán-Dezde Gortari, E.; Jesús Naveja, J. Avances En El Diseño de Fármacos Asistido Por Computadora. Educ. Química 2015, 26 (3), 180–186. https://doi.org/10.1016/J.EQ.2015.05.002.
dc.relationSaldívar-González, F.; Prieto-Martínez, F. D.; Medina-Franco, J. L. Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educ. Química 2017, 28 (1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002.
dc.relationRojas, W. M.; Oviedo, K. N. Acoplamiento Inverso Y Mapeo De Farmacóforo Como Herramientas Para Encontrar Nuevos Blancos Farmacológicos De Compuestos Naturales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2012, 36 (140), 411–420.
dc.relationClaudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.
dc.relationUmar, T.; Shalini, S.; Raza, M. K.; Gusain, S.; Kumar, J.; Seth, P.; Tiwari, M.; Hoda, N. A Multifunctional Therapeutic Approach: Synthesis, Biological Evaluation, Crystal Structure and Molecular Docking of Diversified 1H-Pyrazolo[3,4-b]Pyridine Derivatives against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038.
dc.relationAnsari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16–41. https://doi.org/10.1039/c6nj03181a.
dc.relationKarrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. MDPI AG 2018. https://doi.org/10.3390/molecules23010134.
dc.relationTripathi, A. C.; Upadhyay, S.; Paliwal, S.; Saraf, S. K. Derivatives of 4,5-Dihydro (1H) Pyrazoles as Possible MAO-A Inhibitors in Depression and Anxiety Disorders: Synthesis, Biological Evaluation and Molecular Modeling Studies. Med. Chem. Res. 2018, 27 (5), 1485–1503. https://doi.org/10.1007/s00044-018-2167-z.
dc.relationFaisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131 (8). https://doi.org/10.1007/s12039-019-1646-1.
dc.relationYadav, J. S.; Purushothama Rao, P.; Sreenu, D.; Rao, R. S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A. R. Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46 (42), 7249–7253. https://doi.org/10.1016/j.tetlet.2005.08.042.
dc.relationGervasini, G.; Carrillo, J.; Benitez, J. Importancia Del Citocromo P-450 En Terapéutica Farmacológica. 2022.
dc.relationRitchie, T. J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16 (1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002.
dc.relationBrenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I. H.; Frearson, J.; Wyatt, P. G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3 (3), 435–444. https://doi.org/10.1002/cmdc.200700139.
dc.relationSmith, G. B.; Olsen, R. W. Functional Domains of GABAA Receptors. Trends Pharmacol. Sci. 1995, 16 (5), 162–168. https://doi.org/10.1016/S0165-6147(00)89009-4.
dc.relationNitro bioisosteres. | News | Cambridge MedChem Consulting https://www.cambridgemedchemconsulting.com/news/index_files/e257c4796cad57a277e5b735ea47bf96-136.html (accessed May 4, 2022).
dc.relationHügel, H. Microwave Multicomponent Synthesis. Molecules 2009, 14 (12), 4936–4972. https://doi.org/10.3390/molecules14124936.
dc.relationAlegre, J. V.; Marqués, E.; Herrera, R. P. Introduction. In Multicomponent Reactions; John Wiley & Sons, Inc: Hoboken, NJ, 2015; pp 1–15. https://doi.org/10.1002/9781118863992.ch1.
dc.relationSharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637. https://doi.org/10.1039/c1cc15238f.
dc.relationAlcázar, J.; de M. Muñoz, J. Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 2, pp 1173–1204. https://doi.org/10.1002/9783527651313.ch25.
dc.relationPerreux, L.; Loupy, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves Org. Synth. Second Ed. 2008, 1, 134–218. https://doi.org/10.1002/9783527619559.ch4.
dc.relationKappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley Blackwell, 2006; Vol. 25. https://doi.org/10.1002/3527606556.
dc.relationParada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18 (11), 2719–2725. https://doi.org/10.1021/cm0511365.
dc.relationLeadbeater, N. E. Organic Synthesis Using Microwave Heating. In Comprehensive Organic Synthesis: Second Edition; Elsevier Ltd., 2014; Vol. 9, pp 234–286. https://doi.org/10.1016/B978-0-08-097742-3.00920-4.
dc.relationKappe, C. O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chemie Int. Ed. 2013, 52 (4), 1088–1094. https://doi.org/10.1002/anie.201204103.
dc.relationPerreux, L.; Loupy, A.; Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 1, pp 127–207. https://doi.org/10.1002/9783527651313.ch4.
dc.relationCorey, E. . (harvard university); Li, J. Name Reactions in Heterocyclic Chemistry; Li, J., Ed.; 2004.
dc.relationpaquette, L. Fundamentos de Química Heterocíclica; Universidad estatal de Ohio, Ed.; Limusa Noriega, 2000.
dc.relationLager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-Acyl Substituted 4-Quinolones at the Benzodiazepine Site of GABAA Receptors. Bioorg. Med. Chem. 2008, 16 (14), 6936–6948. https://doi.org/10.1016/j.bmc.2008.05.049.
dc.relationShi, F.; Zhang, J.; Tu, S.; Jia, R.; Zhang, Y.; Jiang, B.; Jiang, H. An Efficient Synthesis of New Class of Pyrazolo[3,4- b ]Pyridine-6-One Derivatives by a Novel Cascade Reaction. J. Heterocycl. Chem. 2007, 44 (5), 1013–1017. https://doi.org/10.1002/jhet.5570440506.
dc.relationChen, Z.; Shi, Y.; Shen, Q.; Xu, H.; Zhang, F. Facile and Efficient Synthesis of Pyrazoloisoquinoline and Pyrazolopyridine Derivatives Using Recoverable Carbonaceous Material as Solid Acid Catalyst. Tetrahedron Lett. 2015, 56 (33), 4749–4752. https://doi.org/10.1016/j.tetlet.2015.06.044.
dc.relationShi, C.-L.; Chen, H.; Shi, D.-Q. An Efficient One-Pot Synthesis of Pyrazolo[3,4-b]Pyridinone Derivatives Catalyzed by L-Proline. J. Heterocycl. Chem. 2011, 48 (2), 351–354. https://doi.org/10.1002/jhet.573.
dc.relationOrlov, V. D.; Kiroga, K.; Kolos, N. N. Synthesis of Aromatic Pyrazolo[4,5-b]Pyridine Derivatives. Chem. Heterocycl. Compd. 1988 239 1987, 23 (9), 997–1001. https://doi.org/10.1007/BF00475369.
dc.relationDaniela Ahumada, C.; Segovia-Paccini, A.; Navas, G. R. S. Los 5-Aminopirazoles Como Bloque de Construcción de Compuestos Heterocíclicos Fusionados. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2019, 43 (168), 531–538. https://doi.org/10.18257/RACCEFYN.762.
dc.relationGálvez, J.; Quiroga, J.; Insuasty, B.; Abonia, R. Microwave-Assisted and Iodine Mediated Synthesis of 5-n-Alkyl-Cycloalkane[d]-Pyrazolo[3,4-b]Pyridines from 5-Aminopyrazoles and Cyclic Ketones. Tetrahedron Lett. 2014, 55 (12), 1998–2002. https://doi.org/10.1016/j.tetlet.2014.02.015.
dc.relationChu, X. Q.; Wang, S. Y.; Ji, S. J. Recyclable NaHSO<inf>4</Inf> Catalyzed Alkylation of Tert-Enamides with Indoles or Amines in Water: Facile Construction of Pharmaceutically Analogous Bis-Alkaloid Scaffolds. RSC Adv. 2013, 3 (22), 8380–8387. https://doi.org/10.1039/c3ra40833g.
dc.relationZiyaei Halimehjani, A.; Goudarzi, M.; Lotfi Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.
dc.relationZaytsev, V. P.; Zubkov, F. I.; Toze, F. A. A.; Orlova, D. N.; Eliseeva, M. N.; Grudinin, D. G.; Nikitina, E. V.; Varlamov, A. V. 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]Tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity. J. Heterocycl. Chem. 2013, 50 (SUPPL.1). https://doi.org/10.1002/jhet.1024.
dc.relationKhadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. One-Pot Construction of Isoindolo[2,1-a]Quinoline System. Tetrahedron Lett. 2009, 50 (48), 6661–6664. https://doi.org/10.1016/j.tetlet.2009.09.075.
dc.relationDagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Chiral Brønsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of Anti-1,3-Diamines Using Enecarbamates as Nucleophiles. Org. Lett. 2009, 11 (23), 5546–5549. https://doi.org/10.1021/ol9023985
dc.relationTerada, M.; Sorimachi, K. Enantioselective Friedel-Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc. 2007, 129 (2), 292–293. https://doi.org/10.1021/ja0678166.
dc.relationHalimehjani, A. Z.; Dadras, A.; Ramezani, M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc. 2015, 26 (7), 1500–1508. https://doi.org/10.5935/0103-5053.20150119.
dc.relationHalimehjani, A.; Goudarzi, M.; Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.
dc.relationTamaddon, F.; Khoobi, M.; Keshavarz, E. (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction. Tetrahedron Lett. 2007, 48 (21), 3643–3646. https://doi.org/10.1016/J.TETLET.2007.03.134.
dc.relationReddy, P. N.; Reddy, B. V. S.; Padmaja, P. Current Organic Synthesis Current Organic Synthesis SCIENCE BENTHAM Send Orders for Reprints to Reprints@benthamscience.Ae Emerging Role of Green Oxidant I 2 /DMSO in Organic Synthesis. Curr. Org. Synth. 2018, 15, 815–838. https://doi.org/10.2174/1570179415666180530121312.
dc.relationBecerra-Rivas, C.; Cuervo-Prado, P.; Orozco-Lopez, F. Efficient Catalyst-Free Tricomponent Synthesis of New Spiro[Cyclohexane-1,4′-Pyrazolo[3,4- e ][1, 4]Thiazepin]-7′(6′ H )-Ones. Synth. Commun. 2019, 49 (3), 367–376. https://doi.org/10.1080/00397911.2018.1554143.
dc.relationBreugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. - A Eur. J. 2018, 24 (37), 9187–9199. https://doi.org/10.1002/chem.201706136.
dc.relationYang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35 (6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY70
dc.relationDaina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.
dc.relationMorris, G. M.; Ruth, H.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785. https://doi.org/10.1002/JCC.21256.
dc.relationAllen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/JCC.23905.
dc.relationLADIN, J. J. H.; Fabian Orozco López. DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC), Universidad Nacional de Colombia, 2019.
dc.relationBamoniri, A.; Mirjalili, B. B. F.; Jafari, A. A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5.SiO2. Iran. J. Catal. 2012, 2 (2), 75–78. https://doi.org/10.31857/s042485702109005x.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2022
dc.titleEvaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución