dc.contributorGomez-Ramirez, Danny Arlen de Jesus
dc.contributorHernández-Riveros, Jesús-Antonio
dc.creatorRuiz, Semaria
dc.date.accessioned2022-02-14T13:59:04Z
dc.date.available2022-02-14T13:59:04Z
dc.date.created2022-02-14T13:59:04Z
dc.date.issued2021-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80966
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractIn the recent years, the use of electric vehicles for public transport and carsharing services has spread widely in response to the needs of reducing global polluting gases emissions and decreasing vehicle ownership. However, the implementation of the electric carsharing practice still have some changes that need to be overcome, such as limitations in regulations and the low-profit margins that can be achieved by the aggregator agent that operate the fleet. Wherefore this thesis proposes to address the challenge of low profitability margins for the aggregator, giving to the electric vehicles the feature of providing power to the electrical network. It contains the developing process of a a decision making tool for the optimal operation of a fleet of electric vehicles that are used to provide carsharing services by an aggregator agent. In this case the aggregator agent also has the possibility of providing ancillary services to the power network, taking into account the degradation of the batteries and the risk in the incomes due to the variation of carsharing demand and the energy expenditure during travels. The thesis have as main contributions proposal of an aggregated energy model for an agent that operates the electric carsharing fleet, which allows the integration of transport and electrical network related variables, and the inclusion of transport variables uncertainties; and, the design of a risk-aware hierarchical decision-making system based on this model and its application to a study case in the Aburrá Valley; which allows the inclusion of different system models at each level, provides a solution computed in less than 7 seconds, and has the stability conditions necessary for future proposals of stochastic control schemes.
dc.description.abstractEl uso de vehículos eléctricos para el transporte público y los servicios de automóviles compartidos se ha extendido ampliamente en los últimos años, en respuesta a las necesidades de reducir las emisiones globales de gases contaminantes y disminuir la cantidad de vehículos particulares. Sin embargo, la implementación de la práctica de vehículos compartidos aún tiene algunos retos que deben superarse, como las limitaciones en las regulaciones y los bajos márgenes de ganancia que pueden lograr los agentes logísticos de la flota. En esta tesis se propone abordar el desafío de los bajos márgenes de rentabilidad para el caso de un único agente logístico en la flota, dando a los vehículos eléctricos la posibilidad de proporcionar energía a la red eléctrica; a través del desarrollo de una herramienta de toma de decisiones para la operación óptima de una flota de vehículos eléctricos que se utilizan de manera compartida, administrados por un único operador o agente logístico (agregador). Dicho agente cuenta adicionalmente con la posibilidad de proveer servicios auxiliares a la red eléctrica, teniendo en cuenta el envejecimiento de las baterías y el riesgo en las ganancias debido a la variación de la demanda del servicio de vehículo compartido y a la energía consumida en los viajes. La tesis tiene como principales aportes la propuesta de un modelo energético agregado para el operador la flota de vehículos eléctricos compartidos, que permite la integración de las variables relacionadas con el transporte, las relacionadas con la red eléctrica, y la inclusión de incertidumbres en las variables de transporte; y, el diseño de un sistema de toma de decisiones jerárquico consciente del riesgo basado en este modelo y su aplicación a un caso de estudio en el Valle de Aburrá; el cual permite la inclusión de diferentes modelos para el sistema en cada nivel de control, brinda una solución calculada en menos de 7 segundos y cuenta con las condiciones de estabilidad necesarias para futuras propuestas de esquemas de control estocástico. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisherDepartamento de Procesos y Energía
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[1] S. Ruiz, N. Arroyo, A. Acosta, C. Portilla, and J. Espinosa, “An Optimal Battery Charging And Schedule Control Strategy For Electric Bus Rapid Transit,” in Proceedings of Joint Conference MOVICI -MOYCOT 2018, Medellin, Colombia, 2018.
dc.relation[2] Mercedes-Benz, “smart EQ fortwo | The all-electric two-seater,” 2019. [Online]. Available: https://www.smart.mercedes-benz.com/gb/en/models/eq-fortwo-coupe#intro-smart-eq-fortwo
dc.relation[3] C. J. Chou, C. W. Chen, and C. Conley, “A systematic approach to generate service model for sustainability,” Journal of Cleaner Production, pp. 173–187. doi: 10.1016/j.jclepro.2012.01.037
dc.relation[4] G. Hochman and G. R. Timilsina, “Fuel Efficiency Versus Fuel Substitution in the Transport Sector An Econometric Analysis,” Policy Research, pp. 3–10, 2017. [Online]. Available: https://openknowledge.worldbank.org/bitstream/handle/10986/26841/WPS8070.pdf?sequence=1&isAllowed=y
dc.relation[5] B. Bondorová and G. Archer, “Does sharing cars really reduce car use?” Transport & Environment, pp. 1–8, 2017. [Online]. Available: https://www.transportenvironment.org/sites/te/files/publications/Does-sharing-cars-really-reduce-car-use-June2017.pdf
dc.relation[6] R. Seign, M. Schüssler, and K. Bogenberger, “Enabling sustainable transportation: The model-based determination of business/operating areas of free-floating carsharing systems,” Research in Transportation Economics, vol. 51, pp. 104–114, 2015. doi: 10.1016/j.retrec.2015.10.012
dc.relation[7] J. Firnkorn and M. Müller, “Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments?” Environmental Science and Policy, vol. 45, pp. 30–40. doi: 10.1016/j.envsci.2014.09.005
dc.relation[8] D. Aguiar, M. Palacio, D. Hernández, and J. Manosalva, “Medellin y su calidad del aire,” Escuela Internacional de Desarrollo sostenible, 2016.
dc.relation[9] J. Kang, S. J. Duncan, and D. N. Mavris, “Real-time scheduling techniques for electric vehicle charging in support of frequency regulation,” Procedia Computer Science, vol. 16, pp. 767–775, 2013. doi:10.1016/j.procs.2013.01.080
dc.relation[10] N. Rotering and M. Ilic, “Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1021–1029, 2011. doi: 10.1109/TPWRS.2010.2086083
dc.relation[11] M. G. Vayá and G. Andersson, “Reliability Modeling and Analysis of Smart Power Systems,” Reliable and Sustainable Electric Power and Energy Systems Management book series, 2014. doi: 10.1007/978-81-322-1798-5
dc.relation[12] I. Momber, A. Siddiqui, T. G. S. Roman, and L. Soder, “Risk averse scheduling by a PEV aggregator under uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 882–891, 2015. doi: 10.1109/TPWRS.2014.2330375
dc.relation[13] S. I. Vagropoulos and A. G. Bakirtzis, “Optimal bidding strategy for electric vehicle aggregators in electricity markets,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4031–4041, 2013. doi: 10.1109/TPWRS.2013.2274673
dc.relation[14] M. Gonzalez Vaya and G. Andersson, “Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead Electricity Markets under Uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2375–2385, 2015. doi: 10.1109/TPWRS.2014.2363159
dc.relation[15] Sortomme, Eric and El-Sharkawi, M., “Optimal scheduling of vehicle-to-grid energy and ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 351–359, 2012, doi: 10.1109/TSG.2011.2164099.
dc.relation[16] E. Sortomme and M. A. El-Sharkawi, “Optimal combined bidding of vehicle-to-grid ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 70–79, 2012, doi: 10.1109/TSG.2011.2170099.
dc.relation[17] R. J. Bessa and M. A. Matos, “Optimization models for an EV aggregator selling secondary reserve in the electricity market,” Electric Power Systems Research, vol. 106, pp. 36–50, 2014. doi: 10.1016/j.epsr.2013.08.006. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2013.08.006
dc.relation[18] J. P. Koeln and A. G. Alleyne, “Robust hierarchical model predictive control of graph-based power flow systems,” Automatica, vol. 96, no. June, pp. 127–133, 2018. doi: 10.1016/j.automatica.2018.06.042
dc.relation[19] J. Löfberg, “Minimax approaches to Robust Model Predictive Control,” Ph.D. dissertation, Linköping University. ISBN 9173736228 2014.
dc.relation[20] B. Kouvaritakis and M. Cannon, “Stochastic Model Predictive Control,” Encyclopedia of Systems and Control, pp. 1–9, 2014. doi: 10.1007/978-1-4471-5102-9_7-1
dc.relation[21] T. Yoon, C. R. Cherry, and L. R. Jones, “One-way and round-trip carsharing: A stated preference experiment in Beijing,” Transportation Research Part D: Transport and Environment, vol. 53, pp. 102–114, 2017. doi: 10.1016/j.trd.2017.04.009
dc.relation[22] E. Biondi, C. Boldrini, and R. Bruno, “Optimal charging of electric vehicle fleets for a car sharing system with power sharing,” 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016. doi: 10.1109/ENERGYCON.2016.7514070
dc.relation[23] J. Barco, A. Guerra, L. Muñoz, and N. Quijano, “Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study,” Problems in Engineerin, vol. abs/1310.0, pp. 1–21, 2013. doi: 10.1155/2017/8509783
dc.relation[24] S. Weikl and K. Bogenberger, “A practice-ready relocation model for free-floating carsharing systems with electric vehicles - Mesoscopic approach and field trial results,” Transportation Research Part C: Emerging Technologies, vol. 57, pp. 206–223, 2015. doi: 10.1016/j.trc.2015.06.024
dc.relation[25] F. Kong and X. Liu, Sustainable Transportation with Electric Vehicles, 2017, vol. 2, no. 1. ISBN 9781680833881. [Online]. Available: http://www.nowpublishers.com/article/Details/EES-016
dc.relation[26] P. Liakos, I. Angelidis, and A. Delis, “Routing and Scheduling an Electric Vehicle Fleet Handling Dynamic Customer Requests,” CoopIS 2016: 24th International Conference on Cooperative Information Systems, 2016. [Online]. Available: http://cgi.di.uoa.gr/~ad/Publications/LAD-Coopis16.pdf
dc.relation[27] T. Ichimori, H. Ishii, and T. Nishida, “Routing a vehicle with the limitation of fuel,” Journal of the Operations Research Society of Japan, vol. 24, no. 3, pp. 277–281, 1981. [Online]. Available: http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.24_03_277.pdf
dc.relation[28] A. Artmeier, J. Haselmayr, M. Leucker, and M. Sachenbacher, “The Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles,” Annual Conference on Artificial Intelligence KI 2010, pp. 309–316, 2010. doi: 10.1007/978-3-642-16111-7_35
dc.relation[29] M. M. De Weerdt, E. H. Gerding, S. Stein, V. Robu, and N. R. Jennings, “Intention-aware routing to minimize delays at electric vehicle charging stations,” Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pp. 83–89, 2013. doi: 10.1145/2516911.2516923
dc.relation[30] S. Krauss, “Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics,” Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt e.V., no. 98-8, 1998.
dc.relation[31] A. Febbraro, N. Sacco, and M. Saeednia, “One-Way Carsharing,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2319, no. January 2016, pp. 113–120, 2012. doi: 10.3141/2319-13
dc.relation[32] D. Jorge and G. Correia, “Carsharing systems demand estimation and defined operations: A literature review,” European Journal of Transport and Infrastructure Research, vol. 13, no. 3, pp. 201–220, 2013.
dc.relation[33] M. Bruglieri, F. Pezzella, and O. Pisacane, “Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems,” Discrete Optimization, vol. 23, pp. 56–80, 2017. doi: 10.1016/j.disopt.2016.12.001
dc.relation[34] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations,” Transportation Research Part B: Methodological, vol. 95, pp. 214–237, 2017. doi: 10.1016/j.trb.2016.10.007
dc.relation[35] S. Jian, T. Hossein Rashidi, K. P. Wijayaratna, and V. V. Dixit, “A Spatial Hazard-Based analysis for modelling vehicle selection in station-based carsharing systems,” Transportation Research Part C: Emerging Technologies, vol. 72, pp. 130–142, 2016. doi: 10.1016/j.trc.2016.09.008
dc.relation[36] M. Drwal, E. Gerding, S. Stein, K. Hayakawa, and H. Kitaoka, “Adaptive Pricing Mechanisms for On-Demand Mobility,” Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017), p. 9, 2017. [Online]. Available: http://eprints.soton.ac.uk/id/eprint/405176
dc.relation[37] J. García-Villalobos, I. Zamora, J. I. San Martín, F. J. Asensio, and V. Aperribay, “Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 717–731, 2014. doi: 10.1016/j.rser.2014.07.040
dc.relation[38] A. Brooks, “Vehicle-to-grid demonstration project: Grid regulation ancillary service with a battery electric vehicle,” Regulation, no. 01, p. 61, 2002. [Online]. Available: http://www.smartgridnews.com/artman/uploads/1/sgnr_2007_12031.pdf
dc.relation[39] S. Ruiz and J. Espinosa, “State of the art in strategies allowing the integration of a shared EVs service and the active participation of EVs with the power network,” 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, 2019. doi: 10.1109/CCAC.2019.8921301
dc.relation[40] D. Pelzer, A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids. München, Germany: Springer, 2019. ISBN 9783658270230
dc.relation[41] R. J. Bessa and M. A. Matos, “Global against divided optimization for the participation of an EV aggregator in the day-ahead electricity market. Part II: Numerical analysis,” Electric Power Systems Research, vol. 95, pp. 309–318, 2013, doi: 10.1016/j.epsr.2012.08.013.
dc.relation[42] E. A. Buehler, J. A. Paulson, and A. Mesbah, “Lyapunov-based stochastic nonlinear model predictive control: Shaping the state probability distribution functions,” Proceedings of the American Control Conference, vol. 2016-July, no. Section IV, pp. 5389–5394, 2016. doi: 10.1109/ACC.2016.7526514
dc.relation[43] S. Liu and J. Liu, “Economic Model Predictive Control with Extended Horizon,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 16–21, 2018. doi: 10.1016/j.ifacol.2018.10.168
dc.relation[44] M. A. Muller, D. Angeli, and F. Allgower, “Economic model predictive control with selftuning terminal cost,” European Journal of Control, vol. 19, no. 5, pp. 408–416, 2013. doi: 10.1016/j.ejcon.2013.05.019. [Online]. Available: http://dx.doi.org/10.1016/j.ejcon.2013.05.019
dc.relation[45] J. V. Kadam and W. Marquardt, “Integration of Economical Optimization and Control for Intentionally Transient Process Operation,” in Findeisen R., Allgöwer F., Biegler L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: vol 358. Springer.
dc.relation[46] C. Goebel and H. A. Jacobsen, “Aggregator-Controlled EV Charging in Pay-as-Bid Reserve Markets with Strict Delivery Constraints,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4447–4461, 2016. doi: 10.1109/TPWRS.2016.2518648
dc.relation[47] S.M. Sotoudeh and B. Homchaudhuri, “A RobustMPC-based Hierarchical Control Strategy for Energy Management of Hybrid Electric Vehicles in Presence of Uncertainty,” Proceedings of the American Control Conference, vol. 2020-July, pp. 3065–3070, 2020. doi: 10.23919/ACC45564.2020.9147288
dc.relation[48] R. Scattolini and P. Colaneri, “Hierarchical model predictive control,” Proceedings of the IEEE Conference on Decision and Control, pp. 4803–4808, 2007. doi: 10.1109/CDC.2007.4434079
dc.relation[49] F. A. Bayer, M. A. Muller, and F. Allgower, “Min-max economic model predictive control approaches with guaranteed performance,” 2016 IEEE 55th Conference on Decision and Control, CDC 2016, no. Cdc, pp. 3210–3215, 2016. doi: 10.1109/CDC.2016.7798751
dc.relation[50] A. Parisio and L. Glielmo, “Stochastic Model Predictive Control for economic/environmental operation management of microgrids,” pp. 2014–2019, 2013. [Online]. Available: http://ieeexplore.ieee.org/ielx7/6657188/6669080/06669807.pdf?tp=&arnumber=6669807&isnumber=6669080%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6669807&pageNumber%3D2%26queryText%3Dstochastic+MPC
dc.relation[51] E. Sortomme and M. A. El-Sharkawi, “Optimal charging strategies for unidirectional vehicle-to-grid,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 119–126, 2011, doi: 10.1109/TSG.2010.2090910.
dc.relation[52] H. Liu, Z. Hu, Y. Song, J. Wang, and X. Xie, “Vehicle-to-Grid Control for Supplementary Frequency Regulation Considering Charging Demands,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3110–3119, 2015. doi: 10.1109/TPWRS.2014.2382979
dc.relation[53] F. J. Soares, P. M. Almeida, and J. A. Lopes, “Quasi-real-time management of Electric Vehicles charging,” Electric Power Systems Research, vol. 108, pp. 293–303, 2014. doi: 10.1016/j.epsr.2013.11.019
dc.relation[54] O. Beaude, Y. He, and M. Hennebel, “Introducing decentralized EV charging coordination for the voltage regulation,” 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, pp. 1–5, 2013. doi: 10.1109/ISGTEurope.2013.6695375
dc.relation[55] T. Logenthiran and D. Srinivasan, “Multi-agent system for managing a power distribution system with Plug-in Hybrid Electrical vehicles in smart grid,” 2011 IEEE PES International Conference on Innovative Smart Grid Technologies-India, ISGT India 2011, vol. 0954, pp. 346–351, 2011. doi: 10.1109/ISET-India.2011.6145339
dc.relation[56] I. S. Bayram, G. Michailidis, and M. Devetsikiotis, “Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1292–1302, 2015. doi: 10.1109/TSG.2014.2362994
dc.relation[57] I. Semanjski and S. Gautama, “Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices,” Energies, vol. 9, no. 12, 2016. doi: 10.3390/en9121025
dc.relation[58] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with secondorder moment information,” Mathematical Programming, vol. 137, no. 1-2, pp. 167–198, 2013. doi: 10.1007/s10107-011-0494-7
dc.relation[59] J. A. Primbs and C. H. Sung, “Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp.221–230, 2009. doi: 10.1109/TAC.2008.2010886
dc.relation[60] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model predictive control with joint chance constraints,” International Journal of Control, vol. 93, no. 1, pp. 126–139, 2020. doi:10.1080/00207179.2017.1323351. [Online]. Available: https://doi.org/10.1080/00207179.2017.1323351
dc.relation[61] M. P. Vitus and C. J. Tomlin, “On feedback design and risk allocation in chance constrained control,” Proceedings of the IEEE Conference on Decision and Control, pp. 734–739, 2011. doi: 10.1109/CDC.2011.6160721
dc.relation[62] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966. doi: 10.1126/science.153.3731.34
dc.relation[63] A. Pichler, “Risk-Averse Optimal Control,” pp. 1–26, 2019.
dc.relation[64] J. Yong and X. Y. Zhou, Stochastic controls Hamiltonian systems and HJB equations, 1999. ISBN 0387987231
dc.relation[65] C. Hou, M. Ouyang, L. Xu, and H. Wang, “Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles,” Applied Energy, vol. 115, pp. 174–189, 2014. doi: 10.1016/j.apenergy.2013.11.002. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.11.002
dc.relation[66] N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1279–1287, 2011. doi: 10.1109/TCST.2010.2061232
dc.relation[67] D. Bernardini and A. Bemporad, “Scenario-based model predictive control of stochastic constrained linear systems,” Proceedings of the IEEE Conference on Decision and Control, no. 2, pp. 6333–6338, 2009. doi: 10.1109/CDC.2009.5399917
dc.relation[68] L. Jian, X. Zhu, Z. Shao, S. Niu, and C. C. Chan, “A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids,” Energy Conversion and Management, vol. 78, pp. 508–517, 2014. doi: 10.1016/j.enconman.2013.11.007. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2013.11.007
dc.relation[69] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach for Stochastic Model Predictive Control with bounds on closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, 2014. doi: 10.1016/j.automatica.2014.10.035. [Online]. Available: http://dx.doi.org/ 10.1016/j.automatica.2014.10.035
dc.relation[70] L. Baringo and R. Sánchez Amaro, “A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator,” Electric Power Systems Research, vol. 146, pp. 362–370, 2017. doi: 10.1016/j.epsr.2017.02.004. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2017.02.004
dc.relation[71] A. Nemirovski and A. Shapiro, “Convex Approximations of Chance Constrained Programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2006. doi: 10.1137/050622328
dc.relation[72] R. P. Cysne, “On the Statistical Estimation of Diffusion Processes - A Survey,” SSRN Electronic Journal, no. 2, pp. 273–301, 2014. doi: 10.2139/ssrn.2388964
dc.relation[73] I. V. Basawa and R. L. Brakasa Rao, “Statistical inference for stochastic processes.” vol. i, 1980. doi:10.2307/2987945
dc.relation[74] S. Ruiz, J. Patino, A. Marquez-Ruiz, J. Espinosa, E. Duque, and P. Ortiz, “Optimal design of a diesel-pv-wind-battery-hydro pumped power system with the integration of electric vehicles in a colombian community,” Energies, vol. 12, no. 23, 2019. doi: 10.3390/en12234542
dc.relation[75] I. Sarmiento-Ordosgoitia, “Plan de estacionamientos y parqueaderos de zonas críticas de Medellín,” Universidad Nacional de Colombia, Tech. Rep., 2019.
dc.relation[76] G. Hertkorn, “Mikroskopische Modellierung von zeitabhängiger Verkehrsnachfrage und von Verkehrsflußmustern,” DLR - Forschungsberichte, no. 29, 2004.
dc.relation[77] D. Krajzewicz, B. Heldt, S. Nieland, R. Cyganski, and K. Gade, “Sustainable urban mobility and communting in Baltic cities: Guidance for transport modelling and data collection,” Baltic Sea Region Mobility Summit, 2019. [Online]. Available: http://sumba.eu/sites/default/files/2020-03/D2. 3_ModellingGuidelines_final.pdf
dc.relation[78] M. G. Mcnally and C. Rindt, “The Activity-Based Approach,” Department of Civil and Environmental Engineering and Institute of Transportation Studies University of California, Irvine, California, Tech. Rep., 2008. [Online]. Available: https://escholarship.org/uc/item/5sv5v9qt
dc.relation[79] M. Hardinghaus, H. Blümel, and C. Seidel, “Charging Infrastructure Implementation for EVs - The Case of Berlin,” Transportation Research Procedia, vol. 14, pp. 2594–2603, 2016. doi: 10.1016/j.trpro.2016.05.410. [Online]. Available: http://dx.doi.org/10.1016/j.trpro.2016.05.410
dc.relation[80] D. Krajzewicz, M. Hardinghaus, M. Heinrichs, and S. Beige, “Computing spatial charging needs using an agent-based demand model,” 15th International Industrial Simulation Conference 2017, ISC 2017, pp. 24–29, 2017.
dc.relation[81] C. Latinopoulos, A. Sivakumar, and J. W. Polak, “Response of electric vehicle drivers to dynamic pricing of parking and charging services: Risky choice in early reservations,” Transportation Research Part C: Emerging Technologies, vol. 80, pp. 175–189, 2017. doi: 10.1016/j.trc.2017.04.008. [Online]. Available: http://dx.doi.org/10.1016/j.trc.2017.04.008
dc.relation[82] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flotterod, R. Hilbrich, L. Lucken, J. Rummel, P. Wagner, and E. Wiebner, “Microscopic Traffic Simulation using SUMO,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-November, pp. 2575–2582, 2018. doi: 10.1109/ITSC.2018.8569938
dc.relation[83] M. Duell, S. Wales, M. Levin, S. T. Waller, and S. Wales, “On Estimating Vehicle Energy Consumption Using Dynamic Traffic Assignment Vehicle,” pp. 1–14, 2014. [Online]. Available: http://handle.unsw.edu.au/1959.4/unsworks_34603
dc.relation[84] A. Y. S. Lam, Y.-w. Leung, and S. Member, “Electric Vehicle Charging Station Placement : Formulation, Complexity, and Solutions,” vol. 5, no. 6, pp. 2846–2856, 2014.
dc.relation[85] G. Brandstätter, M. Kahr, and M. Leitner, “Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand,” Transportation Research Part B: Methodological, vol. 104, pp. 17–35, 2017. doi: 10.1016/j.trb.2017.06.009
dc.relation[86] J. Asamer, M. Reinthaler, M. Ruthmair, M. Straub, and J. Puchinger, “Optimizing charging station locations for urban taxi providers,” Transportation Research Part A: Policy and Practice, vol. 85, pp. 233–246, 2016. doi: 10.1016/j.tra.2016.01.014
dc.relation[87] L. Yang, J. Zhang, and H. V. Poor, “Risk-aware day-ahead scheduling and real-time dispatch for electric vehicle charging,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 693–702, 2014. doi: 10.1109/TSG.2013.2290862
dc.relation[88] T. Djukic, J. Van Lint, and S. Hoogendoorn, “Application of principal component analysis to predict dynamic origin-destination matrices,” Transportation Research Record, no. 2283, pp. 81–89, 2012. doi: 10.3141/2283-09
dc.relation[89] D. Redfern and D. McLean, “Principal Component Analysis for Yield Curve Modeling,” Moody’s Analitics, Tech. Rep. August, 2014. [Online]. Available: https://www.moodysanalytics.com/-/media/whitepaper/2014/2014-29-08-pca-for-yield-curve-modelling.pdf
dc.relation[90] N. Gagunashvili, “Weighted histograms Usual histogram,” University of Iceland, Tech. Rep. November, 2017. [Online]. Available: https://indico.cern.ch/event/682907/contributions/2798549/attachments/1565125/2466041/Goodness_pres.pdf
dc.relation[91] S. Hecker, Generation of low order LFT representations for robust control applications, 2006. ISBN 9783185114083
dc.relation[92] H. Yang, S. Zhang, J. Qiu, D. Qiu, M. Lai, and Z. Dong, “CVaR-Constrained Optimal Bidding of Electric Vehicle Aggregators in Day-Ahead and Real-Time Markets,” IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2555–2565, 2017. doi: 10.1109/TII.2017.2662069
dc.relation[93] I. Herrero, P. Rodilla, and C. Batlle, “Enhancing Intraday Price Signals in U.S. ISO Markets for a Better Integration of Variable Energy Resources,” The Energy Journal, vol. 39, no. 3, 2018. doi: 10.5547/01956574.39.3.iher
dc.relation[94] Instituto de Investigación Tecnológica - Universidad Pontificia Comillas, “Estudio para la modernización del despacho y el mercado spot de energía eléctrica - despacho vinculante y mercados intradiarios,” Madrid España, Tech. Rep., 2018.
dc.relation[95] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 024 de 1995,” Bogotá, Tech. Rep., 1995.
dc.relation[96] M. Leo, K. Kavi, H. Anders, and B. Moss, “Ancillary service revenue opportunities from electric vehicles via demand response,” Better Place Master’s Project Team. Master of Science from the School of Natural Resources and Environment, no. April, pp. 1–70, 2011.
dc.relation[97] M. Ehsani, M. Falahi, and S. Lotfifard, “Vehicle to grid services: Potential and applications,” Energies, vol. 5, no. 10, pp. 4076–4090, 2012. doi: 10.3390/en5104076
dc.relation[98] M. P. Kazmierkowski, Advanced Electric Drive Vehicles, 2015, vol. 9, no. 4. ISBN 9781466597709
dc.relation[99] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 720–732, 2016. doi: 10.1016/j.rser.2015.09.012
dc.relation[100] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: Calculating capacity and net revenue,” Journal of Power Sources, vol. 144, no. 1, pp. 268–279, 2005. doi:10.1016/j.jpowsour.2004.12.025
dc.relation[101] D. M. Greenwood, K. Y. Lim, C. Patsios, P. F. Lyons, Y. S. Lim, and P. C. Taylor, “Frequency response services designed for energy storage,” Applied Energy, vol. 203, pp. 115–127, 2017. doi:10.1016/j.apenergy.2017.06.046. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2017.06.046
dc.relation[102] R. H. Ellison, J. F., Tesfatsion, L. S., Loose, V. W., Byrne, “A Survey of Operating Reserve Markets in U.S. ISO/RTO-Managed Electric Energy Regions,” Sandia National Laboratories, no. September, pp. 1–44, 2012. [Online]. Available: http://prod.sandia.gov/techlib/access-control.cgi/2012/121000.pdf
dc.relation[103] C. Palacios, “Diseño de esquema de asignación y remuneración del servicio de Regulación Secundaria de Frecuencia (AGC) para mejorar la eficiencia en la formación del precio de electricidad en Colombia,” Universidad EAFIT, Medellín, Colombia, Tech. Rep., 2017. [Online]. Available: https://repository.eafit.edu.co/handle/10784/11998
dc.relation[104] S. Carvajal, “Análisis de servicios potencia eléctricos en ambientes de complementarios en sistemas de mercados,” Ph.D. dissertation, Universidad Nacional de Colombia, 2013. [Online]. Available: http://bdigital.unal.edu.co/11863/1/7907502.2013.pdf
dc.relation[105] W. B. Gish, “Automatic Generation Control Algorithm - General Concepts and Application to the Watertown Energy,” Power and instrumentation Branch Division of Research Engineering and Research Center Bureau of Reclamation, Tech. Rep., 1980. [Online]. Available: https://www.usbr.gov/tsc/techreferences/research/GR8006.pdf
dc.relation[106] A. F. Acosta, “Real-time Co-simulation of Dynamic Systems Incorporating Control Systems,” Unpublished PhD thesis, Universidad Nacional de Colombia, 2021.
dc.relation[107] D. Q. Mayne, J. B. Rawlings, C. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, 2000. doi: 10.1080/00986449808912357
dc.relation[108] T. Tran, K.-V. Linga, and J. M. Maciejowski, “Economic Model Predictive Control - A Review,” Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC), no. July, 2017. doi: 10.22260/isarc2014/0006
dc.relation[109] M. Muzakkir Hussain, M. S. Alam, M. M. Sufyan Beg, and H. Malik, “A risk averse business model for smart charging of electric vehicles,” Smart Innovation, Systems and Technologies, vol. 79, pp. 749–759, 2018. doi: 10.1007/978-981-10-5828-8_71
dc.relation[110] R. J. Bessa, M. A. Matos, F. J. Soares, and J. A. Lopes, “Optimized bidding of a EV aggregation agent in the electricity market,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 443–452, 2012. doi: 10.1109/TSG.2011.2159632
dc.relation[111] S. Ruiz and J. Espinosa, “Optimal vehicle-to-grid strategy for a fleet of evs considering the batteries aging,” Ingenieria e Investigacion, vol. 39, no. 2, pp. 69–75, 2019. doi: 10.15446/ing.investig.v39n2.78639
dc.relation[112] Y. Choi and H. Kim, “Optimal scheduling of energy storage system for self-sustainable base station operation considering battery wear-out cost,” International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2016-Augus, pp. 170–172, 2016. doi: 10.1109/ICUFN.2016.7537010
dc.relation[113] S. Han, S. Han, and H. Aki, “A practical battery wear model for electric vehicle charging applications,” Applied Energy, vol. 113, pp. 1100–1108, 2014. doi: 10.1016/j.apenergy.2013.08.062. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.08.062
dc.relation[114] J. Köhler, “Distributed economic model predictive control under inexact minimization with application to power systems,” 2017.
dc.relation[115] B. Kouvaritakis and M. Cannon, Model Predictive Control Classical, Robust and Stochastic. Advanced Textbooks in Control and Signal Processing Series- Springer, 2008. ISBN 9781852339838. [Online]. Available: http://books.google.com/books?id=9G-BSwAACAAJ&printsec=frontcover
dc.relation[116] T. K. Kiong, W. Qing-Guo, and H. C. Chieh, Advances in PID Control. Springer, 1999. ISBN 9781447112198
dc.relation[117] S. Singh, M. Pavone, and J.-j. E. Slotine, “Tube-Based MPC: a Contraction Theory Approach,” Cdc 2016, 2016. [Online]. Available: https://pdfs.semanticscholar.org/733e/698535ec90f654035bb806f19ba1002348b7.pdf
dc.relation[118] C. Böhm, T. Raff, M. Reble, and F. Allgöwer, “LMI-based model predictive control for linear discretetime periodic systems,” Lecture Notes in Control and Information Sciences, vol. 384, pp. 99–108, 2009. doi: 10.1007/978-3-642-01094-1_8
dc.relation[119] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996. doi: 10.1016/0005-1098(96)00063-5
dc.relation[120] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, “Efficient Robust Predictive Control,” vol. 45, no. 8, pp. 1545–1549, 2000.
dc.relation[121] P. Krokhmal, M. Zabarankin, and S. Uryasev, “Modeling and optimization of risk,” Surveys in Operations Research and Management Science, vol. 16, no. 2, pp. 49–66, 2011. doi:10.1016/j.sorms.2010.08.001. [Online]. Available: http://dx.doi.org/10.1016/j.sorms.2010.08.001
dc.relation[122] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91, 1952. doi:https://doi.org/10.2307/2975974
dc.relation[123] A. Ahmadi-Javid, “Entropic Value-at-Risk: A New Coherent Risk Measure,” Journal of Optimization Theory and Applications, vol. 155, no. 3, pp. 1105–1123, 2012. doi: 10.1007/s10957-011-9968-2
dc.relation[124] Area Metropolitana Valle de Aburrá, “Medellín – Business Roundtable – Summary Technology and financing options to deploy zero-emission,” Zero emission bus rapid-development accelerator -ZEBRA, 2019.
dc.relation[125] Area Metropolitana Valle de Aburrá, “Área Metropolitana del Valle de Aburrá,” 2019. [Online]. Available: https://datosabiertos.metropol.gov.co/
dc.relation[126] Area Metropolitana Valle de Aburrá, “Encuesta Origen Destino 2017 – Datos por Hogares,” 2017. [Online]. Available: https://datosabiertos.metropol.gov.co/dataset/encuesta-origen-destino-2017-datos-por-hogares
dc.relation[127] Secretaría de Movilidad de Medellín, “Indicadores - Secretaría de Movilidad de Medellín,” 2013. [Online]. Available: https://www.medellin.gov.co/movilidad/observatorio/indicadores
dc.relation[128] N. Arroyo, A. F. Acosta, and J. E. Espinosa, “Reducción de emisiones vehiculares mediante el modelado y gestión óptima de tráfico en áreas metropolitanas - caso Medellín – área metropolitana del valle de Aburrá,” Universidad Nacional de Colombia, Medellin, Colombia, Tech. Rep., 2018.
dc.relation[129] Alcadía de Medellín, “Semáforos,” Semaforos, p. 80, 2004. doi: 10.1017/CBO9781107415324.004
dc.relation[130] M. Carlo, “Scenario Simulation Using Principal Components,” Implementing Models in Quantitative Finance: Methods and Cases, no. 2004, pp. 505–516, 2007. doi: 10.1007/978-3-540-49959-6_23
dc.relation[131] F. Jamshidian and Y. Zhu, “Scenario Simulation: Theory and methodology,” Finance and Stochastics, vol. 1, no. 1, pp. 43–67, 1996. doi: 10.1007/s007800050016
dc.relation[132] M. C. Grant and S. P. Boyd, “CVX Users’ Guide,” 2012. [Online]. Available: http://web.cvxr.com/cvx/doc/CVX.pdf
dc.relation[133] Gurobi Optimization. Inc, “Gurobi Optimization,” 2016. [Online]. Available: http://www.gurobi. com/index
dc.relation[134] Comisión de Regulación de Energía y Gas - CREG -, “Mercado organizado para contratos de energía para los usuarios regulados y no regulados,” Tech. Rep., 2016.
dc.relation[135] XM Compañía Expertos en Mercados S.A. E.S.P., “Histórico Transacciones y Precio,” 2017. [Online]. Available: http://informacioninteligente10.xm.com.co/transacciones/Paginas/HistoricoTransacciones.aspx
dc.relation[136] Comisión de Regulación de Energía y Gas - CREG -, “Esquema tarifario del servicio de energía eléctrica,” Bogotá, Colombia, 2020. [Online]. Available: https://imgcdn.larepublica.co/cms/2020/04/23075739/TARIFAS.pdf
dc.relation[137] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 107 de 1998,” Bogotá, Colombia, Tech. Rep., 1998.
dc.relation[138] Comisión de Regulación de Energía y Gas - CREG -, “Análisis de los servicios complementarios para el sistema interconectado nacional,” Tech. Rep., 2018. [Online]. Available: https://www.acolgen.org.co/wp-content/uploads/documentos/ESTUDIOSERVICIOSCOMPLEMENTARIOS.pdf
dc.relation[139] CREG, “Asignación de la reserva de regulación (AGC),” Sesión N° 542, 2012. [Online]. Available: http://www.creg.gov.co/index.php/es/creg/quienes-somos/historia
dc.relation[140] Comité de Seguimiento del Mercado Mayorista de Energía Eléctrica., “Servicio de Regulación Secundaria de Frecuencia,” Tech. Rep. 20, 2007. [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/Energiaygascombustible/Energía/2018/Oct/informe20.pdf
dc.relation[141] Redes Energéticas Nacionais SGPS S.A., “REN Sistema de Informação de Mercados de Energia,” 2017. [Online]. Available: https://www.mercado.ren.pt/PT/Electr/InfoMercado/InfOp/Ofertas/Paginas/RestricoesTecnicas.aspx
dc.relation[142] J. C. Hernandez, F. Sanchez-Sutil, A. Cano-Ortega, and C. R. Baier, “Influence of data sampling frequency on household consumption load profile features: A case study in spain,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–36, 2020. doi: 10.3390/s20216034
dc.relation[143] H. Pang, Z. Tuo, V. Robert, and L. Han, “A Parametric Simplex Approach to Statistical Learning Problems,” 2015.
dc.relation[144] M. Nicholas and M. R. Bernard, “Success factors for electric carsharing,” no. August, 2021. [Online]. Available: https://movmi.net/
dc.relation[145] S. Ruiz, J. Espinosa, I. Sarmiento, D. Krajzewicz, M. Goletz, and A. Schengen, “Construction of a traffic test scenario in the Aburrá Valley,” Unpublished, 2020.
dc.relation[146] S. Ruiz, D. Krajzewicz, J. Espinosa, and I. Sarmiento, “Optimal Location of Charging Stations for an Electric Car-Sharing Service in the Aburrá Valley,” Unpublished, pp. 1–13, 2020.
dc.relation[147] M. F. Arani and Y. Mohamed, “Cooperative Control of Wind Power Generator and Electric Vehicles for Microgrid Primary Frequency Regulation,” IEEE Transactions on Smart Grid, vol. 3053, no. c, pp.1–1, 2017. doi: 10.1109/TSG.2017.2693992. [Online]. Available: http://ieeexplore.ieee.org/document/7898864/
dc.relation[148] H. Saadat, “Power System Analysis Hadi Saadat,” 1999.
dc.relation[149] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A unified framework for the study of antiwindup designs,” Automatica, vol. 30, no. 12, pp. 1869–1883, 1994. doi: 10.1016/0005-1098(94)90048-5
dc.relation[150] E. Hendricks, O. Jannerup, and P. H. Sørensen, Linear Systems Control. Springer, 2019, vol. 1.ISBN 9788578110796
dc.relation[151] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance. Prentice-Hall, 1991.
dc.relation[152] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design, 2000.
dc.relation[153] L. Grüne and M. Stieler, “Asymptotic stability and transient optimality of economic MPC without terminal conditions,” Journal of Process Control, vol. 24, no. 8, pp. 1187–1196, 2014. doi:10.1016/j.jprocont.2014.05.003. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.05.003
dc.relation[154] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Automatica MPC for tracking with optimal closed-loop performance,” Automatica, vol. 45, no. 8, pp. 1975–1978, 2009. doi:10.1016/j.automatica.2009.04.007. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2009.04.007
dc.relation[155] M. Zanon, S. Gros, and M. Diehl, “A tracking MPC formulation that is locally equivalent to economic MPC,” Journal of Process Control, vol. 45, pp. 30–42, 2016. doi:10.1016/j.jprocont.2016.06.006. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2016.06.006
dc.relation[156] M. Zanon, S. Gros and M. Diehl, “Indefinite linear MPC and approximated economic MPC for nonlinear systems,” Journal of Process Control, vol. 24, no. 8, pp. 1273–1281, 2014. doi:10.1016/j.jprocont.2014.04.023. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.04.023
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMethodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución