dc.contributorGodoy Silva, Rubén Darío
dc.contributorRodríguez Varela, Luis Ignacio
dc.creatorPasos Panqueva, Johan Andrés
dc.date.accessioned2021-08-18T15:15:12Z
dc.date.available2021-08-18T15:15:12Z
dc.date.created2021-08-18T15:15:12Z
dc.date.issued2021-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79961
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractMúltiples estudios presentan las microalgas como la fuente de biocombustibles más prometedora, debido a que, entre otras características, son 50 veces más eficientes en convertir la luz solar en biomasa y capturan entre 10 y 50 veces más CO2 que las plantas terrestres. Debido a que el contenido de agua de estos microorganismos puede alcanzar más del 95% en peso, la licuefacción hidrotermal (LHT), que emplea agua a condiciones supercríticas, se ha perfilado como la mejor manera para convertir la biomasa húmeda de microalga en biocrudo. Sin embargo, el rendimiento del proceso para producir biocrudo no supera el 50%, por lo que la generación de una fase acuosa (subproducto de la LHT) constituye el principal residuo del proceso. El presente trabajo pretende evaluar otro proceso hidrotermal, denominado oxidación hidrotermal con peróxido, como alternativa de tratamiento de la fase acuosa proveniente de la LHT de la microalga Chlorella vulgaris. En primer lugar, se obtuvo la biomasa algal a licuar, se caracterizó bioquímicamente y se realizó la licuefacción hidrotermal, determinando los rendimientos de producción de cada una de las fases a condiciones constantes de reacción (375ºC y 15 minutos de reacción). Posteriormente se caracterizó la fase acuosa obtenida y se diseñó un plan de experimentos que permita establecer las condiciones de reacción adecuadas (tiempo y relación molar de peróxido) que maximicen la producción de fase acuosa tratada. Finalmente, se caracterizó la fase acuosa tratada y se realizaron cultivos comparativos de la microalga en diferentes diluciones de fase acuosa, con el fin de cuantificar el crecimiento algal y evaluar el potencial de recirculación del agua tratada por medio de la oxidación hidrotermal con peróxido. Con el desarrollo de este trabajo se demostró que es viable tratar la fase acuosa de la LHT, para recircular agua y recuperar nutrientes; con lo cual, se mejora la sostenibilidad ambiental y energética de la producción de biocrudo a partir de algas. (Texto tomado de la fuente)
dc.description.abstractMultiple studies present microalgae as the most promising source of biofuels, due to the fact that, among other characteristics, they are 50 times more efficient in converting sunlight into biomass and capture between 10 and 50 times more CO2 than terrestrial plants. Because the water content of these microorganisms can reach more than 95% by weight, hydrothermal liquefaction (LHT), which uses water at supercritical conditions, has emerged as the best way to convert wet microalgae biomass to biocrude. However, the yield of the process to produce biocrude does not exceed 50%, so the generation of an aqueous phase (by-product of the LHT) constitutes the main waste of the process. The present work aims to evaluate another hydrothermal process, called hydrothermal oxidation with peroxide, as an alternative for treating the aqueous phase from the LHT of the microalgae Chlorella vulgaris. First, the algal biomass to be liquefied was obtained, it was biochemically characterized and hydrothermal liquefaction was carried out, determining the production yields of each of the phases at constant reaction conditions (375ºC and 15 minutes of reaction). Subsequently, the aqueous phase obtained was characterized and an experiment plan was designed to establish the appropriate reaction conditions (time and molar ratio of peroxide) that maximize the production of the treated aqueous phase. Finally, the treated aqueous phase was characterized and comparative cultures of the microalgae were carried out in different dilutions of the aqueous phase, in order to quantify the algal growth and evaluate the recirculation potential of the treated water by means of hydrothermal oxidation with peroxide. With the development of this work it was demonstrated that it is feasible to treat the aqueous phase of the LHT, to recirculate water and recover nutrients; with which, the environmental and energy sustainability of the production of biocrude from algae is improved.(Text taken from the source)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherBogotá - Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. BIORESOURCE TECHNOLOGY, 118, 61–66. https://doi.org/10.1016/j.biortech.2012.05.055
dc.relationAida, T., Maruta, R., Tanabe, Y., Oshima, MinNonaka, T., Kujiraoka, H., Kumagai, Y., & Ota, M. (2016). Nutrient recycle from defatted microalgae (Aurantiochytrium ) with hydrothermal treatment for microalgae cultivation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.12.078
dc.relationAl-duri, B., & Alsoqyani, F. (2017). Supercritical water oxidation ( SCWO ) for the removal of nitrogen containing heterocyclic waste hydrocarbons . Part II : System kinetics. The Journal of Supercritical Fluids, 128(May), 412–418. https://doi.org/10.1016/j.supflu.2017.05.010
dc.relationAl Hattab, M., & Ghaly, A. (2015). Production of Biodiesel from Marine and Freshwater Microalgae : A Review. Advances in Research, 3(2), 107–155. https://doi.org/10.9734/AIR/2015/7752
dc.relationAlcaraz, M. R., Fabiano, S. N., & Cámara, M. S. (2012). Determinación De Contenido Fenólico Total En Agua Superficial De Distintos Puntos De La Provincia De Santa Fe – Argentina – Haciendo Uso De Un Biosensor Enzimático Mediante Calibración Multivariada Por Cuadrados Parciales Mínimos , Pls. Septimo Congreso de Medio Ambiente, 1–22.
dc.relationAlimoradi, S., Stohr, H., Stagg-Williams, S., & Sturm, B. (2020). Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Chemosphere, 238, 124573. https://doi.org/10.1016/j.chemosphere.2019.124573
dc.relationAlnaizy, R., & Akgerman, A. U. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(May), 233–244.
dc.relationAnastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102(7), 4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031
dc.relationAndersen, R. A. (2005). Algal Culturing Techniques (1st ed.). Elsevier Academic Press.
dc.relationAnku, W., Mamo, M., & Govender, P. (2017). Phenolic compounds in Water: Sources, reactivity, toxicity and treatment methods. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications abundant (p. 444). InTech. https://doi.org/http://dx.doi.org/10.5772/66927
dc.relationAnsari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098
dc.relationAPHA. (1999). Standard Methods for the Examination of Water and Wastewater (21st ed.).
dc.relationArmandina, E., Tercero, R., Bertucco, A., & Brilman, D. W. F. W. (2015). Process water recycle in Hydrothermal Liquefaction of microalgae to enhance bio-oil yield. Energy and Fuels, 3. https://doi.org/10.1021/ef502773w
dc.relationArun, J., Varshini, P., Prithvinath, P. K., Priyadarshini, V., & Gopinath, K. P. (2018). Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresource Technology, 4. https://doi.org/10.1016/j.biortech.2018.04.029
dc.relationAzov, Y., & Goldman, J. C. (1982). Free Ammonia Inhibition of Algal Photosynthesis in Intensive Culturest. Applied And, 43(4), 735–739.
dc.relationBagnoud-Velásquez, M., Schmid-Staiger, U., Peng, G., Vogel, F., & Ludwig, C. (2015). First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 8, 76–82. https://doi.org/10.1016/j.algal.2014.12.012
dc.relationBaier, S. L., Clements, M., Griffiths, C. W., & Ihrig, J. E. (2009). Biofuels Impact on Crop and Food Prices: Using an Interactive Spreadsheet. Social Science Research Network, 967. https://doi.org/10.2139/ssrn.1372839
dc.relationBarbarino, E., & Louren, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology, 17, 447–460. https://doi.org/10.1007/s10811-005-1641-4
dc.relationBashan, Y., Lopez, B. R., Huss, V. A. R., Amavizca, E., & de-Bashan, L. E. (2016). Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. Journal of Applied Phycology, 28(1), 113–121. https://doi.org/10.1007/s10811-015-0571-z
dc.relationBaup, S., Jaffre, C., Wolbert, D., & Laplanche, A. (2000). Adsorption of pesticides onto granular activated carbon: Determination of surface diffusivities using simple batch experiments. Adsorption, 6(3), 219–228. https://doi.org/10.1023/A:1008937210953
dc.relationBecker, R., Dorgerloh, U., Paulke, E., Mumme, J., & Nehls, I. (2014). Hydrothermal Carbonization of Biomass : Major Organic Components of the Aqueous Phase. Chemical Engineering and Technology, 3, 511–518. https://doi.org/10.1002/ceat.201300401
dc.relationBenatti, C. T., Granhen Tavares, C. R., & Guedes, T. A. (2006). Optimization of Fenton ’ s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Engineering (United States), 80, 66–74. https://doi.org/10.1016/j.jenvman.2005.08.014
dc.relationBenvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology, 27(4), 1425–1431. https://doi.org/10.1007/s10811-014-0470-8
dc.relationBermejo, M. D., & Cocero, M. J. (2006). Supercritical Water Oxidation: A Technical Review. AIChE Journal, 52(11), 3933–3951. https://doi.org/10.1002/aic
dc.relationBiller, P., & Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. https://doi.org/10.1016/j.biortech.2010.06.028
dc.relationBiller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., & Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–76. https://doi.org/10.1016/j.algal.2012.02.002
dc.relationBiller, Patrick, Madsen, R. B., Klemmer, M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Effect of hydrothermal liquefaction aqueous phase recycling on bio- crude yields and composition. Bioresource Technology, 220, 190–199. https://doi.org/10.1016/j.biortech.2016.08.053
dc.relationBio-Rad. (2006). Protein Assay. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prodprot15
dc.relationBlair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674. https://doi.org/10.1016/j.jece.2013.11.005
dc.relationBligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.
dc.relationBoer, K. De, & Moheimani, N. R. (2012). Extraction and conversion pathways for microalgae to biodiesel : a review focused on energy consumption. Journal of Applied Phycology, 24, 1681–1698. https://doi.org/10.1007/s10811-012-9835-z
dc.relationBradford, Marion M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
dc.relationBrand, S., Hardi, F., Kim, J., & Suh, D. J. (2014). Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. Energy, 68, 420–427. https://doi.org/10.1016/j.energy.2014.02.086
dc.relationBrennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009
dc.relationBrown, M. R., & Mccausland, M. A. (1998). The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture, 165, 281–293.
dc.relationBrown, T. M., Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy and Fuels, 24(6), 3639–3646. https://doi.org/10.1021/ef100203u
dc.relationByreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002
dc.relationCai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030
dc.relationCao, Y., Wang, Y., Riley, J. T., & Pan, W. P. (2006). A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel Processing Technology, 87(4), 343–353. https://doi.org/10.1016/j.fuproc.2005.10.003
dc.relationChang, I. S., & Kim, S. N. (2005). Wastewater treatment using membrane filtration - Effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3–4), 1307–1314. https://doi.org/10.1016/j.procbio.2004.06.019
dc.relationChen, C., Lu, Z., Ma, X., Long, J., Peng, Y., Hu, L., & Lu, Q. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571. https://doi.org/10.1016/j.biortech.2013.07.011
dc.relationChen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159
dc.relationChen, W.-T., Tang, L., Qian, W., Scheppe, K., Nair, K., Wu, Z., Gai, C., Zhang, P., & Zhang, Y. (2016). Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. Sustainable Chemistry and Engineering, 2. https://doi.org/10.1021/acssuschemeng.5b01645
dc.relationChen, W.-T., Zhang, Y., Zhang, J., Schideman, L., Yu, G., Zhang, P., & Minarick, M. (2014). Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 128, 209–216. https://doi.org/10.1016/J.APENERGY.2014.04.068
dc.relationChen, W. H., Huang, M. Y., Chang, J. S., & Chen, C. Y. (2015). Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy, 154, 622–630. https://doi.org/10.1016/j.apenergy.2015.05.068
dc.relationChen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039
dc.relationChen, X., Ma, X., Peng, X., Lin, Y., Wang, J., & Zheng, C. (2018). Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Bioresource Technology, 267(381), 167–174. https://doi.org/10.1016/j.biortech.2018.07.032
dc.relationCheng, Y. S., Zheng, Y., & VanderGheynst, J. S. (2011). Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0
dc.relationCherad, R., Onwudili, J. A., Biller, P., Williams, P. T., & Ross, A. B. (2016a). Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel, 166, 24–28. https://doi.org/10.1016/j.fuel.2015.10.088
dc.relationChiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056–1086. https://doi.org/10.1016/j.rser.2005.07.008
dc.relationChristensen, P. S., Peng, G., Vogel, F., & Iversen, B. B. (2014). Hydrothermal liquefaction of the microalgae Phaeodactylum tricornutum: Impact of reaction conditions on product and elemental distribution. Energy and Fuels, 28(9), 5792–5803. https://doi.org/10.1021/ef5012808
dc.relationCiabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250(1), 222–228. https://doi.org/10.1016/j.desal.2009.06.019
dc.relationCollet, P., Hélias, A., Lardon, L., Ras, M., Goy, R., & Steyer, J. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214. https://doi.org/10.1016/j.biortech.2010.06.154
dc.relationCorley, R. (1998). Productividad de la palma de aceite Aspectos fisiológicos. Palmas, 19(Especial), 162–168.
dc.relationCostanzo, W., Jena, U., Hilten, R., Das, K. C., & Kastner, J. R. (2015). Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research, 12, 377–387. https://doi.org/10.1016/j.algal.2015.09.019
dc.relationCrini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
dc.relationCroiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen Peroxide Decomposition in Supercritical Water. AIChE Journal, 43(9), 2343–2352. https://doi.org/10.1002/aic.690430919
dc.relationCui, S., & Brummer, Y. (2010). Understanding Carbohydrate Analysis. In Food Carbohydrates (pp. 67–104). Taylor & Francis Group. https://doi.org/10.1201/9780203485286.ch2
dc.relationDannis, M. (1951). Determination of Phenols by the Amino-Antipyrine Method. Sewage and Industrial Wastes, 23(12), 1516–1522.
dc.relationDebellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., & Striolo, P. (1996). Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation ®. Environmental Pollution, 92(2), 155–164. https://doi.org/10.1016/0269-7491(95)00100-X
dc.relationDemirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924
dc.relationDemirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0
dc.relationDeniel, M., Haarlemmer, G., Roubaud, A., Weiss-hortala, E., & Fages, J. (2016). Bio-oil Production from Food Processing Residues: Improving the Bio-oil Yield and Quality by Aqueous Phase Recycle in Hydrothermal Liquefaction of Blackcurrant ( Ribes nigrum L .) Pomace Maxime De n. Energy and Fuels, 5. https://doi.org/10.1021/acs.energyfuels.6b00441
dc.relationDhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922
dc.relationDu, Z., Hu, B., Shi, A., Ma, X., Cheng, Y., Chen, P., Liu, Y., Lin, X., & Ruan, R. (2012). Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 126, 354–357. https://doi.org/10.1016/j.biortech.2012.09.062
dc.relationDuan, P., Yang, S., Xu, Y., Wang, F., Zhao, D., Weng, Y., & Shi, X. (2018). Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy. https://doi.org/10.1016/j.energy.2018.05.044
dc.relationDubber, D., & Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Environmental Science and Health, Part A, 45(12), 1595–1600. https://doi.org/10.1080/10934529.2010.506116
dc.relationDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
dc.relationEboibi, B. E., Lewis, D. M., Ashman, P. J., & Chinnasamy, S. (2014). Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresource Technology, 170, 20–29. https://doi.org/10.1016/j.biortech.2014.07.083
dc.relationEdmundson, S., Huesemann, M., Kruk, R., Lemmon, T., Billing, J., Schmidt, A., & Anderson, D. (2017). Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Research, July, 0–1. https://doi.org/10.1016/j.algal.2017.07.016
dc.relationEkpo, U., Ross, A. B., Camargo-valero, M. A., & Williams, P. T. (2016). A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae , manure and digestate. Bioresource Technology, 200, 951–960. https://doi.org/10.1016/j.biortech.2015.11.018
dc.relationEl-Shimi, H. I., Attia, N. K., El-Sheltawy, S. T., & El-Diwani, G. I. (2013). Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process. Journal of Sustainable Bioenergy Systems, 3(9), 224–233. https://doi.org/http://dx.doi.org/10.4236/jsbs.2013.33031
dc.relationElliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V, Zacher, A. H., Albrecht, K. O., Hallen, R. T., & Holladay, J. E. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous- fl ow reactor. Algal Research, 2(4), 445–454. https://doi.org/10.1016/j.algal.2013.08.005
dc.relationEnvironment Agency. (2007). Proposed EQS for Water Framework Directive Annex VIII substances: 2,4-dichlorophenol.
dc.relationEPA. (1978). Method 420.1 : Phenolics ( Spectrophotometric, Manual 4 ­ AAP With Distillation ).
dc.relationErkelens, M., Ball, A. S., & Lewis, D. M. (2015a). Bioresource Technology The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . Bioresource Technology, 182, 378–382. https://doi.org/10.1016/j.biortech.2015.01.129
dc.relationErkelens, M., Ball, A. S., & Lewis, D. M. (2015b). The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . BIORESOURCE TECHNOLOGY, 1–5. https://doi.org/10.1016/j.biortech.2015.01.129
dc.relationErkonak, H., Sogut, O. O., & Akgun, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. Journal of Supercritical Fluids, 46, 142–148. https://doi.org/10.1016/j.supflu.2008.04.006
dc.relationFaeth, J. L., Savage, P. E., Jarvis, J. M., Mckenna, A. M., & Savage, P. E. (2016). Characterization of Products from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. AIChE Journal, 62(3). https://doi.org/10.1002/aic
dc.relationFaeth, J. L., Valdez, P. J., & Savage, P. E. (2013). Fast hydrothermal liquefaction of nannochloropsis sp. to produce biocrude. Energy and Fuels, 27(3), 1391–1398. https://doi.org/10.1021/ef301925d
dc.relationFiorentino, A., Gentili, A., Isidori, M., Monaco, P., Nardelli, A., Parrella, A., & Temussi, F. (2003). Environmental Effects Caused by Olive Mill Wastewaters : Toxicity Comparison of Low-Molecular-Weight Phenol Components. Journal of Agricultural and Food Chemistry, 51, 1005–1009.
dc.relationFrank, E. D., Elgowainy, A., & Han, J. (2013). Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Change, 18, 137–158. https://doi.org/10.1007/s11027-012-9395-1
dc.relationFricke, K., Santen, H., Wallmann, R., Hüttner, A., & Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27(1), 30–43. https://doi.org/10.1016/j.wasman.2006.03.003
dc.relationFrings, C., & Dunn, R. (1970). A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-phospho-vanillin Reaction. American Journal of Clinical Pathology, 53(1), 89–91. https://doi.org/10.1093/ajcp/53.1.89
dc.relationFu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, B. Ø. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249. https://doi.org/10.1016/j.jbiotec.2012.07.004
dc.relationFuhs, G. W., & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2(2), 119–138. https://doi.org/10.1007/BF02010434
dc.relationFushimi, C., Kakimura, M., Tomita, R., Umeda, A., & Tanaka, T. (2016). Enhancement of nutrient recovery from microalgae in hydrothermal liquefaction using activated carbon. Fuel Processing Technology, 148, 282–288. https://doi.org/10.1016/j.fuproc.2016.03.006
dc.relationGai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C.-T., & Dong, Y. (2014). Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 43(6), 403–408. https://doi.org/10.1016/j.biortech.2014.10.118
dc.relationGamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8
dc.relationGarcía-jarana, M. B., Kings, I., Sánchez-oneto, J., Portela, J. R., & Al-duri, B. (2013). The Journal of Supercritical Fluids Supercritical water oxidation of nitrogen compounds with multi-injection of oxygen. The Journal of Supercritical Fluids, 80(2), 23–29. https://doi.org/10.1016/j.supflu.2013.04.004
dc.relationGarcia Alba, L., Torri, C., Samor??, C., Van Der Spek, J., Fabbri, D., Kersten, S. R. A., & Brilman, D. W. F. (2012). Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy and Fuels, 26(1), 642–657. https://doi.org/10.1021/ef201415s
dc.relationGarcia, L., Torri, C., Fabbri, D., Kersten, S. R. A., & Wim, D. W. F. (2013). Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228, 214–223. https://doi.org/10.1016/j.cej.2013.04.097
dc.relationGeorgiou, C. D., Grintzalis, K., Zervoudakis, G., & Papapostolou, I. (2008). Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 391(1), 391–403. https://doi.org/10.1007/s00216-008-1996-x
dc.relationGernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environmental Modelling and Software, 19(9), 763–783. https://doi.org/10.1016/j.envsoft.2003.03.005
dc.relationGlaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148
dc.relationGonçalves, R., Frazao, A., Pedrosa, R., Spindola, D., Cristina, V., Brasileiro-Vidal, A. C., De Araújo, D., & Marques, A. (2018). Chemosphere Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere, 204, 344–350. https://doi.org/10.1016/j.chemosphere.2018.04.039
dc.relationGopalan, S., & Savage, P. E. (1995). A Reaction Network Model for Phenol Oxidation in Supercritical Water. AIChE Journal, 41(8).
dc.relationGriffiths, M. J., Hille, R. P. Van, & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98, 2345–2356. https://doi.org/10.1007/s00253-013-5442-4
dc.relationGuo, Y., Yeh, T., Song, W., Xu, D., & Wang, S. (2015). A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Reviews, 48, 776–790. https://doi.org/10.1016/j.rser.2015.04.049
dc.relationHaber, F., & Weiss, J. (1932). The Catalytic Decom position o f Hydrogen Peroxide by Iron Salts *. 332–351.
dc.relationHe, Z., Xu, D., Liu, L., Wang, Y., Wang, S., Guo, Y., & Jing, Z. (2018). Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae. Algal Research, 33(January), 8–15. https://doi.org/10.1016/j.algal.2018.04.013
dc.relationHeredia-arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036
dc.relationHii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., & Eshtiaghi, N. (2014). A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. BIORESOURCE TECHNOLOGY, 155, 289–299. https://doi.org/10.1016/j.biortech.2013.12.066
dc.relationHiP. (n.d.). High Pressure Equipment. Technical Information. https://www.highpressure.com/
dc.relationHognon, C., Delrue, F., & Texier, J. (2014). Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii . Growth studies on the recovered hydrothermal aqueous phase. Biomass and Bioenergy, 73, 23–31. https://doi.org/10.1016/j.biombioe.2014.11.025
dc.relationHon, T. H. E., & Costa, M. (2016). Shell Sustainability Report 2016. Royal Dutch Shell Plc.
dc.relationHosseini, S. E., Wahid, M. A., Salehirad, S., & Seis, M. M. (2013). Evaluation of Palm Oil Combustion Characteristics by Using the Chemical Equilibrium with Application (CEA) Software. Applied Mechanics and Materials, 388, 268–272. https://doi.org/10.4028/www.scientific.net/AMM.388.268
dc.relationHu, Y., Feng, S., Yuan, Z., Xu, C. C., & Bassi, A. (2017). Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.033
dc.relationIEA, & OECD. (2016). World Energy Outlook: Energy and Air Pollution.
dc.relationIllman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.
dc.relationJena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25(11), 5472–5482. https://doi.org/10.1021/ef201373m
dc.relationJena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057
dc.relationJena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011a). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111
dc.relationJena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011b). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111
dc.relationJiang, J., & Savage, P. E. (2018). Metals and Other Elements in Biocrude from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. Energy and Fuels, 32(4), 4118–4126. https://doi.org/10.1021/acs.energyfuels.7b03144
dc.relationJones, C., Hare, D., & Compton, S. (1989). Measuring Plant Protein with the Bradford Assay. 1 . Evaluation and Standard Method. Journal of Chemical Ecology, 15(3).
dc.relationK. Mandalam, R., & O Palsson, B. (1998). Elemental Balancing of Biomass and Medium Composition Enhances Growth Capacity in High-density Chlorella vulgaris Cultures. Biotechnology and Bioengineering, 59, 605–611.
dc.relationKabadayi, A., Cem, I., & Yanik, J. (2017). Bioresource Technology Effects of spent liquor recirculation in hydrothermal carbonization. Bioresource Technology, 226, 89–93. https://doi.org/10.1016/j.biortech.2016.12.015
dc.relationKasina, M., Wendorff-Belon, M., Kowalski, P. R., & Michalik, M. (2019). Characterization of incineration residues from wastewater treatment plant in Polish city: a future waste based source of valuable elements? Journal of Material Cycles and Waste Management, 21(4), 885–896. https://doi.org/10.1007/s10163-019-00845-1
dc.relationKillilea, R., Swallow, K. C., & Hong, G. T. (1992). The Fate of Nitrogen in Supercritical-Water Oxidation. The Journal of Supercritical Fluids, 5, 72–78.
dc.relationKim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y., & Lee, D. (2003). Chlorination by-products in surface water treatment process. Desalination, 151(1), 1–9. https://doi.org/10.1016/S0011-9164(02)00967-0
dc.relationKim, W., Min, J., Geun, P., Gim, H., Si, D. K., & Kim, W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35, 19–27. https://doi.org/10.1007/s00449-011-0612-1
dc.relationKnight, J. A., Anderson, S., & Rawle, J. M. (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18(3), 199–202.
dc.relationKnight, Joseph A, Anderson, S., & Rawle, J. M. (1972). ChemicalBasisof the Sulfo-phospho-vanillin Reactionfor Estimating Total Serum Lipids. Clinical Chemistry, 18(3), 199–202. https://doi.org/10.1093/clinchem/18.3.199
dc.relationKolaczkowski, S. T., Plucinski, P., Beltran, F. J., Rivas, F. J., & Mclurgh, D. B. (1999). Wet air oxidation : a review of process technologies and aspects in reactor design. 73, 143–160.
dc.relationKondru, A. K., Kumar, P., & Chand, S. (2009). Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Journal of Hazardous Materials, 166(1), 342–347. https://doi.org/10.1016/j.jhazmat.2008.11.042
dc.relationKritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions : A review. The Journal of Supercritical Fluids, 29(4), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7
dc.relationKumar, K., Dasgupta, C. N., & Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358–366. https://doi.org/10.1016/j.biortech.2014.05.118
dc.relationKumar, S. (2012). Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels (pp. 467–493). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_25
dc.relationKumar, V., Nanda, M., Joshi, H. C., Singh, A., & Sharma, S. (2018). Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renewable Energy, 116, 606–612. https://doi.org/10.1016/j.renene.2017.10.016
dc.relationL.S. Clesceri, A.R. Greenberg, R. R. T. (2010). Determinación colorimétrica de fenoles en agua por el método de la 4- aminoantipirina. 5(Revisión 1), 4–9.
dc.relationLachmann, S. C., & Spijkerman, E. (2019). Nitrate or ammonium : Influences of nitrogen source on the physiology of a green alga. Ecology and Evolution, 10, 1070–1082. https://doi.org/10.1002/ece3.4790
dc.relationLaliberté, G., & De La Noüe, J. (1993). Auto-, hetero- and mixotrophic-growt of chlamydomonas humicola on acetate. Journal of Phycologie, 29(6), 612–620.
dc.relationLasso, A. M. (2007). Fósforo soluble en agua por el método del ácido ascórbico. Instituto De Hidrología, Meteorología y Estudios Ambientales, 3, 1–11. http://www.ideam.gov.co/
dc.relationLee, G., Nunoura, T., Matsumura, Y., & Yamamoto, K. (2002). Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. Journal of Supercritical Fluids, 24, 239–250.
dc.relationLee, R. A., & Lavoie, J. (2012). From first- to third-generation biofuels : Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, August, 6–11. https://doi.org/10.2527/af.2013-0010
dc.relationLeng, L., & Huang, H. (2018). An overview of the e ff ect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270(September), 627–642. https://doi.org/10.1016/j.biortech.2018.09.030
dc.relationLi, C., Yang, X., Zhang, Z., Zhou, D., Zhang, L., Zhang, S., & Chen, J. (2013). Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value - added Chemicals and Hydrochar with Recycled Processing Water. Bioresource Technology, 8(2009), 2981–2997.
dc.relationLi, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Liu, M., Zhu, Z., & Si, B. (2014). Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 154, 322–329. https://doi.org/10.1016/j.biortech.2013.12.074
dc.relationLi, J., Wang, S., Li, Y., Jiang, Z., Xu, T., & Zhang, Y. (2020). Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia. Water Research, 185(x), 116222. https://doi.org/10.1016/j.watres.2020.116222
dc.relationLi, J., Wang, S., Li, Y., Ren, M., Jiang, Z., Zhang, J., & Yang, C. (2020). Experimental research and commercial plant development for harmless disposal and energy utilization of petrochemical sludge by supercritical water oxidation. Chemical Engineering Research and Design, 162, 258–272. https://doi.org/10.1016/j.cherd.2020.08.006
dc.relationLi, Yalin, Leow, S., Fedders, A. C., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2017). Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chemistry, 19(4), 1163–1174. https://doi.org/10.1039/c6gc03294j
dc.relationLi, Yanhui, & Wang, S. (2020). Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes. In I. Pioro (Ed.), Advanced Supercritical Fluids Technologies. IntechOpen.
dc.relationLiang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic , heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049. https://doi.org/10.1007/s10529-009-9975-7
dc.relationLin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9
dc.relationLiu, L., Zhao, Y., Jiang, X., Wang, X., & Liang, W. (2018). Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresource Technology, 262(April), 342–346. https://doi.org/10.1016/j.biortech.2018.04.092
dc.relationLiu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., Rhodes, J., & Clarens, A. F. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171. https://doi.org/10.1016/j.biortech.2013.08.112
dc.relationLópez Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., & Prins, W. (2015). Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 9, 99–106. https://doi.org/10.1016/j.algal.2015.03.007
dc.relationLópez Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013a). Hydrothermal liquefaction ( HTL ) of microalgae for biofuel production : State of the art review and future prospects. Biomass and Bioenergy, 53(2), 113–127. https://doi.org/10.1016/j.biombioe.2012.12.029
dc.relationLópez Barreiro, D., Riede, S., Hornung, U., Kruse, A., & Prins, W. (2015). Hydrothermal liquefaction of microalgae: Effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Research, 12, 206–212. https://doi.org/10.1016/j.algal.2015.08.025
dc.relationLuis, A. De, Lombraña, J. I., Varona, F., & Menéndez, A. (2009). Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent. Korean Journal of Chemical Engineering, 26(1), 48–56.
dc.relationLuz, E., Moreno, M., Hernandez, J., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36, 2941–2948.
dc.relationMaddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., & Howe, D. (2016). Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass and Bioenergy, 93, 122–130. https://doi.org/10.1016/j.biombioe.2016.07.010
dc.relationMadsen, R. B., Biller, P., Jensen, M. M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Predicting the Chemical Composition of Aqueous Phase from Hydrothermal Liquefaction of Model Compounds and Biomasses. Energy and Fuels, 30(12), 10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007
dc.relationMárquez, J. J. R., Levchuk, I., & Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12). https://doi.org/10.3390/catal8120673
dc.relationMartino, C. J., & Savage, P. E. (1997). Supercritical Water Oxidation Kinetics , Products , and Pathways for CH 3 - and CHO-Substituted Phenols. Industrial & Engineering Chemistry Research, 36, 1391–1400. https://doi.org/10.1021/ie960697q
dc.relationMata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020
dc.relationMatsumura, Y., Minowa, T., Potic, B., Kersten, S. R. A., Prins, W., Van Swaaij, W. P. M., Van De Beld, B., Elliott, D. C., Neuenschwander, G. G., Kruse, A., & Antal, M. J. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006
dc.relationMcMahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48(5), 513–525. https://doi.org/10.1007/s11745-013-3755-9
dc.relationMegharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil, 140, 25–34.
dc.relationMelgarejo, L. M. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.
dc.relationMiao, X., Wu, Q., & Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 855–863. https://doi.org/10.1016/j.jaap.2003.11.004
dc.relationMichalak, I., Marycz, K., Basińska, K., & Chojnacka, K. (2014). Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga vaucheria sessilis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/891928
dc.relationResolucion 631-2015, Pub. L. No. 631, 62 (2015).
dc.relationMishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077
dc.relationMunoz, M., Pedro, Z. M. De, Casas, J. A., & Rodriguez, J. J. (2013). Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 228, 646–654. https://doi.org/10.1016/j.cej.2013.05.057
dc.relationMyers, R. H., & Montgomery, D. C. (1997). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Journal of Statistixal Planning and Interference (Vol. 59). Wiley.
dc.relationNeveux, N., Yuen, A. K. L., Jazrawi, C., Magnusson, M., Haynes, B. S., Masters, A. F., Montoya, A., Paul, N. A., Maschmeyer, T., & Nys, R. De. (2014). Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technology, 155, 334–341. https://doi.org/10.1016/j.biortech.2013.12.083
dc.relationNielsen, S. S. (2017). Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual (pp. 47–53). Springer. https://doi.org/10.1007/978-3-319-44127-6
dc.relationNIVA. (2008). The toxicity of selected amines and secondary products to aquatic organisms: A review (Issue 5698).
dc.relationPapadopoulos, A. E., Fatta, D., & Loizidou, M. (2007). Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load. Journal of Hazardous Materials, 146, 558–563. https://doi.org/10.1016/j.jhazmat.2007.04.083
dc.relationPatel, B., Guo, M., Chong, C., Sarudin, S. H. M., & Hellgardt, K. (2016). Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Science of the Total Environment, 568, 489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041
dc.relationPatel, B., & Hellgardt, K. (2015). Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresource Technology, 191, 460–468. https://doi.org/10.1016/j.biortech.2015.04.012
dc.relationPekakis, P. A., Xekoukoulotakis, N. P., & Ã, D. M. (2006). Treatment of textile dyehouse wastewater by TiO 2 photocatalysis. Water Research, 40, 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019
dc.relationPeng, W., Wu, Q., Tu, P., & Zhao, N. (2001). Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80(1), 1–7. https://doi.org/10.1016/S0960-8524(01)00072-4
dc.relationPeterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100k
dc.relationPhani, K., Dandamudi, R., Muppaneni, T., Markovski, J. S., Lammers, P., & Deng, S. (2019). Hydrothermal liquefaction of green microalga Kirchneriella sp . under sub- and super-critical water conditions. Biomass and Bioenergy, 120(May 2018), 224–228. https://doi.org/10.1016/j.biombioe.2018.11.021
dc.relationPortela, J. R., Nebot, E., & Mart, E. (2001). Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81, 287–299.
dc.relationPosten, C., & Schaub, G. (2009). Microalgae and terrestrial biomass as source for fuels-A process view. Journal of Biotechnology, 142(1), 64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015
dc.relationPrabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.x
dc.relationQian, L., Wang, S., Xu, D., Guo, Y., Tang, X., & Wang, L. (2015). Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation. Bioresource Technology, 176, 218–224. https://doi.org/10.1016/j.biortech.2014.10.125
dc.relationRaheem, A., Sivasangar, S., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Research, 12, 52–59. https://doi.org/10.1016/j.algal.2015.08.003
dc.relationRai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass and Bioenergy, 58, 251–257. https://doi.org/10.1016/j.biombioe.2013.08.038
dc.relationRichmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology (1st ed.). Blakwell Science Ltd. https://doi.org/10.1002/9780470995280
dc.relationRizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., & Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102, 24–31. https://doi.org/10.1016/j.apenergy.2012.08.039
dc.relationRodriguez, C. H. (2015). El Instituto De Hidrología, Meteorología y Estudios Ambientales. 9. http://www.ideam.gov.co/
dc.relationRueda-Marquez, J. J., Levchuk, I., Salcedo, I., Acevedo-merino, A., & Manzano, M. A. (2016). Post-treatment of re fi nery wastewater ef fl uent using a combination of AOPs ( H2O2 photolysis and catalytic wet peroxide oxidation ) for possible water reuse . Comparison of low and medium pressure lamp performance. Water Research, 91, 86–96. https://doi.org/10.1016/j.watres.2015.12.051
dc.relationRueda-Márquez, J. J., Pintado-Herrera, M. G., Martín-Díaz, M. L., Acevedo-Merino, A., & Manzano, M. A. (2015). Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chemical Engineering Journal, 270, 80–90. https://doi.org/10.1016/j.cej.2015.02.011
dc.relationSafi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004
dc.relationSafi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014a). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35(July), 265–278. https://doi.org/10.1016/j.rser.2014.04.007
dc.relationSanabria, D. (2004). Fósforo total en agua por digestión ácida, método del ácido ascórbico. In IDEAM (Vol. 008). http://www.fing.edu.uy/imfia/cursos/hidrometria/material/Guia_de_Monitoreo.pdf
dc.relationSanz-luque, E., Chamizo-ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae Overview of Nitrate Assimilation. Frontiers in Plant Science, 6(October). https://doi.org/10.3389/fpls.2015.00899
dc.relationSavage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. https://doi.org/10.1021/cr9700989
dc.relationSavage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, January 2011, 52–61. https://doi.org/10.1021/ie100758s
dc.relationScragg, A. H. (2006). The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme and Microbial Technology, 39(4), 796–799. https://doi.org/10.1016/j.enzmictec.2005.12.018
dc.relationSelvaratman, T., Reddy, H., Muppaneni, T., Holguin, F. O., Nirmalakhandan, N., Lammers, P. J., & Deng, S. (2015). Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 12, 74–79. https://doi.org/10.1016/j.algal.2015.07.007
dc.relationShakya, R. (2014). Hydrothermal Liquefaction of Algae for Bio-oil Production. Auburn University.
dc.relationShakya, R., Adhikari, S., Mahadevan, R., Shanmugam, S. R., Nam, H., Barbary, E., & Dempster, T. A. (2017). Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresource Technology, 243, 1112–1120. https://doi.org/10.1016/j.biortech.2017.07.046
dc.relationShanmugam, S. R., Adhikari, S., & Shakya, R. (2017). Hydrothermal Liquefaction of Algae Abstract : Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.031
dc.relationShanmugam, S. R., Adhikari, S., Wang, Z., & Shakya, R. (2017). Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresource Technology, 223, 115–120. https://doi.org/10.1016/j.biortech.2016.10.008
dc.relationShen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68–75. https://doi.org/10.1016/j.biortech.2015.06.050
dc.relationShen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275–1287. https://doi.org/10.1023/A:1012663213153
dc.relationShigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., & Yamauchi, F. (1988). ACUTE TOXICITY OF CHLOROPHENOLS TO GREEN ALGAE , SELENASTRUM CAPRICORNUTUM AND STRUCTURE-ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 7, 847–854.
dc.relationSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass: Laboratory Analytical Procedure (LAP). Nrel/Tp-510-42622, April 2005, 18. https://doi.org/NREL/TP-510-42619
dc.relationStark, K., Plaza, E., & Hultman, B. (2006). Phosphorus release from ash , dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere, 62, 827–832. https://doi.org/10.1016/j.chemosphere.2005.04.069
dc.relationStendahl, K. (2018). Phosphate recovery from sewage sludge in combination with supercritical water oxidation. Water Science and Technology, 48(1), 185–190.
dc.relationSuali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047
dc.relationTalbot, C., Garcia-moscoso, J., Drake, H., Stuart, B. J., & Kumar, S. (2016). Cultivation of microalgae using fl ash hydrolysis nutrient recycle. Algal Research, 18, 191–197. https://doi.org/10.1016/j.algal.2016.06.021
dc.relationTan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Chemosphere Optimization of algae mixotrophic culture for nutrients recycling and biomass / lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, 125509. https://doi.org/10.1016/j.chemosphere.2019.125509
dc.relationTantiphiphatthana, M., Peng, L., Jitrwung, R., & Yoshikawa, K. (2015). Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae. International Scholarly and Scientific Research & Innovation, 9(5), 503–511.
dc.relationTaylor, P., Wang, Q., Lv, Y., Zhang, R., & Bi, J. (2013). Desalination and Water Treatment Treatment of cotton printing and dyeing wastewater by supercritical water oxidation. Desalination and Water Treatment, 51(12), 37–41. https://doi.org/10.1080/19443994.2013.792164
dc.relationTerry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474–487. https://doi.org/10.1016/0141-0229(85)90148-6
dc.relationTeymouri, A., Barbera, E., Sforza, E., Morosinotto, T., Bertucco, A., & Kumar, S. (2016). Integration of Biofuels Intermediates Production and Nutrients Recycling in the Processing of a Marine Algae. AIChE Journal, 59(6), 663–667. https://doi.org/10.1002/aic.
dc.relationTian, C., Li, B., Liu, Z., Zhang, Y., & Lu, H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 38, 933–950. https://doi.org/10.1016/j.rser.2014.07.030
dc.relationTimmons, M. B., & Losordo, T. (1994). Aquaculture water reuse systems : Engineering design and management. Elsevier Science.
dc.relationTommaso, G., Chen, W., Li, P., Schideman, L., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146. https://doi.org/10.1016/j.biortech.2014.10.011
dc.relationToor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/j.energy.2011.03.013
dc.relationUnited Nations. (2000). United Nations Millennium Declaration: Resolution adapted by the General Assembly. General Assembly, September, 9. http://www.un.org/en/events/pastevents/millennium_summit.shtml
dc.relationUPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf
dc.relationValdez, P. J., Dickinson, J. G., & Savage, P. E. (2011). Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp . and the Influence of Solvents. Energy and Fuels, 25, 3235–3243.
dc.relationValdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009
dc.relationVerma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012
dc.relationWang, J., Zhou, W., Chen, H., Zhan, J., He, C., & Wang, Q. (2019). Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Frontiers in Microbiology, 9(January), 1–13. https://doi.org/10.3389/fmicb.2018.03250
dc.relationWang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of Green Algae Chlorella sp . in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162, 1174–1186. https://doi.org/10.1007/s12010-009-8866-7
dc.relationWidjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20. https://doi.org/10.1016/j.jtice.2008.07.007
dc.relationWiel, J. B. Vander, Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., & Nastaran, N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing opto fl uidic system. Royal Society of Chemistry Advances, 4402–4408. https://doi.org/10.1039/c6ra25837a
dc.relationWymer, P. E. O., & Thake, B. (1980). The Importance of Phosphorus in Microalgal Growth and Species Composition in Mixed Populations : Experiments and Simulations. Proceedings of the Royal Society of London, 209, 333–353. https://doi.org/10.1098/rspb.1980.0099
dc.relationXu, C., & Lad, N. (2008). Production of Heavy Oils with High Caloric Values by Direct Liquefaction of Woody Biomass in Sub / Near-critical Water. Energy and Fuels, 22(10), 635–642.
dc.relationXu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water Research, 36(4), 1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6
dc.relationXu, Y., Zheng, X., Yu, H., & Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresource Technology, 156, 1–5. https://doi.org/10.1016/j.biortech.2014.01.010
dc.relationYang, B., Cheng, Z., Tang, Q., & Shen, Z. (2018). Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Research. https://doi.org/10.1016/j.watres.2017.12.080
dc.relationYang, B., Cheng, Z., Yuan, T., & Shen, Z. (2018). Denitrification of ammonia and nitrate through supercritical water oxidation ( SCWO ): A study on the e ff ect of NO3− / NH4+ ratios , catalysts and auxiliary fuels. The Journal of Supercritical Fluids, 138(January), 56–62. https://doi.org/10.1016/j.supflu.2018.03.021
dc.relationYang, J. H., Shin, H. Y., Ryu, Y. J., & Lee, C. G. (2018). Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery. Journal of Industrial and Engineering Chemistry, 68, 267–273. https://doi.org/10.1016/j.jiec.2018.07.053
dc.relationYang, Y. F., Feng, C. P., Inamori, Y., & Maekawa, T. (2004). Analysis of energy conversion characteristics in liquefaction of algae. Resources Conservation & Recycling, 43, 21–33. https://doi.org/10.1016/j.resconrec.2004.03.003
dc.relationYeh, K., & Chang, J. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. https://doi.org/10.1016/j.biortech.2011.11.103
dc.relationYong, G., Ying, S., Loke, P., Tao, Y., & Lim, C. (2019). Reports Recent advances in algae biodiesel production : From upstream cultivation to downstream processing. Bioresource Technology Reports, 7(April), 100227. https://doi.org/10.1016/j.biteb.2019.100227
dc.relationYu, G, Zhang, Y., Schideman, L., Funk, T. L., & Wang, Z. (2011). Hydrothermal Liquefaction of Low Lipid Content Microalgae inot Biocrude Oil. American Society of Agricultural Engineers, 54(1), 239–246.
dc.relationYu, Guo, Zhang, Y., Guo, B., Funk, T., & Schideman, L. (2014). Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenergy Research, 7(4), 1317–1328. https://doi.org/10.1007/s12155-014-9471-3
dc.relationYu, Guo, Zhang, Y., Schideman, L., Funk, T., & Wang, Z. (2011). Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 4(11), 4587–4595. https://doi.org/10.1039/c1ee01541a
dc.relationZhang, H., Zhang, X., & Ding, L. (2020). Partial oxidation of phenol in supercritical water with NaOH and H 2 O 2 : Hydrogen production and polymer formation. Science of the Total Environment, 722, 137985. https://doi.org/10.1016/j.scitotenv.2020.137985
dc.relationZhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031–1039. https://doi.org/10.1007/s10811-015-0640-3
dc.relationZhu, Y., Albrecht, K. O., Elliott, D. C., Hallen, R. T., & Jones, S. B. (2013). Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2(4), 455–464. https://doi.org/10.1016/j.algal.2013.07.003
dc.relationZhu, Y., Biddy, M. J., Jones, S. B., Elliott, D. C., & Schmidt, A. J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction ( HTL ) and upgrading. Applied Energy, 129, 384–394. https://doi.org/10.1016/j.apenergy.2014.03.053
dc.relationZhu, Z., Rosendahl, L., Sohail, S., Yu, D., & Chen, G. (2015). Hydrothermal liquefaction of barley straw to bio-crude oil : Effects of reaction temperature and aqueous phase recirculation. APPLIED ENERGY, 137, 183–192. https://doi.org/10.1016/j.apenergy.2014.10.005
dc.relationZhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., & Yin, X. (2019). Insights into the evolution of chemical structures in lignocellulose and non- lignocellulose biowastes during hydrothermal carbonization ( HTC ). Fuel, 236(June 2018), 960–974. https://doi.org/10.1016/j.fuel.2018.09.019
dc.relationZimmermann, F. (1954). Waste disposal (Patent No. 2,665,249). United States Patent Office.
dc.relationZou, S., Wu, Y., Yang, M., Li, C., & Tong, J. (2009). Thermochemical catalytic liquefaction of the marine microalgae dunaliella tertiolecta and characterization of bio-oils. Energy and Fuels, 23(7), 3753–3758. https://doi.org/10.1021/ef9000105
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2021
dc.titleEvaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución