dc.contributorVargas Ramírez, Mario Alfonso
dc.contributorGantiva, Carlos
dc.contributorErnst, Raffael
dc.contributorFundación Colombo Alemana de Ciencia y Tecnología
dc.contributorMinCiencias - Colfuturo convocatoria doctorados 727
dc.contributorUniversidad Nacional de Colombia
dc.contributorCastillo Rodríguez, Nicolás
dc.contributorBiodiversidad y Conservación Genética
dc.contributorFritz, Uwe
dc.creatorSuárez Mayorga, Ángela Marcela
dc.date.accessioned2022-09-12T15:07:34Z
dc.date.available2022-09-12T15:07:34Z
dc.date.created2022-09-12T15:07:34Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82277
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn este trabajo se evaluaron los linajes evolutivos, las distribuciones actuales y potenciales y la evolución de seis especies nominales de hílidos neotropicales de tierras bajas pertenecientes a los géneros Scarthyla, Scinax y Sphaenorhynchus, así como su potencial uso como indicadores para la toma de decisiones relacionadas con la conservación de sus hábitats. Para ello se propusieron hipótesis filogenéticas bajo inferencia bayesiana y de máxima verosimilitud utilizando cinco marcadores genéticos (tres mitocondriales y dos nucleares) y se plantearon hipótesis datadas por coalescencia que fueron comparadas con la información geológica y geográfica disponible sobre sus áreas de distribución. Para evaluar la diversidad real y la distribución de los linajes incluidos en tales especies nominales se calcularon redes de haplotipos, se hicieron descripciones morfológicas y morfométricas detalladas de los especímenes disponibles en colecciones biológicas y se construyeron modelos de distribución de especies, que además permitieron estimar las consecuencias de cambios ambientales sobre los linajes identificados. Como resultado principal se evidenció una asociación íntima entre la morfología, la biología de las especies y su preferencia por hábitats abiertos o arbolados en las localidades que ocupan que puede informar decisiones de conservación; se establecieron las relaciones filogenéticas dentro y entre los grupos de estudio y se ordenó la taxonomía de un grupo de ranas extenso y problemático por más de 30 años en el país; se identificaron 24 especies candidatas confirmadas incluidas en los seis nombres inicialmente considerados y con ello se detallaron e incrementaron las increíbles cifras de la biodiversidad conocida para el país. (Texto tomado de la fuente)
dc.description.abstractWe evaluated the evolutionary lineages, current and potential distributions and the evolution of six nominal species of lowland Neotropical hylids belonging to the genera Scarthyla, Scinax and Sphaenorhynchus, as well as their potential use as indicators for decision-making related to the conservation of their habitats. For this purpose, phylogenetic hypotheses were proposed under Bayesian and Maximum Likelihood (ML) inference using five genetic markers (three mitochondrial and two nuclear) and hypotheses dated by coalescence were proposed and compared with the available geological and geographical information on their distribution areas. To evaluate the real diversity and distribution of the lineages included in such nominal species, haplotype networks were calculated, detailed morphological and morphometric descriptions were made of the specimens available in biological collections and species distribution models were constructed, which also allowed estimating the consequences of environmental changes on the identified lineages. As a main result, an intimate association between morphology, species biology and their preference for open or forested habitats in the localities they occupy was evidenced, which can inform conservation decisions. Phylogenetic relationships within and among the study groups were established and the taxonomy of an extensive and problematic --for more than 30 years-- group of frogs in the country was sorted out, yielding 24 confirmed candidate species that were included in the six names initially considered, thus detailing and increasing the incredible known biodiversity of this corner of South America
dc.languagespa
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisherDepartamento de Biología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrosavia
dc.relationRedCol
dc.relationLaReferencia
dc.relationAgrovoc
dc.relationAcosta-Galvis, A. R. (2018). Una nueva rana de huesos verdes del género Scinax (Anura: Hylidae) asociada a los bosques subandinos de la cuenca del río Magdalena, Colombia. Biota Colombiana, 19(s1), 129–157. https://doi.org/10.21068/c2018.v19s1a11
dc.relationAcosta-Galvis, A. R. (2021). Lista de los Anfibios de Colombia: Referencia en linea V.11.2021.
dc.relationAguiar, O., Bacci, M., Lima, A. P., Rossa-Feres, D. C., Haddad, C. F. B., & Recco-Pimentel, S. M. (2007). Phylogenetic relationships of Pseudis and Lysapsus (Anura, Hylidae, Hylinae) inferred from mitochondrial and nuclear gene sequences. Cladistics, 23(5), 455–463. https://doi.org/10.1111/j.1096-0031.2007.00154.x
dc.relationAndean decision 391 - Régimen común sobre acceso a recursos genéticos. , (1996). Comisión del Acuerdo de Cartagena y Comunidad Andina de Naciones - CAN.
dc.relationAngulo, A., & Icochea, J. (2010). Cryptic species complexes, widespread species and conservation: lessons from Amazonian frogs of the Leptodactylus marmoratus group (Anura: Leptodactylidae). Systematics and Biodiversity, 8(3), 357–370. https://doi.org/10.1080/14772000.2010.507264
dc.relationANLA. (2016). Reporte de alertas de la Zona Centro de la Cuenca Valle Medio Magdalena – ZCVMM. Bogotá, Colombia. Retrieved from http://www.anla.gov.co/documentos/biblioteca/reportezcvmm4-2.pdf
dc.relationAraujo-Vieira, K., Pombal Jr, J. P., Caramaschi, U., Novaes-e-Fagundes, G., Orrico, V. G. D., & Faivovich, J. (2020). A neotype for Hyla x ‑ signata Spix , 1824. Papéis Avulsos de Zoologia (São Paulo), 60(e20206056), 1–30. https://doi.org/http://doi.org/10.11606/1807-0205/2020.60.56
dc.relationAraujo‐Vieira, K., Blotto, B. L., Caramaschi, U., Haddad, C. F. B., Faivovich, J., & Grant, T. (2019). A total evidence analysis of the phylogeny of hatchet‐faced treefrogs (Anura: Hylidae: Sphaenorhynchus ). Cladistics, 35(5), 469–486. https://doi.org/10.1111/cla.12367
dc.relationArbeláez-Cortés, E. (2013). Knowledge of Colombian biodiversity: published and indexed. Biodiversity and Conservation. https://doi.org/10.1007/s10531-013-0560-y
dc.relationArtimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., … Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597–W603.
dc.relationAstwood-Romero, J. A., Álvarez-Perdomo, N., Parra-Torres, M. F., Rojas-Peña, J. I., Nieto-Vera, M. T., & Ardila-Robayo, M. C. (2016). Stomach contents in anurans species from Natural Reserves in the Villavicencio municipality, Meta, Colombia. Caldasia, 38(1), 165–181. https://doi.org/10.15446/caldasia.v38n1.57836
dc.relationAvise, J. C. (2000). Phylogeography: The history and formation of species. Cambridge, MA.: Harvard University Press.
dc.relationBarido-Sottani, J., Bošková, V., du Plessis, L., Kühnert, D., Magnus, C., Mitov, V., … Stadler, T. (2018). Taming the BEAST – A community teaching material resource for BEAST 2. Systematic Biology, 67(1), 170–174. https://doi.org/doi: 10.1093/sysbio/syx060
dc.relationBarrio-Amorós, C. L., Orellana, A., & Chacón-Ortiz, A. (2004). A new species of Scinax (Anura: Hylidae) from the Andes of Venezuela. Journal of Herpetology, 38(1), 105–112.
dc.relationBehrensmeyer, A. K., & Turner, A. (2013). Taxonomic occurrences of Dryophytes versicolor, Litoria and Pseudacris recorded in the Paleobiology Database.
dc.relationBensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181
dc.relationBickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22(3), 148–155. https://doi.org/10.1016/j.tree.2006.11.004
dc.relationBielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J., & Purvis, A. (2008). Predicting susceptibility to future declines in the world’s frogs. Conservation Letters, 1(2), 82–90. https://doi.org/10.1111/j.1755-263X.2008.00015.x
dc.relationBonilla González, J. C. (2015). Uso de ranas arborícolas (Osteocephalus spp.) como presa de cacería en dos comunidades indígenas del río Tiquié (Vaupés, Colombia). Universidad Nacional de Colombia.
dc.relationBoonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P.-O., & Hoorn, C. (2015). Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194. https://doi.org/10.1016/j.palaeo.2014.10.032
dc.relationBossuyt, F., & Milinkovitch, M. C. (2000). Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences, 97(12), 6585–6590. https://doi.org/doi: 10.1073/pnas.97.12.6585
dc.relationBouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., & Gavryushkina, A. et al. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4), e1006650. PLoS Computational Biology, 15(4), e1006650.
dc.relationBrandley, M. C., Guiher, T. J., Pyron, R. A., Winne, C. T., & Burbrink, F. T. (2010). Does dispersal across an aquatic geographic barrier obscure phylogeographic structure in the diamond-backed watersnake (Nerodia rhombifer)? Molecular Phylogenetics and Evolution, 57(2), 552–560. https://doi.org/10.1016/j.ympev.2010.07.015
dc.relationBreuil, M., & Ibéné, B. (2008). Les Hylidés envahissants dans les Antilles françaises et le peuplement batrachologique naturel. Bulletin de La Société Herpétologique de France, 125, 41–67.
dc.relationCaminer, M., & Ron, S. (2014). Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species. ZooKeys, 370, 1–68. https://doi.org/10.3897/zookeys.370.6291
dc.relationCastillo-Rodríguez, N., Suárez-Mayorga, Á. M., Gantiva, C., Fritz, U., & Vargas-Ramírez, M. (2020). The evolutionary lineages of “Scinax ruber” in the Magdalena Valley of Colombia: A step forward towards the understanding and implications of cryptic species complexes in the northern South America. Universidad Nacional de Colombia.
dc.relationChan, K. O., Hutter, C. R., Wood, P. L., Grismer, L. L., Das, I., & Brown, R. M. (2020). Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Molecular Ecology, 29(20), 3970–3987. https://doi.org/10.1111/mec.15603
dc.relationClement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1660.
dc.relationCollins, J. P., & Storfer, A. (2003). Global amphibian declines: sorting the hypotheses. Diversity and Distributions, 9, 89–98. Retrieved from http://files/162/Collins_Global_amphibian.pdf
dc.relationConte, C. E., Araujo-Vieira, K., Crivellari, L. B., & Berneck, B. V. M. (2016). A new species of Scinax Wagler (Anura: Hylidae) from Paraná, Southern Brazil. Zootaxa, 4193(2), 245–265. https://doi.org/10.11646/zootaxa.4193.2.3
dc.relationCope, E. D. (1874). On some Batrachia and Nematognathi brought from the upper Amazon by Prof. Orton. Proceedings of the Academy of Natural Sciences of Philadelphia, 26, 120–137.
dc.relationCope, E. D. (1975). On the batrachia and reptilia of Costa Rica : With notes on the herpetology and ichthyology of Nicaragua and Peru. Philadelphia: Journal of the Academy of Natural Sciences.
dc.relationCormagdalena. (2007). Atlas Cuenca del Río Grande de la Magdalena. Barrancabermeja: Corporación Autónoma Regional del Río Grande de la Magdalena.
dc.relationCorzo, G., Ramírez, W., Salamanca, B., Londoño, M. C., Fonseca, C., Castellanos, C., … García, H. (2010). Planeación ambiental para la conservación de la biodiversidad en las áreas operativas de Ecopetrol localizadas en el Magdalena Medio y los Llanos Orientales. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ecopetrol S.A. Retrieved from http://files/238/226_Planeacion ambiental_Ecopetrol_2010_cartilla.pd
dc.relationCrawford, A. J., Lips, K. R., & Bermingham, E. (2010). Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proceedings of the National Academy of Sciences, 107(31), 13777–13782. https://doi.org/10.1073/pnas.0914115107
dc.relationCruz-Piedrahita, C., Navas, C. A., & Crawford, A. J. (2018). Life on the Edge: A Comparative Study of Ecophysiological Adaptations of Frogs to Tropical Semiarid Environments. Physiological and Biochemical Zoology, 91(1), 740–756. https://doi.org/10.1086/695705
dc.relationDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109
dc.relationDarst, C. R., & Cannatella, D. C. (2004). Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 31(2), 462–475. https://doi.org/10.1016/j.ympev.2003.09.00
dc.relationDaudin, F. M. (1802). Histoire naturelle des rainettes, des grenouilles et des crapauds. Paris: Chez Levrault, Libraire, Quais Malaquais
dc.relationDe la Parra, F., Pinzón, D., Rodríguez, G., Bedoya, O., & Benson, R. (2019). Lacustrine systems in the early Miocene of Northern South America —Evidence from the Upper Magdalena Valley, Colombia. PALAIOS, 34(10), 490–505. https://doi.org/10.2110/palo.2019.025
dc.relationDíaz, L. M., & Fong, A. (2001). A new mottled frog of the genus Eleutherodactylus (Anura: Leptodactylidae) from Eastern Cuba. Solenodon, 1(76–84).
dc.relationDuellman, W. E., Marion, A. B., & Hedges, S. B. (2016). Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). In Zootaxa (Vol. 4104). https://doi.org/10.11646/zootaxa.4104.1.1
dc.relationDuellman, W. E., & Wiens, J. J. (1993). Hylid frogs of the genus Scinax Wagler, 1830, in Amazonian Ecuador and Peru. Occassional Papers of the Museum of Natural History, The University of Kansas, (153), 1–57.
dc.relationDuellman, William E. (1977). Liste der rezenten Amphibien und Reptilien. Hylidae, Centrolenidae, Pseudidae. In Das Tierreich: eine Zusammenstellung und Kennzeichnung der rezenten Tierformen : Liste der rezenten Amphibien und Reptilien : Testudines Crocodylia, Rhynchacephalia. Lief. 100 (Vol. 95). Berlin, Germany.
dc.relationDuellman, William Edward (Ed.). (1979). The South American Herpetofauna: Its Origin, Evolution, and Dispersal. Lawrence, Kansas: University of Kansas.
dc.relationDuméril, A. M. C., & Bibron, G. (1841). Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Paris, France: Librarie Enclyclopedique de Roret.
dc.relationEdler, D., Klein, J., Antonelli, A., & Silvestro, D. (2021). raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12(2), 373–377. https://doi.org/10.1111/2041-210X.13512
dc.relationEhlers, T. A., & Poulsen, C. J. (2009). Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281(3–4), 238–248. https://doi.org/10.1016/j.epsl.2009.02.026
dc.relationEscalona, M., Prieto-Torres, D., & Rojas-Runjaic, F. J. M. (2017). Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List, 13(5), 671–681. https://doi.org/10.15560/13.5.671
dc.relationESRI. (2012). ArcGIS Desktop 10.1. Redlands CA
dc.relationFaivovich, J. (2002). A cladistic analysis of Scinax (Anura: Hylidae). Cladistics, 18(4), 367–393. https://doi.org/10.1111/j.1096-0031.2002.tb00157.x
dc.relationFaivovich, J., Haddad, C. F. B., García, P. C. A., Frost, D. R., & Wheeler, W. C. (2005). Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, (294), 240. Retrieved from http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fresearch.amnh.org%2Fscicomp%2Fpdfs%2Fwheeler%2FFaivovich_etal2005.pdf&ei=bbwSUbipM5Di8gTx44HQAg&usg=AFQjCNFMMTuXopTJrdLqjMVHKjG0aV1lBw&bvm=bv.42080656,d.eWU&c
dc.relationFaivovich, J., Pereyra, M. O., Luna, M. C., Hertz, A., Blotto, B. L., Vásquez-Almazán, C. R., … Haddad, C. F. B. (2018). On the Monophyly and Relationships of Several Genera of Hylini (Anura: Hylidae: Hylinae), with Comments on Recent Taxonomic Changes in Hylids. South American Journal of Herpetology, 13(1), 1–32. https://doi.org/10.2994/SAJH-D-17-00115.1
dc.relationFeng, Y.-J., Blackburn, D. C., Liang, D., Hillis, D. M., Wake, D. B., Cannatella, D. C., & Zhang, P. (2017). Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 114(29). https://doi.org/10.1073/pnas.1704632114
dc.relationFerrão, M., Colatreli, O., De Fraga, R., Kaefer, I. L., Moravec, J., & Lima, A. P. (2016). High species richness of scinax treefrogs (hylidae) in a threatened amazonian landscape revealed by an integrative approach. PLoS ONE, 11(11). https://doi.org/10.1371/journal.pone.0165679
dc.relationFerrão, M., de Fraga, R., Moravec, J., Kaefer, I. L., & Lima, A. P. (2018). A new species of Amazonian snouted treefrog (Hylidae: Scinax) with description of a novel species-habitat association for an aquatic breeding frog. PeerJ, 2018(2), 1–34. https://doi.org/10.7717/peerj.4321
dc.relationFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
dc.relationFigueredo Cardona, L. M., & Acosta Cantillo, F. (2008). Objetos de conservación de la flora y la vegetación de los cerros calizos costeros de la Reserva de la Biósfera Baconao, Santiago de Cuba. Foresta Veracruzana, 10(2), 9–16. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14057247
dc.relationFouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M., & Gemmell, N. J. (2007). Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses. PLoS ONE, 2(10), e1109. https://doi.org/10.1371/journal.pone.0001109
dc.relationFouquet, A., Leblanc, K., Framit, M., Réjaud, A., Rodrigues, M. T., Castroviejo-fisher, S., … Mueses-cisneros, J. J. (2021). Species diversity and biogeography of an ancient frog clade from the Guiana Shield (Anura: Microhylidae: Adelastes, Otophryne, Synapturanus) exhibiting spectacular phenotypic diversification. Biological Journal of the Linnean Society, XX, 1–24.
dc.relationFouquet, A., Recoder, R., Teixeira, M., Cassimiro, J., Amaro, R. C., Camacho, A., … Rodrigues, M. T. (2012). Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus. Molecular Phylogenetics and Evolution, 62(3), 826–838. https://doi.org/10.1016/j.ympev.2011.11.023
dc.relationFouquet, A., Santana Cassini, C., Fernando Baptista Haddad, C., Pech, N., & Trefaut Rodrigues, M. (2014). Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, 41(5), 855–870. https://doi.org/10.1111/jbi.12250
dc.relationFouquet, A., Vences, M., Salducci, M.-D., Meyer, A., Marty, C., Blanc, M., & Gilles, A. (2007). Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Molecular Phylogenetics and Evolution, 43(2), 567–582. https://doi.org/10.1016/j.ympev.2006.12.006
dc.relationFouquette, M. J. J., & Pyburn, W. F. (1972). A new Colombian treefrog of the Hyla rubra complex. Herpetologica, 28(2), 176–181.
dc.relationFrost, D. R. (2021). Amphibian species of the World: an online reference. Retrieved April 14, 2021, from Version 6.1 website: https://amphibiansoftheworld.amnh.org/index.php
dc.relationFunk, W. C., Caminer, M., & Ron, S. R. (2011). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279(1734), 1806–1814. https://doi.org/10.1098/rspb.2011.1653
dc.relationGarzón, N. V., & Gutiérrez, J. C. (2013). Deterioro de humedales en el Magdalena medio: un llamado para su conservación. Bogotá, Colombia: Fundación Alma – Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj0vJumtd7wAhWgGVkFHQu2B6AQFjABegQIAhAD&url=http%3A%2F%2Frepository.humboldt.org.co%2Fbitstream%2F20.500.11761%2F31386%2F1%2F236.pdf&usg=AOvVaw1qdJcVRTGl56Hh_rLUIltQ
dc.relationGehara, M., Crawford, A. J., Orrico, V. G. D., Rodríguez, A., Lötters, S., Fouquet, A., … Köhler, J. (2014). High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog Dendropsophus minutus. PLoS ONE, 9(9), e103958. https://doi.org/10.1371/journal.pone.0103958
dc.relationGiovanelli, J. G. R., de Siqueira, M. F., Haddad, C. F. B., & Alexandrino, J. (2010). Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221(2), 215–224. https://doi.org/10.1016/j.ecolmodel.2009.10.009
dc.relationGiraldo-Cañas, D. (2014). Riqueza y distribución altitudinal de gramíneas C3 y C4 en la Guayana venezolana. Revista Ciencia En Desarrollo, 5(1), 77–84
dc.relationGrant, T. (2019). Outgroup sampling in phylogenetics: Severity of test and successive outgroup expansion. Journal of Zoological Systematics and Evolutionary Research, 57(4), 748–763
dc.relationGregory-Wodziki, K. M. (2000). Uplift history of the Central and Northern Andes: A review. GSA Bulletin, 112(7), 1091–1105. Retrieved from http://files/1197/Wodziky 2000.pdf
dc.relationGroot, H., Muñoz-Camargo, C., Moscoso, J., Riveros, G., Salazar, V., Kaston Florez, F., & Mitrani, E. (2012). Skin micro-organs from several frog species secrete a repertoire of powerful antimicrobials in culture. Journal of Antibiotics, 65(9), 461–467. https://doi.org/10.1038/ja.2012.50
dc.relationGuarnizo, C. E., Paz, A., Muñoz, A., Flechas, S. V, & Crawford, A. J. (2015). DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity. 1–20. https://doi.org/10.5061/dryad.k4q1q
dc.relationGüiza Suárez, L., & Aristizabal, J. D. (2013). Mercury and gold mining in Colombia: a failed state. Universitas Scientiarum, 18(1). https://doi.org/10.11144/Javeriana.SC18-1.mgm
dc.relationHaddad, C. F. B., & Prado, C. P. A. (2005). Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlantic Forest of Brazil. BioScience, 55(3), 207–217. Retrieved from http://files/160/Haddad y Prado Reprod Modes 2005.pdf
dc.relationHall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP. Carlsbad, CA, USA: Ibis Therapeutics
dc.relationHammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9
dc.relationHarold, A. S., & Mooi, R. D. (1994). Areas of Endemism: Definition and Recognition Criteria. Systematic Biology, 43(2), 261. https://doi.org/10.2307/2413466
dc.relationHernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica (pp. 105–152). Retrieved from http://files/1613/DiversidadBiologicaIberoamerica1992.pdf
dc.relationHickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., … Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54(1), 291–301. https://doi.org/10.1016/j.ympev.2009.09.016
dc.relationHof, C., Araújo, M. B., Jetz, W., & Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 1–6. https://doi.org/10.1038/nature10650
dc.relationHoogmoed, M. S. (2018). On the identity of Hyla zernyi Ahl 1933 (Anura: Hylidae) from Taperinha, Pará, Brazil. Zoologischer Anzeiger, 278, 80–83.
dc.relationHoogmoed, M. S., & Grüber, U. (1983). Spix and Wagler type specimens of reptiles and amphibians in the Natural History Musea in Munich (Germany) and Leiden (the Netherlands). Spixiana, 9(Suplement 9), 319–415.
dc.relationHoorn, C, Wesselingh, F. P., Steege, H. ter, Bermudez, M. A., Mora, A., Sevink, J., … Antonelli, A. (2010). Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(6006), 927–931. https://doi.org/10.1126/science.1194585
dc.relationHoorn, Carina, Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G. A., Dantas, E. L., … Chemale, F. (2017). The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153, 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005
dc.relationHutter, C. R., Guayasamin, J. M., & Wiens, J. J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16(9), 1135–1144. https://doi.org/10.1111/ele.12148
dc.relationInsel, N., Poulsen, C. J., & Ehlers, T. A. (2010). Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Climate Dynamics, 35(7–8), 1477–1492. https://doi.org/10.1007/s00382-009-0637-1
dc.relationIsaac, N. J. B., Redding, D. W., Meredith, H. M., & Safi, K. (2012). Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE, 7(8), 1–8. https://doi.org/10.1371/journal.pone.0043912
dc.relationIUCN SSC Amphibian Specialist Group. (2020). Scinax elaeochroa. In The IUCN Red List of Threatened Species 2020. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T55952A54348386.en
dc.relationJansen, M., Bloch, R., Schulze, A., & Pfenninger, M. (2011). Integrative inventory of Bolivia’s lowland anurans reveals hidden diversity. Zoologica Scripta, 40(6), 567–583. https://doi.org/10.1111/j.1463-6409.2011.00498.x
dc.relationJaramillo-Justinico, A., & Rangel-Ch, J. O. (2014). Las unidades del paisaje y los bloques del territorio de la Orinoquía. In J. O. Rangel-Ch (Ed.), Colombia Diversidad Biótica XIV. La Región de la Orinoquía de Colombia. (1st ed., pp. 71–152). Bogotá, Colombia: Universidad Nacional de Colombia - Instituto de Ciencias Naturales.
dc.relationJaramillo, C. (2019). 140 Million Years of Tropical Biome Evolution. In J. Gómez & E. O. Pinilla-Pachón (Eds.), The geology of Colombia: Vol. 2 Mesozoic (Electronic, pp. 209–236). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/publ.esp362019.06
dc.relationJaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., … Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3(5), 1–12. https://doi.org/10.1126/sciadv.1601693
dc.relationJenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, 110(28), E2602–E2610. https://doi.org/10.1073/pnas.1302251110
dc.relationJoglar, R. L. (1998). Los Coquiés de Puerto Rico. Su Historia Natural y Conservación. San Juan: Editorial de la Universidad de Puerto Rico
dc.relationKapli, T. ., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2016). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
dc.relationKay, R. F. (2013). Biogeography in deep time – What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2013.12.002
dc.relationKim, K. C., & Byrne, L. B. (2006). Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecological Research, 21(6), 794–810. https://doi.org/10.1007/s11284-006-0035-7
dc.relationKöhler, G. (2011). Amphibians of Central America. Herpeton Verlag Elke Kohler.
dc.relationKöhler, J., Glaw, F., Pabijan, M., & Vences, M. (2015). Integrative taxonomic revision of mantellid frogs of the genus Aglyptodactylus (Anura: Mantellidae). Zootaxa, 4006(3), 401–438. https://doi.org/10.11646/zootaxa.4006.3.1
dc.relationBell, R. C., Brasileiro, C. A., Haddad, C. F. B., & Zamudio, K. R. (2012). Evolutionary history of Scinax treefrogs on land-bridge islands in south-eastern Brazil. Journal of Biogeography, 39(9), 1733–1742. https://doi.org/10.1111/j.1365-2699.2012.02708.x
dc.relationCaminer, M., Milá, B., Jansen, M., Fouquet, A., Venegas, P. J., Chávez, G., … Ron, S. R. (2017). Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0171785
dc.relationGlaw, F., & Franzen, M. (2006). Type catalogue of amphibians in the Zoologische Staatssammlung München. Spixiana, 29(2), 153–192.
dc.relationKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X : Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
dc.relationLanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773.
dc.relationLarmuseau, M. H. D., Huyse, T., Vancampenhout, K., Van Houdt, J. K. J., & Volckaert, F. A. M. (2010). High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation? Molecular Phylogenetics and Evolution, 55(2), 689–698. https://doi.org/10.1016/j.ympev.2009.10.007
dc.relationLaurenti, J. N. (1768). Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austriacorum. Viena: Joan. Thom de Trattnern.
dc.relationLeigh, J. W., & Briant, D. (2015). PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116.
dc.relationLeón, J. R. (1975). Desarrollo temprano y notas sobre la historia natural de la larva de Hyla x-signata (Amphibia: Hylidae). Caribbean Journal of Science, 15(1–2), 57–65.
dc.relationLötters, S., La Marca, E., & Vences, M. (2004). Redescriptions of two toad species of the genus Atelopus from coastal Venezuela. Copeia, 2004(2), 222–234.
dc.relationLourenço, A. C. C., Zina, J., Catroli, G. F., Kasahara, S., Faivovich, J., & Haddad, C. F. . (2016). A new species of the Scinax catharinae group (Anura: Hylidae) from southeastern Brazil. Zootaxa, (4154), 415–435.
dc.relationLourenço, L. B., Targueta, C. P., Baldo, D., Nascimento, J., Garcia, P. C. A., Andrade, G. V., … Recco-Pimentel, S. M. (2015). Phylogeny of frogs from the genus Physalaemus (Anura, Leptodactylidae) inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 92, 204–216. https://doi.org/10.1016/j.ympev.2015.06.011
dc.relationLynch, J. D. (2006). The tadpoles of frogs and toads found in the lowlands of Northern Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(116), 443–457. Retrieved from http://files/146/Tadpoles northern Colombia Lynch 2006.pdf
dc.relationLynch, J. D., & Suárez-Mayorga, Á. M. (2004). Anfibios en el Chocó biogeográfico. Colombia Diversidad Biótica, IV, 633–667. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=BAC.xis&method=post&formato=2&cantidad=1&expresion=mfn=044568
dc.relationLynch, J. D., & Suárez Mayorga, A. M. (2011). Clave ilustrada de los renacuajos en las tierras bajas al oriente de los Andes, con énfasis en Hylidae. Caldasia, 33(1), 235–270.
dc.relationLyra, M. L., Haddad, C. F. B., & de Azeredo-Espin, A. M. L. (2017). Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers. Molecular Ecology Resources, 17(5). https://doi.org/10.1111/1755-0998.12648
dc.relationMaciel, N. M., Collevatti, R. G., Colli, G. R., & Schwartz, E. F. (2010). Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae). Molecular Phylogenetics and Evolution, 57(2), 787–797. https://doi.org/10.1016/j.ympev.2010.08.025
dc.relationMargules, C. R., Pressey, R. L., & Williams, P. H. (2002). Representing biodiversity: data and procedures for identifiying priority areas for conservation. Journal of Biosciences, 27(Suppl. 2), 309–326. Retrieved from http://files/114/MargulesIdentifyinhPriorityAreas.pdf
dc.relationMatos-Maraví, P. F., Peña, C., Willmott, K. R., Freitas, A. V. L., & Wahlberg, N. (2013). Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of Neotropical biogeography. Molecular Phylogenetics and Evolution, 66(1), 54–68. https://doi.org/10.1016/j.ympev.2012.09.005
dc.relationMayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA and London.: Belknap Press of Harvard University Press.
dc.relationMedina-Rangel, G. F., Méndez-Galeano, M. A., & Calderón Espinosa, M. L. (2019). Herpetofauna of San José del Guaviare, Guaviare, Colombia. Biota Colombiana, 20(1), 75–90. https://doi.org/10.21068/c2019.v20n01a05
dc.relationMendez-Narvaez, J., Ortiz-Navia, J. O., & Bolívar-G., W. (2014). Hypsiboas pugnax Schmidt, 1857 and Scinax ruber Laurenti, 1768 (Amphibia: Anura): Distribution extension in the Río Cauca Valley, Colombia. Check List, 10(2), 409. https://doi.org/10.15560/10.2.409
dc.relationMenezes, L., Canedo, C., Batalha-Filho, H., Garda, A. A., Gehara, M., & Napoli, M. F. (2016). Multilocus phylogeography of the treefrog Scinax eurydice (Anura, Hylidae) reveals a plio-pleistocene diversification in the Atlantic forest. PLoS ONE, 11(6), 1–20. https://doi.org/10.1371/journal.pone.0154626
dc.relationMora, J. A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., & de Freitas, M. (2018). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032
dc.relationMoravec, J., Arista Tuanama, I., Pérez, P. E., & Lehr, E. (2009). A New Species of Scinax (Anura: Hylidae) from the Area of Iquitos, Amazonian Peru . South American Journal of Herpetology, 4(1), 9–16. https://doi.org/10.2994/057.004.0102
dc.relationMori, S. (2013). Flora Brasiliensis: How a 19th-Century Flora Continues to Inspire. Science (New York, N.Y.): Plant talk inside the New York Botanical Garden.
dc.relationMorrone, J. J. (2014). Biogeographical regionalisation of the neotropical region. Zootaxa. https://doi.org/10.11646/zootaxa.3782.1.1
dc.relationMotta, J., Menin, M., Almeida, A. P., Hrbek, T., & Pires Farias, I. (2018). When the unknown lives next door: A study of central Amazonian anurofauna. Zootaxa, 4438(1), 79–104. https://doi.org/10.11646/zootaxa.4438.1.3
dc.relationMüller, L. (1927). Amphibien und Reptilien der Ausbeute Prof. Bresslau’s in Brasilien 1913-1914. Abhandlungen Der Senckenbergischen Naturforschenden Gesellschaft, 40(3), 259–282.
dc.relationMüller, P. (1973). The dispersal centres of terrestrial vertebrates in the Neotropical realm: A study in the evolution of the Neotropical biota and its native landscapes. Junk, The Hague.
dc.relationMuñoz-Guerrero, J., Serrano, V. H., & Ramírez-Pinilla, M. P. (2007). Uso de microhábitat, dieta y tiempo de actividad en cuatro especies simpátricas de ranas hílidas neotropicales (Anura:Hylidae). Caldasia, 29(2), 413–425. Retrieved from http://files/1306/DietayMicrohabitatHylidaeCO.pdf
dc.relationNieto-Castro, M. J. (1996). Estudio anatómico y taxonómico del género Scinax (Amphibia: Anura) en Colombia. Universidad Nacional de Colombia.
dc.relationNieto-Castro, M. J. (1999). Estudio preliminar de las especies del género Scinax (Amphibia: Anura: Hylidae) en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(Supl. Especial.), 339–346.
dc.relationNogueira, L., Solé, M., Siqueira, S., Affonso, P. R. A. de M., Strüssmann, C., & Sampaio, I. (2016). Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil. Genetics and Molecular Biology, 39(1), 49–53. https://doi.org/10.1590/1678-4685-GMB-2015-0037
dc.relationNori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., & Loyola, R. (2015). Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation, 191(367–374).
dc.relationNowakowski, A. J., Watling, J. I., Thompson, M. E., Brusch, G. A., Catenazzi, A., Whitfield, S. M., … Todd, B. D. (2018). Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecology Letters, 21(3), 345–355. https://doi.org/10.1111/ele.12901
dc.relationOchoa, D., Hoorn, C., Jaramillo, C., Bayona, G., Parra, M., & De la Parra, F. (2012). The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 39, 157–169. https://doi.org/10.1016/j.jsames.2012.04.010
dc.relationOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). vegan: Community Ecology Package. Retrieved from https://cran.r-project.org/package=vegan
dc.relationPalumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). The Simple Fool’s Guide to PCR. Honolulu: Department of Zoology, University of Hawaii.
dc.relationPeters, W. (1873). Uber die von Spix in Brasilien gesammelten Batrachier des Königlichen Naturalienkabinetts zu München. In Sitzung der physikalisch-mathematischen Klasse (pp. 196–227). Berlin, Germany: Königliche Akademie der Wissenschaften.
dc.relationPhillips, S. J., Dudík, M., & Schapire, R. E. (2020). Maxent software for modeling species niches and distributions (Version 3.4.1). American Museum of Natural History. Retrieved from https://biodiversityinformatics.amnh.org/open_source/maxent/
dc.relationPimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science (New York, N.Y.), 344(6187), 1246752. https://doi.org/10.1126/science.1246752
dc.relationPizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., … García, H. (2016). El bosque seco tropical en Colombia. In Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia (pp. 21–22). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2015.202
dc.relationPuillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877. https://doi.org/DOI: 10.1111/j.1365-294X.2011.05239.x
dc.relationPyron, R A, & Wiens, J. J. (2013). Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131622. https://doi.org/10.1098/rspb.2013.1622
dc.relationPyron, Robert Alexander, & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583. https://doi.org/10.1016/j.ympev.2011.06.012
dc.relationRakotoarison, A., Scherz, M. D., Glaw, F., Köhler, J., Andreone, F., Franzen, M., … Vences, M. (2017). Describing the smaller majority: Integrative taxonomy reveals twenty-six new species of tiny microhylid frogs (genus Stumpffia) from Madagascar. Vertebrate Zoology, 67(3), 271–398. https://doi.org/10.5281/zenodo.3338100
dc.relationRambaut, A. (2018). FigTree: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edimburg. Retrieved from http://tree.bio.ed.ac.uk/
dc.relationRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032
dc.relationRapport, D. (1998). Assessing ecosystem health. Trends in Ecology & Evolution, 13(10), 397–402. https://doi.org/10.1016/S0169-5347(98)01449-9
dc.relationRapport, D. J. (1992). Evaluating ecosystem health. Journal of Aquatic Ecosystem Health, 1, 15–24.
dc.relationRasanen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene Tidal Deposits in the Amazonian Foreland Basin. Science, 269(5222), 386–390. https://doi.org/10.1126/science.269.5222.386
dc.relationReyes Gutiérrez, M. A. (2006). Propuesta para una metodología para la determinación de objetivos de conservacion en áreas a proteger: el caso de la laguna de Sonso, Colombia (Universidad Internacional de Andalucía). Universidad Internacional de Andalucía, Santiago de Cali, Colombia. Retrieved from http://dspace.unia.es/bitstream/10334/221/1/0076_Reyes.pdf
dc.relationRibas, C. C., Gaban-Lima, R., Miyaki, C. Y., & Cracraft, J. (2005). Historical biogeography and diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). Journal of Biogeography, 32(8), 1409–1427. https://doi.org/10.1111/j.1365-2699.2005.01289.x
dc.relationRivadeneira, C. D., Venegas, P. J., & Ron, S. R. (2018). Species limits within the widespread amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys, 2018(726), 25–77. https://doi.org/10.3897/zookeys.726.13864
dc.relationRivera-Correa, M., & Faivovich, J. (2013). A New Species of Hyloscirtus (Anura: Hylidae) from Colombia, with a Rediagnosis of Hyloscirtus larinopygion (Duellman, 1973). Herpetologica, 69(3). https://doi.org/10.1655/HERPETOLOGICA-D-12-00059
dc.relationRivera-Correa, M., & Orrico, V. G. D. (2013). Description and phylogenetic relationships of a new species of treefrog of the Dendropsophus leucophyllatus group (Anura: Hylidae) from the Amazon basin of Colombia and with an exceptional color pattern. Zootaxa, 3686(4), 447. https://doi.org/10.11646/zootaxa.3686.4.3
dc.relationRodríguez-Cabrera, T. M., García-Padrón, L. Y., Acosta Galvis, A. R., de Sá, R. O., & Alonso Bosch, R. (2018). First record of the genus Leptodactylus (Anura: Leptodactylidae) in Cuba: Leptodactylus fragilis, a biological invasion? Journal of Natural History, 52(29–30), 1883–1892. https://doi.org/10.1080/00222933.2018.1498549
dc.relationRodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. https://doi.org/doi: https://doi.org/10.1101/2020.01.14.906982
dc.relationRojas, R. R., Fouquet, A., De Carvalho, V. T., Ron, S., Chaparro, J. C., Vogt, R. C., … Hrbek, T. (2018). Redescription of the Amazonian tiny tree toad Amazophrynella minuta (Melin, 1941) (Anura: Bufonidae) from its type locality. Zootaxa, 4482(3). https://doi.org/10.11646/zootaxa.4482.3.4
dc.relationRojas, R. R., Fouquet, A., Ron, S. R., Hernández-Ruz, E. J., Melo-Sampaio, P. R., Chaparro, J. C., … Hrbek, T. (2018). A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ, 6, e4941. https://doi.org/10.7717/peerj.4941
dc.relationRomán-Palacios, C., Fernández-Garzón, S., Hernández, M., Ishida-Castañeda, J., Gallo-Franco, J. J., Bolívar-García, W., & Giraldo, A. (2016). Use of microhábitat by anurans in an intervened dry forest fragment of the Magdalena Medio area in Guarinocito, Caldas. Boletin Cientifico Del Centro de Museos, 20(2), 181–196. https://doi.org/10.17151/bccm.2016.20.2.14
dc.relationRon, S. R., Duellman, W. E., Caminer, M., & Pazmiño, D. (2018). Advertisement calls and DNA sequences reveal a new species of Scinax (Anura: Hylidae) on the Pacific lowlands of Ecuador. PLoS ONE, 13(9), 1–26. https://doi.org/10.1371/journal.pone.0203169
dc.relationRon, S., Venegas, P. J., Toral, E., Read, V. M., Ortiz, D., & Manzano, A. (2012). Systematics of the Osteocephalus buckleyi species complex (Anura, Hylidae) from Ecuador and Peru. ZooKeys, 229(0), 1–52. https://doi.org/10.3897/zookeys.229.3580
dc.relationRonquist, F. R., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3 . 2 : Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
dc.relationRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299–3302.
dc.relationRStudio Team. (2019). RStudio: Integrated Development for R. Boston, MA. Retrieved from http://www.rstudio.com/
dc.relationRuiz-Carranza, P. M., Ardila-Robayo, M. C., & Lynch, J. D. (1996). Lista actualizada de la fauna de amphibia de Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 20(77), 365–415.
dc.relationRull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution, 26(10), 508–513. https://doi.org/10.1016/j.tree.2011.05.011
dc.relationSalducci, M.-D., Marty, C., Fouquet, A., & Gilles, A. (2005). Phylogenetic relationships and biodiversity in Hylids (Anura: Hylidae) from French Guiana. Comptes Rendus Biologies, 328(10–11), 1009–1024. https://doi.org/10.1016/j.crvi.2005.07.005
dc.relationSánchez Núñez, E. (2006). Conocimiento tradicional mazahua de la herpetofauna: un estudio etno-zoológico en la Reserva de la Biósfera Mariposa Monarca, México. Estudios Sociales, 15(28), 44–66. Retrieved from http://files/228/AnfibiosComunidadesTradMexico.pdf
dc.relationSantorelli, S., Magnusson, W. E., & Deus, C. P. (2018). Most species are not limited by an Amazonian river postulated to be a border between endemism areas. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20596-7
dc.relationSarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer.
dc.relationSarmiento, G., Puentes, J., & Sierra, C. E. (2015). Evolución Geológica y Estratigrafía del Sector Norte del Valle Medio del Magdalena. Geología Norandina, (12), 51–82.
dc.relationSayre, R., Karagulle, D., Frye, C., Boucher, T., Wolff, N. H., Breyer, S., … Possingham, H. (2020). An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Global Ecology and Conservation, 21, 1–21. https://doi.org/10.1016/j.gecco.2019.e00860
dc.relationSchlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology, 55(1), 421–438. https://doi.org/10.1146/annurev-ento-112408-085432
dc.relationSeba, A. (1735). Tabula sexagesima et octava. V.2 No. 5. In Locupletissimi rerum naturalium thesauri accurata descriptio, et iconibus artificiosissimis expressio, per universam physices historiam : opus, cui, in hoc rerum genere, nullum par exstitit. (p. v.2, 69-70). Amsterdam: J. Wetstenium, & Gul. Smith & Janssonio-Waesbergios.
dc.relationSegalla, M. V., Caramaschi, U., Gonçalves Cruz, C. A., Grant, T., Haddad, C. F. B., de Anchietta Garcia, P. C., … Langone, J. A. (2016). Herpetologia Brasileira. Revista Herpetologia Brasleira, 5(2), 34–46.
dc.relationSmith, S. A., Brown, J. W., & Walker, J. F. (2017). So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. BioRxiv. https://doi.org/10.1101/114975
dc.relationSolís, F., Ibáñez, R., Jaramillo, C., Fuenmayor, Q., Azevedo-Ramos, C., La Marca, E., … Powell, R. (2010). Scinax ruber. In The IUCN Red List of Threatened Species. IUCN, International Union for Conservation of Nature - International, Conservation NatureServe. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T55994A11395509.en.
dc.relationSomma, L. A. (2019). Scinax ruber (Laurenti, 1768). Retrieved December 21, 2019, from U.S. Geological Survey, Nonindigenous Aquatic Species Database website: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=978
dc.relationSpix, J. B. von. (1824). Animalia nova sive Species novae Testudinum et Ranarum quas in itinere per Brasiliam annis MDCCCXVII–MDCCCXX jussu et auspiciis Maximiliani Josephi I. Bavariae Regis. München: F. S. Hübschmann.
dc.relationStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9). https://doi.org/10.1093/bioinformatics/btu033
dc.relationStuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., & Fischman, D. L. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783–1786.
dc.relationSturaro, M. J., & Peloso, P. L. V. (2014). A new species of Scinax Wagler, 1830 (Anura: Hylidae) from the middle Amazon river basin, Brazil. Papéis Avulsos de Zoologia (São Paulo), 54(2), 9–23. https://doi.org/10.1590/0031-1049.2014.54.02
dc.relationSturaro, M. J., Sarmento, J. F. de M., Lima, A. A., Chalkidis, H. de M., & Rocha, R. A. T. (2010). New records and distribution of the treefrog Scinax rostratus (Peters, 1863) (Amphibia: Anura: Hylidae). Herpetology Notes, 3(1), 161–166.
dc.relationSuárez-Mayorga, Á. M. (2021). Filogeografía comparada y taxonomía integrativa de seis especies de ranas arborícolas (Hylidae) distribuidas en las tierras bajas del norte de Sudamérica: en busca de nuevos enfoques que soporten decisiones de conservación. Universidad Nacional de Colombia.
dc.relationSuárez-Mayorga, A. M., Castillo-Rodríguez, N., Ernst, R., Fritz, U., & Vargas-Ramírez, M. (2021). Cryptic diversity of “Scinax ruber” (Anura: Hylidae) in Andean South America: using integrative taxonomy to frog-leap out of a deep information hole to evidence-based taxonomy and conservation.
dc.relationSuárez-Mayorga, Á. M., & Lynch, J. D. (2017). Myth and truth on the herpetofauna of Chiribiquete: From the lost world to the last world. Colombia Amazónica, (10), 177–190.
dc.relationSuárez-Mayorga, Angela M., & Lynch, J. D. (2001a). Los renacuajos colombianos de Sphaenorhynchus (Hylidae) : Descripciones, anotaciones sistemáticas y ecológicas. Rev. Acad. Colomb. Cienc., Vol. 25, pp. 411–419.
dc.relationSuárez-Mayorga, Angela M., & Lynch, J. D. (2001b). Redescription of the tadpole of Hyla vigilans (Anura: Hylidae) and notes about possible taxonomic relationships. Caribbean Journal of Science, 37(1–2).
dc.relationSwenson, J. J., Young, B. E., Beck, S., Comer, P., Córdova, J. H., Dyson, J., … Zambrana-Torrelio, C. M. (2012). Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology, 12, 1. https://doi.org/10.1186/1472-6785-12-1
dc.relationTaboada, C., Brunetti, A. E., Alexandre, C., Lagorio, M. G., & Faivovich, J. (2017). Fluorescent Frogs: A Herpetological Perspective. South American Journal of Herpetology, 12(1), 1–13. https://doi.org/10.2994/sajh-d-17-00029.1
dc.relationTaboada, C., Brunetti, A. E., Lyra, M. L., Fitak, R. R., Faigón Soverna, A., Ron, S. R., … Bari, S. E. (2020). Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin. Proceedings of the National Academy of Sciences, 117(31), 18574–18581. https://doi.org/10.1073/pnas.2006771117
dc.relationTNC, T. N. C.-. (2003). The Five-S Framework for Site Conservation. A Practitioner’s Handbook for Site Conservation Planning and Measuring Conservation Success. Retrieved from http://www.ecology.ethz.ch/education/Conservation_stuff/TNC_2003_5s_framework.pdf
dc.relationTorrado, L., Carvajal-Arenas, L. C., Mann, P., & Bhattacharya, J. (2020). Integrated seismic and well-log analysis for the exploration of stratigraphic traps in the Carbonera Formation, Llanos foreland basin of Colombia. Journal of South American Earth Sciences, 104(March), 102607. https://doi.org/10.1016/j.jsames.2020.102607
dc.relationTundisi, J. G., & Matsumura-Tundisi, T. (2008). Biodiversity in the Neotropics: Ecological, economic and social values. Brazilian Journal of Biology, 68(4 SUPPL.), 913–915. https://doi.org/10.1590/S1519-69842008000500002
dc.relationUpham, N. S., Ojala-Barbour, R., Brito M, J., Velazco, P. M., & Patterson, B. D. (2013). Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology, 13(1), 191. https://doi.org/10.1186/1471-2148-13-191
dc.relationVacher, J. P., Chave, J., Ficetola, F. G., Sommeria-klein, G., Tao, S., Thébaud, C., … Fouquet, A. (2020). Large-scale DNA-based survey of frogs in Amazonia suggests a vast underestimation of species richness and endemism. Journal of Biogeography, 47(8), 1781–1791. https://doi.org/10.1111/jbi.13847
dc.relationVacher, J. P., Kok, P. J. R., Rodrigues, M. T., Lima, J. D., Lorenzini, A., Martinez, Q., … Fouquet, A. (2017). Cryptic diversity in Amazonian frogs: Integrative taxonomy of the genus Anomaloglossus (Amphibia: Anura: Aromobatidae) reveals a unique case of diversification within the Guiana Shield. Molecular Phylogenetics and Evolution, 112. https://doi.org/10.1016/j.ympev.2017.04.017
dc.relationVanzolini, P. E. (1981). The scientific and political contexts of the Bavarian Expedition to Brazil. In Spix, J. B., v. & J. G. Wagler: Herpetology of Brazil. SSAR Facsimile Reprints in Herpetology.
dc.relationVargas-Ramírez, M., Caballero, S., Morales-Betancourt, M. A., Lasso, C. A., Amaya, L., Martínez, J. G., … Fritz, U. (2020). Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Molecular Phylogenetics and Evolution, 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823
dc.relationVargas-Ramírez, M., Petzold, A., & Fritz, U. (2016). Distribution modelling and conservation assessment for helmeted terrapins (Pelomedusa spp.). Salamandra, 52(4), 306–316.
dc.relationVargas-Salinas, F., Angarita-Sierra, T., Ospina-L., A. M., Rocha-Úsuga, A. A., & Rueda-Solano, L. A. (2019). Comunicación y ecología reproductiva. In F. Vargas-Salinas, J. A. Muñoz-Ávila, & M. E. Morales-Puentes (Eds.), Biología de los anfibios y reptiles en el bosque seco tropical del norte de Colombia (Editorial, pp. 249–295). Tunja.
dc.relationVeiga, M. M., & Marshall, B. G. (2019). The Colombian artisanal mining sector: Formalization is a heavy burden. The Extractive Industries and Society, 6(1), 223–228. https://doi.org/10.1016/j.exis.2018.11.001
dc.relationVences, M., Kosuch, J., Lötters, S., Widmer, A., Jungfer, K. H., Köhler, J., & Veith, M. (2000). Phylogeny and classification of poison frogs (Amphibia: Dendrobatidae), based on mitochondrial 16S and 12S ribosomal RNA gene sequences. Molecular Phylogenetics and Evolution, 15(1), 34–40. https://doi.org/10.1006/mpev.1999.0738
dc.relationVences, M., Thomas, M., van der Meijden, A., Chiari, Y., & Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2, 5. https://doi.org/10.1186/1742-9994-2-5
dc.relationVieites, D. R., Wollenberg, K. C., Andreone, F., Köhler, J., Glaw, F., & Vences, M. (2009). Vast underestimation of Madagascar ’ s biodiversity evidenced by an integrative amphibian inventory. 106(20), 8267–8272.
dc.relationVinarski, M. V. (2020). Roots of the taxonomic impediment: Is the “integrativeness” a remedy? Integrative Zoology, 15(1), 2–15. https://doi.org/10.1111/1749-4877.12393
dc.relationvon May, R., Catenazzi, A., Santa-Cruz, R., Gutierrez, A. S., Moritz, C., & Rabosky, D. L. (2019). Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. PLOS ONE, 14(8), e0219759. https://doi.org/10.1371/journal.pone.0219759
dc.relationVu, V. Q. (2011). ggbiplot: A ggplot2 based biplot.
dc.relationWatters, J. L., Cummings, S. T., Flanagan, R. L., & Siler, C. D. (2016). Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa, 4072(4), 477–495.
dc.relationWiens, J. J., Kuczynski, C. A., Hua, X., & Moen, D. S. (2010). An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Molecular Phylogenetics and Evolution, 55(3), 871–882. https://doi.org/10.1016/j.ympev.2010.03.013
dc.relationXiao, Y., Liu, C., & Lai, R. (2011). Antimicrobial peptides from amphibians. BioMolecular Concepts, 2(1–2). https://doi.org/10.1515/bmc.2011.006
dc.relationYokoyama, S. (2000). Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments. Journal of Heredity, 91(3), 215–220. https://doi.org/10.1093/jhered/91.3.215
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleFilogeografía comparada y taxonomía integrativa de seis especies de ranas arborícolas (Hylidae) ampliamente distribuidas en tierras bajas del norte de Sudamérica: en busca de nuevos enfoques que soporten decisiones de conservación
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución