dc.contributor | Vásquez Mejia, Sandra Milena | |
dc.creator | Arredondo Nontién, Mónica Alejandra | |
dc.date.accessioned | 2022-06-02T19:03:49Z | |
dc.date.available | 2022-06-02T19:03:49Z | |
dc.date.created | 2022-06-02T19:03:49Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81495 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La sustitución de la grasa saturada (natural e hidrogenada) y de algunos ácidos grasos trans en los alimentos es un tema de interés debido a la demanda alimentos más saludables para evitar el padecimiento de enfermedades relacionadas al consumo de estas macromoléculas a largo plazo. Este trabajo presenta una revisión de literatura acerca del uso de oleogeles como sustitutos de grasa saturada en productos cárnicos, identificando específicamente los materiales (oleogeladores y aceites) que se utilizan para formarlos, así como sus características fisicoquímicas y funcionales. Los oleogeles son estructuras tridimensionales que atrapan aceites y los convierten en una estructura de comportamiento sólido, son una buena alternativa como sustituto de la grasa saturada en alimentos. Estas estructuras consisten en la dispersión de un agente estructurante (oleogelador) en una fase oleosa continua (un aceite líquido), formando una red tridimensional sin alterar químicamente dicho aceite y formando un material de gel sólido (coloide). Para la preparación de los oleogeles, se combina una baja concentración de oleogelador con una proporción mayor de aceite, y mediante un proceso apropiado, que puede ser calentamiento, agitación y enfriamiento, las moléculas del oleogelador son dispersadas en la fase oleosa ensamblándose en estructuras tridimensionales. En los productos cárnicos, la grasa juega un papel fundamental en las características sensoriales y de textura, es por esto por lo que, al adcionar oleogeles, estos deben comportarse de manera similar a la grasa saturada dentro de la matriz, logrando la aceptación por parte del consumidor. Existen diversos oleogeladores y diversos aceites que pueden ser utilizados para la formación de oleogeles y cada oleogel tiene, por tanto, sus propias características fisicoquímicas y funcionales como el punto de fusión, dureza, elasticidad, color y perfil de ácidos grasos. Los oleogeles pueden ser adicionados en diversos porcentajes de sustitución de grasa a los productos cárnicos. En la mayoría de los estudios en productos cárnicos donde se ha reemplazado, ya sea parcial o totalmente, la grasa saturada con oleogeles, no se han visto cambios significativos en la percepción sensorial y se ha obtenido una aceptación similar a la de los productos hechos con grasa animal. Se concluye que es posible utilizar oleogeles como sustitutos de grasas en la elaboración de productos cárnicos procesados y los aceites que han sido investigados a la fecha permiten el mejoramiento del perfil de ácidos grasos y aportan un carácter saludable al producto cárnico. (Texto tomado de la fuente). | |
dc.description.abstract | The substitution of saturated fat (natural and hydrogenated) and some trans fatty acids
in foods is a topic of interest due to the demand for healthier foods to avoid suffering
from diseases related to the long-term consumption of these macromolecules. This
paper presents a review of the literature on the use of oleogels as substitutes for
saturated fat in meat products, specifically identifying the materials (oleogels and oils)
used to form them, as well as their physicochemical and functional characteristics.
Oleogels are three-dimensional structures that trap oils and convert them into a solid
behavior structure, they are a good alternative as a substitute for saturated fat in foods.
These structures consist of the dispersion of a structuring agent (oleogeller) in a
continuous oily phase (a liquid oil), forming a three-dimensional network without
chemically altering said oil and forming a solid gel material (colloid). For the
preparation of oleogels, a low concentration of oleogelator is combined with a higher
proportion of oil, and through an appropriate process, which can be heating, agitation
and cooling, the oleogelator molecules are dispersed in the oily phase, assembling into
three-dimensional structures. In meat products, fat plays a fundamental role in sensory
and textural characteristics, which is why, when adding oleogels, they must behave in
a similar way to saturated fat within the matrix, achieving acceptance by of the
consumer. There are various oleogels and various oils that can be used for the formation
of oleogels and each oleogel therefore has its own physicochemical and functional
characteristics such as melting point, hardness, elasticity, color, and fatty acid profile.
Oleogels can be added in various percentages of fat substitution to meat products. In
most of the studies in meat products where saturated fat has been replaced, either
partially or totally, with oleogels, no significant changes in sensory perception have
been seen and acceptance similar to that of products made with oleogels has been
obtained. animal fat. It is concluded that it is possible to use oleogels as fat substitutes
in the elaboration of processed meat products and the oils that have been investigated
to date allow the improvement of the fatty acid profile and provide a healthy character
to the meat product. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.publisher | Instituto de Ciencia y Tecnología de Alimentos (ICTA) | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Adili, L., Roufegarinejad, L., Tabibiazar, M., Hamishehkar, H., & Alizadeh, A. (2020). Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. Lwt, 126(October 2019), 109277. https://doi.org/10.1016/j.lwt.2020.109277 | |
dc.relation | Aguilar-Zárate, M., Macias-Rodriguez, B. A., Toro-Vazquez, J. F., & Marangoni, A. G. (2019). Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydrate Polymers, 205(October 2018), 98–105. https://doi.org/10.1016/j.carbpol.2018.10.032 | |
dc.relation | Alejandre, M., Astiasarán, I., Ansorena, D., & Barbut, S. (2019). Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Research International, 122(March), 129–136. https://doi.org/10.1016/j.foodres.2019.03.056 | |
dc.relation | Aliasl khiabani, A., Tabibiazar, M., Roufegarinejad, L., Hamishehkar, H., & Alizadeh, A. (2020). Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chemistry, 333(July), 127446. https://doi.org/10.1016/j.foodchem.2020.127446 | |
dc.relation | Álvarez H., M. E. (2017). Caracterización de sistemas oleoestructurados a base de aceite de aguacate (Persea americana) y sacha inchi (Plukenetia volubilis L) usando diferentes emulsificantes [Tesis de maestría, Universidad Nacional de Colombia, Sede Medellín]. Repositorio UNAL. https://repositorio.unal.edu.co/ | |
dc.relation | Álvarez H., M.E., Ciro, H. J., Arango, J. C. (2018). Caracterización fisicoquímica de oleogeles de aceite de aguacate (Persea americana) y sacha inchi (Plukenetia volubilis L). Rev, U.D.C.A Act. & Div. Cient. 21(1): 89-97, enero-junio, 2018. http://doi.org/10.31910/rudca.v21.n1.2018.666 | |
dc.relation | Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt, 130(February), 109701. https://doi.org/10.1016/j.lwt.2020.109701 | |
dc.relation | Asamane, E. A., Marinda, P. A., Khayeka-Wandabwa, C., & Powers, H. J. (2021). Nutritional and social contribution of meat in diets: Interplays among young urban and rural men. Appetite, 156, 104959. https://doi.org/10.1016/j.appet.2020.104959 | |
dc.relation | Aydeniz Guneser, B., Yılmaz, E., & Uslu, E. K. (2021). Sunflower Oil–Beeswax Oleogels Are Promising Frying Medium for Potato Strips. European Journal of Lipid Science and Technology, 2100063, 1–10. https://doi.org/10.1002/ejlt.202100063 | |
dc.relation | Banerjee, S., & Bhattacharya, S. (2011). Compressive textural attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures. Journal of Food Engineering, 102(3), 287–292. https://doi.org/10.1016/j.jfoodeng.2010.08.025 | |
dc.relation | Bascuas, S., Espert, M., Llorca, E., Quiles, A., Salvador, A., & Hernando, I. (2021). Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. Lwt, 135(September 2020), 110228. https://doi.org/10.1016/j.lwt.2020.110228 | |
dc.relation | Beriain, M. J., Gómez, I., Ibáñez, F. C., Sarriés, M. V., & Ordóñez, A. I. (2018). Improvement of the Functional and Healthy Properties of Meat Products. In Food Quality: Balancing Health and Disease (Vol. 13, pp. 1–74). https://doi.org/10.1016/B978-0-12-811442-1.00001-8 | |
dc.relation | Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. K. S. (2010). Lentinus edodes: a macrofungus with pharmacological activities. Current Medicinal Chemistry, 17(22), 2419–2430. https://doi.org/10.2174/092986710791698495 | |
dc.relation | Bohrer, B. M. (2017, July 1). Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science and Technology, Vol. 65, pp. 103–112. https://doi.org/10.1016/j.tifs.2017.04.016 | |
dc.relation | Bonnet, C., Bouamra-Mechemache, Z., Réquillart, V., & Treich, N. (2020). Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy, 97, 101847. https://doi.org/10.1016/j.foodpol.2020.101847 | |
dc.relation | Bueschelberger, H. G., Tirok, S., Stoffels, I., & Schoeppe, A. (2015). Emulsifiers in food technology (2nd ed). Wiley-Blackwell (Chapter 2). | |
dc.relation | Callau, M., Sow-Kébé, K., Jenkins, N., & Fameau, A. L. (2020). Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chemistry, 333, 127403. https://doi.org/10.1016/j.foodchem.2020.127403 | |
dc.relation | Cano-Estrada, A., & Romero-Bautista, L. (2016). Valor económico, nutricional y medicinal de hongos comestibles silvestres. Revista Chilena de Nutrición, 43(1), 75–80. https://doi.org/10.4067/S0717-75182016000100011 | |
dc.relation | Caviedes, J. M. L., Restrepo, M. L. P., & Fornaguera, J. E. C. (2011). Relación entre las características de la pastura y el contenido de ácido linoleico. Revista Colombiana de Ciencias Pecuarias, 24, 63–73. | |
dc.relation | Chavan, R. S., Khedkar, C. D., & Bhatt, S. (2015). Fat Replacer. In Encyclopedia of Food and Health (pp. 589–595). https://doi.org/10.1016/B978-0-12-384947-2.00271-3 | |
dc.relation | Congreso de la Republica de Colombia. (2009). Por medio de la cual se define la obesidad y las enfermedades crónicas no trasmisibles asociadas a ésta como una prioridad de salud pública y se adoptan medidas para su control, atención y prevención. (Ley 1355 de 2009). | |
dc.relation | da Silva, S. L., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., de Lima Franzen, F., … Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science, 149(August 2018), 141–148. https://doi.org/10.1016/j.meatsci.2018.11.020 | |
dc.relation | da Silva, T. L. T., Arellano, D. B., & Martini, S. (2019). Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 121(November 2018), 900–909. https://doi.org/10.1016/j.foodres.2019.01.018 | |
dc.relation | Damodaran, S., Parkin, K. L., & Fennema, O. R. (Eds.). (2008). Fennema Química de los alimentos (3a. ed.--). Barcelona: Acribia. | |
dc.relation | Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2015). The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydrate Polymers, 127, 355–362. https://doi.org/10.1016/j.carbpol.2015.03.085 | |
dc.relation | Davidovich-Pinhas, Maya, Gravelle, A. J., Barbut, S., & Marangoni, A. G. (2015). Temperature effects on the gelation of ethylcellulose oleogels. Food Hydrocolloids, 46, 76–83. https://doi.org/10.1016/j.foodhyd.2014.12.030 | |
dc.relation | Dolores Romero de Ávila, M., Isabel Cambero, M., Ordóñez, J. A., de la Hoz, L., & Herrero, A. M. (2014). Rheological behaviour of commercial cooked meat products evaluated by tensile test and texture profile analysis (TPA). Meat Science, 98(2), 310–315. https://doi.org/10.1016/j.meatsci.2014.05.003 | |
dc.relation | Elzerman, J. E., Keulemans, L., Sap, R., & Luning, P. A. (2021). Situational appropriateness of meat products, meat substitutes and meat alternatives as perceived by Dutch consumers. Food Quality and Preference, 88, 104108. https://doi.org/10.1016/j.foodqual.2020.104108 | |
dc.relation | Espert, M., Hernández, M. J., Sanz, T., & Salvador, A. (2021). Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. Food Hydrocolloids, 120(January). https://doi.org/10.1016/j.foodhyd.2021.106917 | |
dc.relation | European Patent Office. Retrived from: https://worldwide.espacenet.com/. Accessed May 17, 2022. | |
dc.relation | Fameau, A. L., & Saint-Jalmes, A. (2020, August 6). Recent Advances in Understanding and Use of Oleofoams. Frontiers in Sustainable Food Systems, Vol. 4, p. 110. https://doi.org/10.3389/fsufs.2020.00110 | |
dc.relation | Felisberto, M. H. F., Galvão, M. T. E. L., Picone, C. S. F., Cunha, R. L., & Pollonio, M. A. R. (2015). Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. LWT - Food Science and Technology, 60(1), 148–155. https://doi.org/10.1016/J.LWT.2014.08.004 | |
dc.relation | Ferrer-González, B. M., García-Martínez, I., & Totosaus, A. (2019). Textural properties, sensory acceptance and fatty acid profile of cooked meat batters employing pumpkin seed paste or soybean oil oleogel as fat replacers. Propiedades Texturales, Aceptación Sensorial y Perfil de Ácidos Grasos de Masas de Carne Cocida Que Emplean Pasta de Semillas de Calabaza u Oleogel de Aceite de Soja Como Sustitutos de La Grasa., 70(3), 1–11. Retrieved from http://10.0.15.149/gya.1055182 | |
dc.relation | Ferro, A. C., de Souza Paglarini, C., Rodrigues Pollonio, M. A., & Lopes Cunha, R. (2021). Glyceryl monostearate-based oleogels as a new fat substitute in meat emulsion. Meat Science, 174(December 2020), 108424. https://doi.org/10.1016/j.meatsci.2020.108424 | |
dc.relation | Flier, J. S., & Maratos-Flier, E. (2018). Pathobiology of Obesity. In J. L. Jameson, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, & J. Loscalzo (Eds.), Harrison’s Principles of Internal Medicine, 20e. Retrieved from http://accessmedicine.mhmedical.com/content.aspx?aid=1156520742 | |
dc.relation | Flores, M., & Toldrá, F. (2021). Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products - Invited review. Meat Science, 171, 108272. https://doi.org/https://doi.org/10.1016/j.meatsci.2020.108272 | |
dc.relation | Franco, D., Martins, A. J., López-Pedrouso, M., Cerqueira, M. A., Purriños, L., Pastrana, L. M., … Lorenzo, J. M. (2020). Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture, 100(1), 218–224. https://doi.org/10.1002/jsfa.10025 | |
dc.relation | Fraqueza, M. J., Laranjo, M., Elias, M., & Patarata, L. (2021). Microbiological hazards associated with salt and nitrite reduction in cured meat products: control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Current Opinion in Food Science, 38, 32–39. https://doi.org/10.1016/J.COFS.2020.10.027 | |
dc.relation | Gao, Y., Li, M., Zhang, L., Wang, Z., Yu, Q., & Han, L. (2021). Preparation of rapeseed oil oleogels based on beeswax and its application in beef heart patties to replace animal fat. Lwt, 149(February), 111986. https://doi.org/10.1016/j.lwt.2021.111986 | |
dc.relation | Gaudino, N., Ghazani, S. M., Clark, S., Marangoni, A. G., & Acevedo, N. C. (2019a). Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International, 116(November 2018), 79–89. https://doi.org/10.1016/j.foodres.2018.12.021 | |
dc.relation | Gómez-Cortés, P., Juárez, M., & de la Fuente, M. A. (2018). Milk fatty acids and potential health benefits: An updated vision. Trends in Food Science & Technology, 81, 1–9. https://doi.org/10.1016/J.TIFS.2018.08.014 | |
dc.relation | Gómez-Estaca, J., Pintado, T., Jiménez-Colmenero, F., & Cofrades, S. (2020). The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. Lwt, 119(November 2019), 108909. https://doi.org/10.1016/j.lwt.2019.108909 | |
dc.relation | González, N., Marquès, M., Nadal, M., & Domingo, J. L. (2020, November 1). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, Vol. 137, p. 109341. https://doi.org/10.1016/j.foodres.2020.109341 | |
dc.relation | Grasso, A. C., Hung, Y., Olthof, M. R., Brouwer, I. A., & Verbeke, W. (2021). Understanding meat consumption in later life: A segmentation of older consumers in the EU. Food Quality and Preference, 93, 104242. https://doi.org/10.1016/j.foodqual.2021.104242 | |
dc.relation | Gravelle, A. J., Davidovich-Pinhas, M., Zetzl, A. K., Barbut, S., & Marangoni, A. G. (2016). Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydrate Polymers, 135, 169–179. https://doi.org/10.1016/j.carbpol.2015.08.050 | |
dc.relation | Greve, C., & Jorgensen, L. (2016). Therapeutic Delivery. Ther. Deliv, 7(2), 117–138. https://doi.org/10.4155/tde.15.92 | |
dc.relation | Guedes-Oliveira, J. M., Costa-Lima, B. R. C., Oliveira, D., Neto, A., Deliza, R., Conte-Junior, C. A., & Guimarães, C. F. M. (2019). Mixture design approach for the development of reduced fat lamb patties with carboxymethyl cellulose and inulin. Food Science and Nutrition, 7(4), 1328–1336. https://doi.org/10.1002/fsn3.965 | |
dc.relation | Guedes‐Oliveira, J. M., Brad Kim, Y. H., & Conte‐Junior, C. A. (2021). What are the potential strategies to achieve potentially more healthful meat products? International Journal of Food Science & Technology, 1–14. https://doi.org/10.1111/ijfs.15104 | |
dc.relation | Ha, J.-H., Lee, J.-H., Lee, J.-J., Choi, Y.-I., & Lee, H.-J. (2019). Effects of Whey Protein Injection as a Curing Solution on Chicken Breast Meat. Food Science of Animal Resources, 39(3), 494–502. https://doi.org/10.5851/KOSFA.2019.E44 | |
dc.relation | Herrero, A. M., Carmona, P., Pintado, T., Jiménez-Colmenero, F., & Ruiz-Capillas, C. (2012). Lipid and protein structure analysis of frankfurters formulated with olive oil-in-water emulsion as animal fat replacer. Food Chemistry, 135(1), 133–139. https://doi.org/10.1016/J.FOODCHEM.2012.04.114 | |
dc.relation | Hwang, H. S., Kim, S., Evans, K. O., Koga, C., & Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Structure, 5, 10–20. https://doi.org/10.1016/j.foostr.2015.04.002 | |
dc.relation | Hwang, H. S., Fhaner, M., Winkler-Moser, J. K., & Liu, S. X. (2018). Oxidation of Fish Oil Oleogels Formed by Natural Waxes in Comparison With Bulk Oil. European Journal of Lipid Science and Technology, 120(5), 1700378. https://doi.org/10.1002/EJLT.201700378 | |
dc.relation | Hwang, H. S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 26, 101657. https://doi.org/10.1016/J.BCAB.2020.101657 | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. (2008). Industrias Alimentarias. Productos Cárnicos Procesados no Enlatados. (NTC 1325). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. (2008). Carne y Productos Cárnicos. Métodos de Determinación del Contenido de Grasa Total. Método de Referencia y Método de Rutina. (NTC 1662). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. (2011). Grasa y Aceites Vegetales y Animales. Determinación del Índice de Acidez y de la Acidez. (NTC 218). | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. (2007). Análisis Sensorial. Metodología. Guía General. (GTC 165). | |
dc.relation | Jiang, Q., Du, L., Li, S., Liu, Y., & Meng, Z. (2021). Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels: Application and formation process for preparation of edible oleogels. Food Hydrocolloids, 120, 106901. https://doi.org/10.1016/j.foodhyd.2021.106901 | |
dc.relation | Jiang, Y., Liu, L., Wang, B., Sui, X., Zhong, Y., Zhang, L., … Xu, H. (2018). Cellulose-rich oleogels prepared with an emulsion-templated approach. Food Hydrocolloids, 77, 460–464. https://doi.org/10.1016/J.FOODHYD.2017.10.023 | |
dc.relation | Jiménez-Colmenero, F., Cofrades, S., Herrero, A. M., Fernández-Martín, F., Rodríguez-Salas, L., & Ruiz-Capillas, C. (2012). Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocolloids, 26(1), 63–72. https://doi.org/10.1016/j.foodhyd.2011.04.007 | |
dc.relation | Jimenez-Colmenero, F., Salcedo-Sandoval, L., Bou, R., Cofrades, S., Herrero, A. M., & Ruiz-Capillas, C. (2015). Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends in Food Science and Technology, 44(2), 177–188. https://doi.org/10.1016/j.tifs.2015.04.011 | |
dc.relation | Jiménez-Colmenero, Francisco, Sánchez-Muniz, F. J., & Olmedilla-Alonso, B. (2010). Design and development of meat-based functional foods with walnut: Technological, nutritional and health impact. Food Chemistry, 123(4), 959–967. https://doi.org/10.1016/j.foodchem.2010.05.104 | |
dc.relation | Kamali, E., Sahari, M. A., Barzegar, M., & Ahmadi Gavlighi, H. (2019). Novel oleogel formulation based on amaranth oil: Physicochemical characterization. Food Science & Nutrition, 7(6), 1986–1996. https://doi.org/10.1002/fsn3.1018 | |
dc.relation | Kang, Z. L., Chen, F. S., & Ma, H. J. (2016). Effect of pre-emulsified soy oil with soy protein isolate in frankfurters: A physical-chemical and Raman spectroscopy study. LWT, 74, 465–471. https://doi.org/10.1016/J.LWT.2016.08.011 | |
dc.relation | Keenan, D. F., Auty, M. A. E., Doran, L., Kerry, J. P., & Hamill, R. M. (2014). Investigating the influence of inulin as a fat substitute in comminuted products using rheology, calorimetric and microscopy techniques. Food Structure, 2(1), 1–13. https://doi.org/10.1016/J.FOOSTR.2014.06.001 | |
dc.relation | Khare, T., Oak, U., Shriram, V., Verma, S. K., & Kumar, V. (2019). Biologically synthesized nanomaterials and their antimicrobial potentials. In Comprehensive Analytical Chemistry (Vol. 87, pp. 263–289). https://doi.org/10.1016/bs.coac.2019.09.002 | |
dc.relation | Kim, S. A., & Shin, S. (2021). Red meat and processed meat consumption and the risk of dyslipidemia in Korean adults: A prospective cohort study based on the Health Examinees (HEXA) study. Nutrition, Metabolism and Cardiovascular Diseases, 31(6), 1714–1727. https://doi.org/10.1016/j.numecd.2021.02.008 | |
dc.relation | Kılıç, B., & Özer, C. O. (2017). Effects of replacement of beef fat with interesterified palm kernel oil on the quality characteristics of Turkish dry-fermented sausage. Meat Science, 131(April), 18–24. https://doi.org/10.1016/j.meatsci.2017.04.020 | |
dc.relation | Kouzounis, D., Lazaridou, A., & Katsanidis, E. (2017). Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science, 130(March), 38–46. https://doi.org/10.1016/j.meatsci.2017.04.004 | |
dc.relation | Kwon, H. C., Shin, D. M., Yune, J. H., Jeong, C. H., & Han, S. G. (2021). Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage. Food Chemistry, 337(July 2020), 127682. https://doi.org/10.1016/j.foodchem.2020.127682 | |
dc.relation | Li, S., Wu, G., Li, X., Jin, Q., Wang, X., & Zhang, H. (2021). Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chemistry, 356(November 2020), 129667. https://doi.org/10.1016/j.foodchem.2021.129667 | |
dc.relation | Li, Z., Kang, W., Yang, H., Zhou, B., Jiang, H., Liu, D. Wang, J. (2022). Advances of supramolecular interaction systems for improved oil recovery (IOR). Advances in Colloid and Interface Science, 301, 102617. https://doi.org/10.1016/J.CIS.2022.102617 | |
dc.relation | Lupette, J., & Benning, C. (2020). Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie, 178, 15–25. https://doi.org/10.1016/J.BIOCHI.2020.04.022 | |
dc.relation | LT, R. F., AP, P., & ME, C. (2014). Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Science, 96(2 Pt A), 762–768. https://doi.org/10.1016/J.MEATSCI.2013.09.015 | |
dc.relation | Manzocco, L., Valoppi, F., Calligaris, S., Andreatta, F., Spilimbergo, S., & Nicoli, M. C. (2017). Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids, 71, 68–75. https://doi.org/10.1016/j.foodhyd.2017.04.021 | |
dc.relation | Martins, A. J., Lorenzo, J. M., Franco, D., Pateiro, M., Domínguez, R., Munekata, P. E. S., … Cerqueira, M. A. (2020). Characterization of enriched meat-based pâté manufactured with oleogels as fat substitutes. Gels, 6(2), 1–14. https://doi.org/10.3390/gels6020017 | |
dc.relation | Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246(November 2017), 137–149. https://doi.org/10.1016/j.foodchem.2017.10.154 | |
dc.relation | Mert, B., & Vilgis, T. A. (2021). Hydrocolloid coated oleosomes for development of oleogels. Food Hydrocolloids, 119(February), 106832. https://doi.org/10.1016/j.foodhyd.2021.106832 | |
dc.relation | Methods for Assessing Surface Cleanliness. (2019). In Developments in Surface Contamination and Cleaning, Volume 12 (pp. 23–105). https://doi.org/10.1016/b978-0-12-816081-7.00003-6 | |
dc.relation | Metilli, L., Lazidis, A., Francis, M., Marty-Terrade, S., Ray, J., & Simone, E. (2021). The Effect of Crystallization Conditions on the Structural Properties of Oleofoams Made of Cocoa Butter Crystals and High Oleic Sunflower Oil. Crystal Growth and Design, 21(3), 1562–1575. https://doi.org/10.1021/ACS.CGD.0C01361/SUPPL_FILE/CG0C01361_SI_001.PDF | |
dc.relation | Millán, J., Hernández-Mijares, A., Ascaso, J. F., Blasco, M., Brea, A., Díaz, Á., … Pintó, X. (2016). The real measurement of non-HDL-cholesterol: Atherogenic cholesterol. Clinica e Investigacion En Arteriosclerosis, 28(6), 265–270. https://doi.org/10.1016/j.arteri.2016.05.002 | |
dc.relation | Ministerio de Salud. (1983). Por el cual se reglamenta parcialmente el titulo V de la ley 09 de 1979, en cuanto a producción, procesamiento, transporte y expendio de los productos cárnicos procesados. (Decreto 2162 de 1983) | |
dc.relation | Ministerio de Salud y Protección Social. (2012). Por la cual se establece el reglamento técnico sobre los requisitos sanitarios que deben cumplir los aceites y grasas de origen vegetal o animal que se procesen, envasen, almacenen, transporten, exporten, importen y/o comercialicen en el país, destinados para el consumo humano y se dictan otras disposiciones. (Resolución 2154 de 2012). | |
dc.relation | Ministerio de Salud y Protección Social. (2012). Por la cual se establece el Reglamento Técnico sobre los requisitos que deben cumplir los alimentos envasados que contengan grasas trans y/o grasas saturadas. (Resolución 2508 de 2012). | |
dc.relation | Ministerio de Salud, Departamento para la Prosperidad Social y ICBF. Encuesta Nacional de la Situación Nutricional ENSIN 2015. Disponible en: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricional. | |
dc.relation | Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108(March), 368–377. https://doi.org/10.1016/j.foodres.2018.03.051 | |
dc.relation | Moon, K., Choi, K. O., Jeong, S., Kim, Y. W., & Lee, S. (2021). Solid fat replacement with canola oil-carnauba wax oleogels for dairy-free imitation cheese low in saturated fat. Foods, 10(6). https://doi.org/10.3390/foods10061351 | |
dc.relation | Mota, J. D. O., Guillou, S., Pierre, F., & Membré, J. M. (2021). Public health risk-benefit assessment of red meat in France: Current consumption and alternative scenarios. Food and Chemical Toxicology, 149, 111994. https://doi.org/10.1016/j.fct.2021.111994 | |
dc.relation | Murray, B. S. (2020, December 1). Recent developments in food foams. Current Opinion in Colloid and Interface Science, Vol. 50, p. 101394. https://doi.org/10.1016/j.cocis.2020.101394 | |
dc.relation | Nielsen, S.S. (2010). Food analysis. In S. Suzanne Nielsen (Ed.), (4th ed.). New York Dordrecht Heidelberg London: Springer. | |
dc.relation | O’Sullivan, C. M., Barbut, S., & Marangoni, A. G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends in Food Science and Technology, 57, 59–73. https://doi.org/10.1016/j.tifs.2016.08.018 | |
dc.relation | Oh, I., Lee, J. H., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122(January), 566–572. https://doi.org/10.1016/j.foodres.2019.01.012 | |
dc.relation | Olmedilla-Alonso, B., Jiménez-Colmenero, F., & Sánchez-Muniz, F. J. (2013). Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Science, 95(4), 919–930. https://doi.org/10.1016/j.meatsci.2013.03.030 | |
dc.relation | Onacik-Gür, S., & Żbikowska, A. (2020). Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. Journal of Food Science and Technology, 57(5), 1609–1618. https://doi.org/10.1007/s13197-019-04193-8 | |
dc.relation | Özer, C. O., & Çelegen, Ş. (2020). Evaluation of quality and emulsion stability of a fat-reduced beef burger prepared with an olive oil oleogel-based emulsion. Journal of Food Processing and Preservation, (February), 1–11. https://doi.org/10.1111/jfpp.14547 | |
dc.relation | Paglarini, C. de S., Furtado, G. de F., Biachi, J. P., Vidal, V. A. S., Martini, S., Forte, M. B. S., … Pollonio, M. A. R. (2018). Functional emulsion gels with potential application in meat products. Journal of Food Engineering, 222, 29–37. https://doi.org/10.1016/j.jfoodeng.2017.10.026 | |
dc.relation | Palamutoglu, R. (2021). Replacement of Beef Fat in Meatball with Oleogels (Black Cumin Seed Oil/Sunflower Oil). Journal of the Hellenic Veterinary Medical Society, 72(3). | |
dc.relation | Palla, C. A., Wasinger, M. F., & Carrín, M. E. (2021). Monoglyceride oleogels as fat replacers in filling creams for sandwich cookies. Journal of the Science of Food and Agriculture, 101(6), 2398–2405. https://doi.org/10.1002/jsfa.10863 | |
dc.relation | Pan, H., Xu, X., Qian, Z., Cheng, H., Shen, X., Chen, S., & Ye, X. (2021). Xanthan gum-assisted fabrication of stable emulsion-based oleogel structured with gelatin and proanthocyanidins. Food Hydrocolloids, 115(December 2020), 106596. https://doi.org/10.1016/j.foodhyd.2021.106596 | |
dc.relation | Patel, A. R., Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-based oleogels prepared with an emulsion-templated approach. ChemPhysChem, 15(16), 3435–3439. https://doi.org/10.1002/cphc.201402473 | |
dc.relation | Patel, A. R., Cludts, N., Sintang, M. D. Bin, Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food and Function, 5(11), 2833–2841. https://doi.org/10.1039/c4fo00624k | |
dc.relation | Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food and Function, 7(1), 20–29. https://doi.org/10.1039/c5fo01006c | |
dc.relation | Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411(2013), 114–121. https://doi.org/10.1016/j.jcis.2013.08.039 | |
dc.relation | Petracci, M., Bianchi, M., Mudalal, S., & Cavani, C. (2013). Functional ingredients for poultry meat products. Trends in Food Science and Technology, 33(1), 27–39. https://doi.org/10.1016/j.tifs.2013.06.004 | |
dc.relation | Pil-Nam, S., Park, K. M., Kang, G. H., Cho, S. H., Park, B. Y., & Van-Ba, H. (2015). The impact of addition of shiitake on quality characteristics of frankfurter during refrigerated storage. LWT - Food Science and Technology, 62(1), 62–68. https://doi.org/10.1016/j.lwt.2015.01.032 | |
dc.relation | Pintado, T., & Cofrades, S. (2020). Quality characteristics of healthy dry fermented sausages formulated with a mixture of olive and chia oil structured in oleogel or emulsion gel as animal fat replacer. Foods, 9(6). https://doi.org/10.3390/foods9060830 | |
dc.relation | Pinto, T. C., Martins, A. J., Pastrana, L., Pereira, M. C., & Cerqueira, M. A. (2021). Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021, Vol. 7, Page 86, 7(3), 86. https://doi.org/10.3390/GELS7030086 | |
dc.relation | Plazzotta, S., Calligaris, S., & Manzocco, L. (2019). Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO 2 -drying, freeze-drying and lettuce-filler addition. Food Hydrocolloids, 96(March), 1–10. https://doi.org/10.1016/j.foodhyd.2019.05.008 | |
dc.relation | Principato, L., Sala, L., Duserm-Garrido, G., & Spigno, G. (2021). Effect of dietary fibre and thermal condition on rice bran wax oleogels for biscuits preparation. Chemical Engineering Transactions, 87(February), 49–54. https://doi.org/10.3303/CET2187009 | |
dc.relation | Rodríguez-Cruz, Maricela, Tovar, Armando R, del Prado, Martha, & Torres, Nimbe. (2005). Mecanismos moleculares de acción de los ácidos grasos poliinsaturados y sus beneficios en la salud. Revista de investigación clínica, 57(3), 457-472. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S003483762005000300010&lng=es&tlng=es. | |
dc.relation | Ruiz-Capillas, C., Carmona, P., Jiménez-Colmenero, F., & Herrero, A. M. (2013). Oil bulking agents based on polysaccharide gels in meat batters: A Raman spectroscopic study. Food Chemistry, 141(4), 3688–3694. https://doi.org/10.1016/j.foodchem.2013.06.043 | |
dc.relation | San Mauro-Martín, I., et al. (2016). Efecto de los esteroles vegetales en el colesterol plasmatico.pdf. Nutricion Hospitalaria, 33(3), 279. | |
dc.relation | Sanjeevi, S., & Pandey, P. (2019). Chromatography: An Invaluable Tool in Research and the Industry. Retrieved from http://ezproxy.unal.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2324325&lang=es&site=eds-live | |
dc.relation | Singh, A., Auzanneau, F. I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. Food Research International, 97(March), 307–317. https://doi.org/10.1016/j.foodres.2017.04.022 | |
dc.relation | Soleimanian, Y., Goli, S. A. H., Shirvani, A., Elmizadeh, A., & Marangoni, A. G. (2020). Wax-based delivery systems: Preparation, characterization, and food applications. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2994–3030. https://doi.org/10.1111/1541-4337.12614 | |
dc.relation | Sulimanec Grgec, A., Jurasović, J., Kljaković-Gašpić, Z., Orct, T., Rumora Samarin, I., Janči, T., … Piasek, M. (2022). Potential risks and health benefits of fish in the diet during the childbearing period: Focus on trace elements and n-3 fatty acid content in commonly consumed fish species from the Adriatic Sea. Environmental Advances, 8, 100226. https://doi.org/10.1016/J.ENVADV.2022.100226 | |
dc.relation | Sullivan, D. H., & Johnson, L. E. (2017). Nutrition and Obesity. In J. B. Halter, J. G. Ouslander, S. Studenski, K. P. High, S. Asthana, M. A. Supiano, & C. Ritchie (Eds.), Hazzard’s Geriatric Medicine and Gerontology, 7e. Retrieved from http://accessmedicine.mhmedical.com/content.aspx?aid=1136588978 | |
dc.relation | Sun, P., Xia, B., Ni, Z. J., Wang, Y., Elam, E., Thakur, K., … Wei, Z. J. (2021). Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry, 360(January), 130017. https://doi.org/10.1016/j.foodchem.2021.130017 | |
dc.relation | Tang, Y. R., & Ghosh, S. (2021). Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Advances, 11(41), 25141–25157. https://doi.org/10.1039/d1ra02250d | |
dc.relation | Tarté, R., Paulus, J. S., Acevedo, N. C., Prusa, K. J., & Lee, S. L. (2020). High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. Lwt, 131(January), 109659. https://doi.org/10.1016/j.lwt.2020.109659 | |
dc.relation | Teixeira, A., Ferreira, I., Pereira, E., Vasconcelos, L., Leite, A., & Rodrigues, S. (2021). Meat Burgers. Effect of Fat Source. 1–11. | |
dc.relation | The Bussines research Company, 2020. Meat Products Global Market Report 2021: COVID-19 Impact And Recovery To 2030. Tomado de https://bit.ly/3uBYQ01 | |
dc.relation | The Bussines research Company, 2020. Functional Foods Global Market Report 2021: COVID 19 Growth And Change To 2030. Tomado de https://bit.ly/3uBYQ01 | |
dc.relation | National Center for Biotechnology Information, 2021. Red Meat and Processed Meat. Tomado de https://www.ncbi.nlm.nih.gov/books/NBK507973/ | |
dc.relation | Tokifuji, A., Matsushima, Y., Hachisuka, K., & Yoshioka, K. (2013). Texture, sensory and swallowing characteristics of high-pressure-heat-treated pork meat gel as a dysphagia diet. Meat Science, 93(4), 843–848. https://doi.org/10.1016/j.meatsci.2012.11.050 | |
dc.relation | Us Patent & Trademark Office. Patent Application Full Text and Image Database. Retrived from: https://appft.uspto.gov/. Accessed May 17, 2022. | |
dc.relation | Varga-Visi, & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: A review. Acta alimentaria, 46(2), 181–186. https://doi.org/10.1556/066.2016.0008 | |
dc.relation | Vernon-Carter, E. J., Alvarez-Ramirez, J., Meraz, M., Bello-Perez, L. A., & Garcia-Diaz, S. (2020). Canola oil/candelilla wax oleogel improves texture, retards staling and reduces in vitro starch digestibility of maize tortillas. Journal of the Science of Food and Agriculture, 100(3), 1238–1245. https://doi.org/10.1002/jsfa.10135 | |
dc.relation | Wang, Y., & Beydoun, M. A. (2009). Meat consumption is associated with obesity and central obesity among US adults. International Journal of Obesity, 33(6), 621–628. https://doi.org/10.1038/ijo.2009.45 | |
dc.relation | Weiss, J., Gibis, M., Schuh, V., & Salminen, H. (2010). Advances in ingredient and processing systems for meat and meat products. Meat Science, 86(1), 196–213. https://doi.org/10.1016/j.meatsci.2010.05.008 | |
dc.relation | Wolfer, T. L., Acevedo, N. C., Prusa, K. J., Sebranek, J. G., & Tarté, R. (2018a). Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Science, 145(May), 352–362. https://doi.org/10.1016/j.meatsci.2018.07.012 | |
dc.relation | Wolfer, T. L., Acevedo, N. C., Prusa, K. J., Sebranek, J. G., & Tarté, R. (2018b). Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Science, 145(July), 352–362. https://doi.org/10.1016/j.meatsci.2018.07.012 | |
dc.relation | You, W., & Henneberg, M. (2016). Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: An ecological analysis. BMC Nutrition, 2(1), 1–11. https://doi.org/10.1186/S40795-016-0063-9/TABLES/3 | |
dc.relation | Youssef, M. K., & Barbut, S. (2010). Physicochemical Effects of the Lipid Phase and Protein Level on Meat Emulsion Stability, Texture, and Microstructure. Journal of Food Science, 75(2), S108–S114. https://doi.org/10.1111/J.1750-3841.2009.01475.X | |
dc.relation | Zhang, J., Hayden, K., Jackson, R., & Schutte, R. (2021). Association of red and processed meat consumption with cardiovascular morbidity and mortality in participants with and without obesity: A prospective cohort study. Clinical Nutrition, 40(5), 3643–3649. https://doi.org/10.1016/j.clnu.2020.12.030 | |
dc.relation | Zhang, R., Cui, M., Ye, J., Yuan, D., & Mao, L. (2022). Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. LWT, 155, 112965. https://doi.org/10.1016/J.LWT.2021.112965 | |
dc.relation | Zheng, H., Beamer, S. K., Matak, K. E., & Jaczynski, J. (2019). Effect of κ-carrageenan on gelation and gel characteristics of Antarctic krill (Euphausia superba) protein isolated with isoelectric solubilization/precipitation. Food Chemistry, 278(August 2018), 644–652. https://doi.org/10.1016/j.foodchem.2018.11.080 | |
dc.relation | Zhuang, X., Han, M., Kang, Z. li, Wang, K., Bai, Y., Xu, X. lian, & Zhou, G. hong. (2016). Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure. Meat Science, 113, 107–115. https://doi.org/10.1016/J.MEATSCI.2015.11.007 | |
dc.relation | Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science, 78(12), C1845–C1851. https://doi.org/10.1111/1750-3841.12248 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Uso de oleogeles como sustitutos de grasa en productos cárnicos | |
dc.type | Trabajo de grado - Maestría | |