dc.contributorSmith Pardo, Allan
dc.contributorOrtiz Reyes, Adriana
dc.contributorSustancias activas y Biotecnología SaBio
dc.creatorVallejo Ortiz, Miller Aly
dc.date.accessioned2022-04-08T19:27:10Z
dc.date.available2022-04-08T19:27:10Z
dc.date.created2022-04-08T19:27:10Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81452
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa presencia de microorganismos intestinales simbiontes en sus hospederos es fundamental, porque facilitan la adquisición de nutrientes a huéspedes con dietas deficientes y porque afectan la diversidad fenotípica entre individuos. Sin embargo, a pesar de conocerse la complejidad de dichas interacciones y fisiología de sus huéspedes, el papel de los microorganismos en el comportamiento de insectos sociales es poco conocido. Algunos autores sugieren que las variaciones presentes entre los individuos de una misma colonia de abejas y que pertenecen a castas diferentes, pueden también estar influenciadas por la composición de la comunidad de microorganismos intestinales. Este estudio pretendía identificar los microorganismos cultivables asociados a diferentes estados de desarrollo y edades de Trigona (Tetragonisca) angustula. Por medio de técnicas de observación se estableció la división de castas dentro de la especie, y de cada una de ellas se aislaron e identificaron microorganismos intestinales cultivables utilizando métodos independientes de cultivo y técnicas moleculares. Se encontró que las comunidades microbianas intestinales entre los estadios de desarrollo y edades dentro de obreras difieren tanto en composición como en estructura, pues bacterias comunes en adultos estaban ausentes en las larvas. Así mismo, se observó que la diversidad de microorganismos intestinales cultivables de T. (T.) angustula está dominada por géneros de bacterias como Bacillus, Paenibacillus, Enterobacter y Leuconostoc. Estos resultados pueden ser la base para trabajos posteriores cuyo objetivo sea comprender interacciones entre los microorganismos intestinales y su papel en los procesos nutricionales y la influencia que estos pueden tener en el comportamiento social de sus hospederos. (Texto tomado de la fuente)
dc.description.abstractLa presencia de microorganismos intestinales simbiontes en sus hospederos es fundamental, porque facilitan la adquisición de nutrientes a huéspedes con dietas deficientes y porque afectan la diversidad fenotípica entre individuos. Sin embargo, a pesar de conocerse la complejidad de dichas interacciones y fisiología de sus huéspedes, el papel de los microorganismos en el comportamiento de insectos sociales es poco conocido. Algunos autores sugieren que las variaciones presentes entre los individuos de una misma colonia de abejas y que pertenecen a castas diferentes, pueden también estar influenciadas por la composición de la comunidad de microorganismos intestinales. Este estudio pretendía identificar los microorganismos cultivables asociados a diferentes estados de desarrollo y edades de Trigona (Tetragonisca) angustula. Por medio de técnicas de observación se estableció la división de castas dentro de la especie, y de cada una de ellas se aislaron e identificaron microorganismos intestinales cultivables utilizando métodos independientes de cultivo y técnicas moleculares. Se encontró que las comunidades microbianas intestinales entre los estadios de desarrollo y edades dentro de obreras difieren tanto en composición como en estructura, pues bacterias comunes en adultos estaban ausentes en las larvas. Así mismo, se observó que la diversidad de microorganismos intestinales cultivables de T. (T.) angustula está dominada por géneros de bacterias como Bacillus, Paenibacillus, Enterobacter y Leuconostoc. Estos resultados pueden ser la base para trabajos posteriores cuyo objetivo sea comprender interacciones entre los microorganismos intestinales y su papel en los procesos nutricionales y la influencia que estos pueden tener en el comportamiento social de sus hospederos.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Entomología
dc.publisherEscuela de Ciencias Naturales
dc.publisherFacultad de Ciencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAhn, J., Hong, I., Bok, J., Kim, B., Song, J., & Weon, H. (2012). Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. Journal of Microbiology, 50(5), 735-745. http://doi: 10.1007/s12275-012-2188-0
dc.relationAl-Ghamdi, A., Ali Khan, K., Javed Ansari, M., Almasaudi, S., & Al-Kahtani, S. (2018). Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae. Saudi Journal Of Biological Sciences, 25(2), 383-387. doi: 10.1016/j.sjbs.2017.07.005
dc.relationAlippi, A., & Reynaldi, F. (2006). Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. Journal Of Invertebrate Pathology, 91(3), 141-146. doi: 10.1016/j.jip.2005.12.002
dc.relationAlmeida, E., & Porto, D. (2014). Investigating Eusociality in Bees while Trusting the Uncertainty. Sociobiology, 61(4). doi: 10.13102/sociobiology.v61i4.355-368
dc.relationAmaya-Marquez, M., & Wells, H. (2008) Social complexity and learning foraging tasks in bees. Caldasia 30(2), 469–477.
dc.relationAmdam G., Fennern E., & Havukainen, H. (2011) in: Neurobiology and behavior of honeybees, eds Galizia CG, Eisenhardt D, Giurfa M (Springer, Heidelberg), 17–29.
dc.relationAnderson, K. E, Sheehan T. H, Eckholm, B. J, Mott, B. M & DeGrandi-Hoffman, G. (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc 58: 431–444.
dc.relationAnjum, S., Shah, A., Aurongzeb, M., Kori, J., Azim, M., Ansari, M., & Bin, L. (2018). Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi Journal of Biological Sciences, 25(2), 388-392. doi: 10.1016/j.sjbs.2017.05.008
dc.relationAscher, J.S. & Pickering, J. (2016) Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila). http:// www.discoverlife.org/mp/20q?guide=Apoidea_species [draft 45, accessed 18 May 2016].
dc.relationAugusto, S., & Garofalo, C. (2009). Bionomics and sociological aspects of Euglossa fimbriata (Apidae, Euglossini). Genetics and Molecular Research, 8(2), 525-538. doi: 10.4238/vol8-2kerr004
dc.relationBabendreier, D., Joller, D., Romeis, J., Bigler, F., & Widmer, F. (2007). Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology Ecology, 59(3), 600-610. http://doi: 10.1111/j.1574-6941.2006.00249.x
dc.relationBaquero, L., & Stamatti, G. (2007). Cría y Manejo de Abejas sin aguijón. Fundación Pro Yungas. Ediciones Del Subtrópico.
dc.relationBarbosa, R., Leong, S., Vinnere-Pettersson, O., Chen, A., Souza-Motta, C., & Frisvad, J. et al. (2017). Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Studies in Mycology, 86, 29-51. doi: 10.1016/j.simyco.2017.04.001
dc.relationBeetsma, J. (1979). The process of queen-worker differentiation in the honeybee. Bee World, 60(1), 24–39. http://doi.org/10.1080/0005772X.1979.11097727
dc.relationBreed, M., Guzmán-Novoa, E., & Hunt, G. (2004). Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49(1), 271–298. http://doi.org/10.1146/annurev.ento.49.061802.123155
dc.relationBreznak, J. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39(1), 453-487. http://doi: 10.1146/annurev.ento.39.1.453
dc.relationCamargo, C. (1972). Determinação de castas em Scaptotrigona postica Latreille (Hymenoptera, Apidae). Rev Brasil Biol, 32 (1):133-138.
dc.relationCano, R. J., Borucki, M. K., Higby-Schweitzer, M., Poinar, H. N., Poinar, G. O., & Pollard, K. J. (1994). Bacillus DNA in fossil bees: an ancient symbiosis? Applied and Environmental Microbiology, 60(6), 2164–2167.
dc.relationCardinal, S., & Danforth, B. (2011). The antiquity and evolutionary history of social behavior in bees. Plos ONE, 6(6), e21086. doi: 10.1371/journal.pone.0021086
dc.relationCardinal, S., Straka, J., & Danforth, B. (2010). Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences, 107(37), 16207-16211. doi: 10.1073/pnas.1006299107
dc.relationCarina Audisio, M., Torres, M., Sabaté, D., Ibarguren, C., & Apella, M. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiological Research, 166(1), 1-13. doi: 10.1016/j.micres.2010.01.003
dc.relationCarvalho-Filho, F., & De Oliveira, F. (2017). Notes on the nesting biology of five species of Euglossini (Hymenoptera: Apidae) in the Brazilian Amazon. Entomobrasilis, 10(1), 64. doi: 10.12741/ebrasilis.v10i1.672
dc.relationCarvalho-Zilse, G. (2005). Criação de abelhas sem ferrão. Manaus: ProVárzea/Ibama: Inpa.
dc.relationChandler, J., Lang, J., Bhatnagar, S., & Eisen, J. (2011). Bacterial communities of diverse Drosophila species : Ecological Context of a Host – Microbe Model System, 7(9). http://doi.org/10.1371/journal.pgen.1002272
dc.relationChouvenc, T., Efstathion, C., Elliott, M., & Su, N. (2013). Extended disease resistance emerging from the faecal nest of a subterranean termite. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131885-20131885. doi: 10.1098/rspb.2013.1885
dc.relationCorby-Harris, V., Maes, P., & Anderson, K. (2014). The bacterial communities associated with honey bee (Apis mellifera) foragers. Plos ONE, 9(4), e95056. doi: 10.1371/journal.pone.0095056
dc.relationCox-Foster, D., Conlan, S., Holmes, E., Palacios, G., Evans, J., & Moran, N. et al. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283-287. http://doi: 10.1126/science.1146498
dc.relationCronin, A. (2001). Social flexibility in a primitively social allodapine bee (Hymenoptera: Apidae): results of a translocation experiment. Oikos, 94(2), 337-343. doi: 10.1034/j.1600-
dc.relationCruz-Landim, C., Serrão J., & Silva-de-Moraes, R. (1996) Cytoplasmic protrusions from digestive cells of bees. Cytobios 88: 95-104.
dc.relationda Silva, C., Stevens, M., & Schwarz, M. (2015). Casteless sociality in an allodapine bee and evolutionary losses of social hierarchies. Insectes Sociaux, 63(1), 67-78. doi: 10.1007/s00040-015-0436-0
dc.relationDanforth, B. (2001). Evolution of sociality in a primitively eusocial lineage of bees. Proceedings of the National Academy Of Sciences, 99(1), 286-290. doi: 10.1073/pnas.012387999
dc.relationDanforth, B. (2007). Bees. Current Biology, 17(5), R156-R161. doi: 10.1016/j.cub.2007.01.025
dc.relationDíaz, S., de Souza Urbano, S., Caesar, L., Blochtein, B., Sattler, A., Zuge, V., & Haag, K. (2017). Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. Journal of Invertebrate Pathology, 143, 35-39. doi: 10.1016/j.jip.2016.11.012
dc.relationDillon, R., & Dillon, V. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49(1), 71-92. http://doi: 10.1146/annurev.ento.49.061802.123416
dc.relationDisayathanoowat, T., Young, J., Helgason, T., & Chantawannakul, P. (2011). T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. FEMS Microbiology Ecology, 79(2), 273-281. doi: 10.1111/j.1574-6941.2011.01216.x
dc.relationDohanik, V., Souza, E., Lisboa, L., Zanuncio, J., & Serrão, J. (2016). Development of antennal sensilla of Tetragonisca angustula Latreille, 1811 (Hymenoptera: Meliponini) during pupation. Brazilian Journal of Biology, 77(2), 284-288. doi: 10.1590/1519-6984.12515
dc.relationDukas, R., & Real, L. (1991). Learning foraging tasks by bees: a comparison between social and solitary species. Animal Behaviour, 42(2), 269-276. doi: 10.1016/s0003-3472(05)80558-5
dc.relationEngel, P., & Moran, N. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699-735. http://doi: 10.1111/1574-6976.12025
dc.relationEngel, P., Martinson, V., & Moran, N. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences, 109(27), 11002-11007. http://doi: 10.1073/pnas.1202970109
dc.relationEngels, W., & Imperatriz-Fonseca, V. L. 1990 Caste development, reproductive strategies, and control of fertility in honey bees and stingless bees. In Social insects. An evolutionary approach to castes and reproduction (ed. W. Engels), pp. 167–230. Berlin, Heidelberg: Springer
dc.relationEvans, J., & Armstrong, T. (2005). Inhibition of the American foulbrood bacterium, Paenibacillus larvae larvae, by bacteria isolated from honey bees. Journal of Apicultural Research, 44(4), 168-171. doi: 10.1080/00218839.2005.11101173
dc.relationEveraars J., & Dormann C. (2014). Simulation of solitary (non-Apis) bees competing for pollen. In: Devillers J, editor. In Silico Bees: CRC Press. p. 209–68.
dc.relationFlores-Prado, L. (2012). Evolución de la sociabilidad en Hymenoptera: Rasgos conductuales vinculados a niveles sociales y precursores de sociabilidad en especies solitarias. Revista Chilena De Historia Natural, 85(3), 245-266. doi: 10.4067/s0716-078x2012000300001
dc.relationFlores-Prado, L., Chiappa, E., & Mante, M. (2012). Interacciones entre hembras de Protandrena evansi (Hymenoptera: Andrenidae), una abeja de nidificación comunal. Revista Colombiana de Entomología, 38(1), 118-123. Retrieved March 25, 2019, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882012000100021&lng=en&tlng=es.
dc.relationGibbs, J., Brady, S., Kanda, K., & Danforth, B. (2012). Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Molecular Phylogenetics and Evolution, 65(3), 926-939. doi: 10.1016/j.ympev.2012.08.013
dc.relationGilliam, M. (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters, 155(1), 1-10. doi: 10.1016/s0378-1097(97)00337-6
dc.relationGilliam, M., Prest, D., & Lorenz, B. (1989). Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie, 20(1), 53-68. http://doi: 10.1051/apido:19890106
dc.relationGilliam, M., Roubik, D., & Lorenz, B. (1990). Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie, 21(2), 89-97. doi: 10.1051/apido:19900201
dc.relationGrosso Ferreira, A., & Bego Rolandi, L. (2002). Labor division, average life span, survival curve, and nest architecture of Tetragonisca angustula angustula (Hymenoptera, Apinae, Meliponini). Sociobiology 40: 615-637.
dc.relationGruter, C., Menezes, C., Imperatriz-Fonseca, V., & Ratnieks, F. (2012). A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings Of The National Academy Of Sciences, 109(4), 1182-1186. doi: 10.1073/pnas.1113398109
dc.relationHammel, B., Vollet-Neto, A., Menezes, C., Nascimento, F., Engels, W., & Grüter, C. (2016). Soldiers in a stingless bee. The American Naturalist, 187(1), 120-129. http://doi: 10.1086/684192
dc.relationHammer, O., D. Harper & P. Ryan. 2001. PAST: Paleontological statistics software for education and data analysis. Paleontología Electrónica, 4: 1-9.
dc.relationHughes, W., Oldroyd, B., Beekman, M., & Ratnieks, F. (2008). Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science, 320(5880), 1213-1216. doi: 10.1126/science.1156108
dc.relationJeyaprakash, A., Hoy, M., & Allsopp, M. (2003). Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal Of Invertebrate Pathology, 84(2), 96-103. doi: 10.1016/j.jip.2003.08.007
dc.relationKamil, A. (2004). Sociality and the evolution of intelligence. Trends In Cognitive Sciences, 8(5), 195-197. doi: 10.1016/j.tics.2004.03.002
dc.relationKapheim, K., Rao, V., Yeoman, C., Wilson, B., White, B., Goldenfeld, N., & Robinson, G. (2015). Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLOS ONE, 10(4), e0123911. http://doi: 10.1371/journal.pone.0123911
dc.relationKeller, L. (2003). Behavioral plasticity: levels of sociality in bees. Current Biology, 13(16), R644-R645. doi: 10.1016/s0960-9822(03)00571-20
dc.relationKerr, W. E., Stort, A. C., & Montenegro, M. J. (1966). Importância de alguns fatôres ambientais na determinação das castas no gênero Melipona. Anais da Academia Brasileira de Ciências, 38(1), 149–168.
dc.relationKhan, K., Ansari, M., Al-Ghamdi, A., Nuru, A., Harakeh, S., & Iqbal, J. (2017). Investigation of gut microbial communities associated with indigenous honey bee (Apis mellifera jemenitica) from two different eco-regions of Saudi Arabia. Saudi Journal Of Biological Sciences, 24(5), 1061-1068. doi: 10.1016/j.sjbs.2017.01.055
dc.relationKiller, J., Dubna, S., Sedlacek, I., & Svec, P. (2013). Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 1), 152-157. http://doi: 10.1099/ijs.0.053033-0
dc.relationKlaus, H., Gustavo, M., Carla, J., Goncalo, P., Weyder, S., Rodrigo, D., & Bitondi, M. (2006). Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie, 37(6), 144–163. http://doi.org/10.1051/apido
dc.relationKoch, H., & Schmid-Hempel, P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences, 108(48), 19288-19292. http://doi: 10.1073/pnas.1110474108
dc.relationKoch, H., Abrol, D., Li, J., & Schmid-Hempel, P. (2013). Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Molecular Ecology, 22(7), 2028-2044. doi: 10.1111/mec.12209
dc.relationKoch, H., Cisarovsky, G., & Schmid-Hempel, P. (2012). Ecological effects on gut bacterial communities in wild bumblebee colonies. Journal of Animal Ecology, 81(6), 1202-1210. http://doi: 10.1111/j.1365-2656.2012.02004.x
dc.relationKocher, S., & Paxton, R. (2014). Comparative methods offer powerful insights into social evolution in bees. Apidologie, 45(3), 289-305. doi: 10.1007/s13592-014-0268-3
dc.relationKwapong P., Aidoo, K., Combey dan, R., & karikari, A. (2010). Stingless bees. importance management and utilisation. A training manual for stingless beekeeping Unimax Macmillan LTD.
dc.relationKwong, W., & Moran, N. (2016). Gut microbial communities of social bees. Nature Reviews Microbiology, 14(6), 374-384. http://doi: 10.1038/nrmicro.2016.43
dc.relationKwong, W., Medina, L., Koch, H., Sing, K., Soh, E., & Ascher, J. et al. (2017). Dynamic microbiome evolution in social bees. Science Advances, 3(3), e1600513. doi: 10.1126/sciadv.1600513
dc.relationLeonhardt, S., & Kaltenpoth, M. (2014). Microbial communities of three sympatric Australian stingless bee species. Plos ONE, 9(8), e105718. doi: 10.1371/journal.pone.0105718
dc.relationLibbrecht, R., & Keller, L. (2015). The making of eusociality: insights from two bumblebee genomes. Genome Biology, 16(1). doi: 10.1186/s13059-015-0635-z
dc.relationLim, H., Chu, C., Seufferheld, M., & Cameron, S. (2015). Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLOS ONE, 10(3), e0118566. http://doi: 10.1371/journal.pone.0118566
dc.relationLisboa, L., Serrao, J., Cruz-Landim, C., & Campos, L. (2005). Effect of Larval Food Amount on Ovariole Development in Queens of Trigona spinipes (Hymenoptera, Apinae). Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C, 34(3), 179-184. http://doi: 10.1111/j.1439-0264.2005.00591.x
dc.relationLockhart, P. J., & Cameron, S. A. (2001). Trees for bees. Trends in ecology and evolution, 16(2), 84–88. http://doi.org/10.1016/S0169-5347(00)02054-1
dc.relationLyapunov, YaE, Kuzyaev, R.Z., Khismatullin, R.G., Bezgodova, O.A. (2008) Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 421–428
dc.relationMartínez, D. (2015). Estandarización de protocolo para la división de nidos de la especie Tetragonisca angustula y evaluación de su adaptación a diferentes diseños de colmenas en La Mesa (Cundinamarca). Tesis de pregrado.
dc.relationMartinson, V., Danforth, B., Minckley, R., Rueppell, O., Tingek, S., & Moran, N. (2010). A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20(3), 619-628. doi: 10.1111/j.1365-294x.2010.04959.x
dc.relationMARTINSON, V., DANFORTH, B., MINCKLEY, R., RUEPPELL, O., TINGEK, S., & MORAN, N. (2010). A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20(3), 619-628. doi: 10.1111/j.1365-294x.2010.04959.x
dc.relationMartinson, V., Moy, J., & Moran, N. (2012). Establishment of Characteristic Gut Bacteria during Development of the Honeybee Worker. Applied And Environmental Microbiology, 78(8), 2830-2840. doi: 10.1128/aem.07810-11
dc.relationMartinson, V., Moy, J., y Moran, N. (2012). Establishment of characteristic gut bacteria during development of the Honeybee Worker. Applied and Environmental Microbiology, 78(8), 2830-2840. http://doi.org/10.1128/AEM.07810-11
dc.relationMateus, S., Ferreira – Caliman, M.J., Menezes, C., Grüter, C. (2019) Beyond temporal – polyethism: division of labor in the eusocial bee Melipona marginata. Insectes Sociaux. http://dx.doi.org/10.1007/s00040-019-00691-2
dc.relationMeeus, I., Parmentier, L., Billiet, A., Maebe, K., Van Nieuwerburgh, F., & Deforce, D. et al. (2015). 16S rRNA Amplicon Sequencing Demonstrates that Indoor-Reared Bumblebees (Bombus terrestris) Harbor a Core Subset of Bacteria Normally Associated with the Wild Host. PLOS ONE, 10(4), e0125152. doi: 10.1371/journal.pone.0125152
dc.relationMenezes, C., Vollet-Neto, A., Contrera, F., Venturieri, G., & Imperatriz-Fonseca, V. (2013). The role of useful microorganisms to stingless bees and stingless beekeeping. Pot-Honey. http://doi.org/10.1007/978-1-4614-4960-7_10
dc.relationMenezes, C., Vollet-Neto, A., Marsaioli, A., Zampieri, D., Fontoura, I., Luchessi, A., & Imperatriz-Fonseca, V. (2015). A Brazilian social bee must cultivate fungus to survive. Current Biology, 25(21), 2851-2855. doi: 10.1016/j.cub.2015.09.028
dc.relationMichener, C. (1969). Comparative social behavior of bees. Annual Review of Entomology 14: 299-342.
dc.relationMichener, C. (1974). The Social Behavior of the Bees. Cambridge, MA: Harvard University Press.
dc.relationMichener, C.D. (2007) The Bees of the World. 2nd Edition, John Hopkins University Press, Baltimore.
dc.relationMohr, K., & Tebbe, C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258-272.
dc.relationMorales Soto, G., Botero Garces, N., & García Mejía, I. (1999). Observaciones sobre algunos comportamientos de Trigona (Tetragonisca) angustula. Illiger (Hym. Apidae), 52(2), 721–732.
dc.relationMoran, N. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. Proceedings of the National Academy of Sciences of the United States of America, 104 Suppl, 8627–8633. http://doi.org/10.1073/pnas.0611659104
dc.relationMoran, N., & Baumann, P. (1994). Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends In Ecology y Evolution, 9(1), 15-20.
dc.relationMoran, N., Hansen, A., Powell, J., & Sabree, Z. (2012). Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees. Plos ONE, 7(4), e36393. doi: 10.1371/journal.pone.0036393
dc.relationMoritz, B., & Crailsheim, K. (1987). Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). Journal Of Insect Physiology, 33(12), 923-931. doi: 10.1016/0022-1910(87)90004-7
dc.relationNates-Parra G. N., & Rosso-Londoño, J. M (2013). Diversidad de abejas sin aguijón (Hymenoptera: Meliponini) utilizadas en meliponicultura en Colombia. Acta biológica Colombiana, 18(3): 415-426.
dc.relationNates-Parra, G. (2001). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3):233–248.
dc.relationNates-parra, G., Lopera, A. V., & Briceño, C. V. (1989). Ciclo de desarrollo de Trigona (Tetragonisca) angustula, Latreille 1811 (Hymenoptara, Trigonini). Acta Biológica Colombiana, 5(1).
dc.relationNeff, J. (2008). Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea). Apidologie, 39(1), 30-45. doi: 10.1051/apido:2007055
dc.relationNogueira-neto, P. (1997). Vida e criação de abelhas indígenas sem ferrão. São Paulo, SP. Edição Nogueirapis, 446p.
dc.relationObregón, D., Rodríguez, A., Chamorro, F., & Nates-Parra, G. (2013). Pot-Honey. In P. Vit, S. R. M. Pedro, y D. Roubik (Eds.), Pot-Honey (pp. 337–346). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4614-4960-7
dc.relationOlofsson, T., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356-363. doi: 10.1007/s00284-008-9202-0
dc.relationOlofsson, T., & Vásquez, A. (2009). Phylogenetic comparison of bacteria isolated from the honey stomachs of honey bees Apis mellifera and bumble bees Bombus spp. Journal Of Apicultural Research, 48(4), 233-237. doi: 10.3896/ibra.1.48.4.02
dc.relationOlofsson, T., Alsterfjord, M., Nilson, B., Butler, E., & Vasquez, A. (2014). Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 9), 3109-3119. doi: 10.1099/ijs.0.059600-0
dc.relationOster, G. F., and E. O. Wilson. 1978. Caste and ecology in the social insects. Princeton University Press, Princeton, NJ.
dc.relationPage, R. E., & Erber, J. (2002). Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften, 89(3), 91–106. http://doi.org/10.1007/s00114-002-0299-x
dc.relationPaludo, C., Menezes, C., Silva-Junior, E., Vollet-Neto, A., Andrade-Dominguez, A., & Pishchany, G. et al. (2018). Stingless bee larvae 4equire fungal steroid to pupate. Scientific Reports, 8(1). http://dx.doi.org/10.1038/s41598-018-19583-9
dc.relationParmentier, A., Meeus, I., Van Nieuwerburgh, F., Deforce, D., Vandamme, P., & Smagghe, G. (2016). A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum). Insect Science, 25(1), 66-74. doi: 10.1111/1744-7917.12381
dc.relationParmentier, L., Meeus, I., Mosallanejad, H., de Graaf, D., & Smagghe, G. (2015). Plasticity in the gut microbial community and uptake of Enterobacteriaceae (Gammaproteobacteria) in Bombus terrestris bumblebees’ nests when reared indoors and moved to an outdoor environment. Apidologie, 47(2), 237-250. doi: 10.1007/s13592-015-0393-7
dc.relationParra, M. (1990). Abejas de Colombia. III. Clave para géneros y subgéneros de Meliponinae (Hymenoptera: Apidae). Acta Biológica Colombiana115-128.
dc.relationPaxton, R., Kukuk, P., & Tengö, J. (1999). Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae). Insectes Sociaux, 46(2), 109-118. doi: 10.1007/s000400050120
dc.relationPeters, R., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., & Meusemann, K. et al. (2019). Evolutionary history of the Hymenoptera. Current Biology 27, 1013–1018.
dc.relationPoulsen, M., Cafaro, M., Erhardt, D., Little, A., Gerardo, N., & Tebbets, B. et al. (2009). Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environmental Microbiology Reports, 2(4), 534-540. doi: 10.1111/j.1758-2229.2009.00098.x
dc.relationPowell, J., Martinson, V., Urban-Mead, K., & Moran, N. (2014). Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Applied And Environmental Microbiology, 80(23), 7378-7387. doi: 10.1128/aem.01861-14
dc.relationPrato, M., & Soares, A. E. E. (2013). Production of sexuals and mating frequency in the stingless bee Tetragonisca angustula (Latreille) (Hymenoptera, Apidae). Neotropical Entomology, 42(5), 474–482. http://doi.org/10.1007/s13744-013-0154-0
dc.relationPromnuan, Y., Kudo, T., Ohkuma, M., & Chantawannakul, P. (2012). Streptomyces chiangmaiensis sp. nov. and Streptomyces lannensis sp. nov., isolated from the South-East Asian stingless bee (Tetragonilla collina). International Journal of Systematic and Evolutionary Microbiology, 63(Pt 5), 1896-1901. doi: 10.1099/ijs.0.045930-0
dc.relationRasmussen, C. & S. Cameron. (2010). Global stingless bee phylog- eny supports ancient divergence, vicariance, and long-distance dispersal. Biological Journal of the Linnean Society 99:206–232.
dc.relationRatnieks, F. (2001). Heirs and spares: Caste conflict and excess queen production in Melipona bees. Behavioral Ecology and Sociobiology, 50(5), 467–473. http://doi.org/10.1007/s002650100388
dc.relationRehan, S., & Richards, M. (2010). Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 142(01), 65-74. doi: 10.4039/n09-056
dc.relationRehan, S., & Richards, M. (2013). Reproductive aggression and nestmate recognition in a subsocial bee. Animal Behaviour, 85(4), 733-741. doi: 10.1016/j.anbehav.2013.01.010
dc.relationRehan, S., Berens, A., & Toth, A. (2014). At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee. BMC Evolutionary Biology, 14(1). doi: 10.1186/s12862-014-0260-6
dc.relationRehan, S., Glastad, K., Lawson, S., & Hunt, B. (2016). The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. Genome Biology and Evolution, 8(5), 1401-1410. doi: 10.1093/gbe/evw079
dc.relationRodriguez-Serrano, E., Inostroza-Michael, O., Avaria-Llautureo, J., & Hernandez, C. (2012). Colony size evolution and the origin of eusociality in corbiculate bees (Hymenoptera: Apinae). Plos ONE, 7(7), e40838. doi: 10.1371/journal.pone.0040838
dc.relationRomiguier, J., Cameron, S., Woodard, S., Fischman, B., Keller, L., & Praz, C. (2015). Phylogenomics controlling for base compositional bias reveals a single origin of eusociality in corbiculate bees. Molecular Biology and Evolution, 33(3), 670-678. doi: 10.1093/molbev/msv258
dc.relationRosa, C., & Lachance, M. (2005). Zygosaccharomyces machadoi sp. n., a yeast species isolated from a nest of the stingless bee Tetragonisca angustula. Lundiana. 6: 27-29.
dc.relationRosa, C., Lachance, M., Silva, J., Teixeira, A., Marini, M., Antonini, Y., & Martins, R. (2003). Yeast communities associated with stingless bees. FEMS Yeast Research, 4(3), 271-275. doi: 10.1016/s1567-1356(03)00173-9
dc.relationSabaté, D., Carrillo, L., & Carina Audisio, M. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research In Microbiology, 160(3), 193-199. doi: 10.1016/j.resmic.2009.03.002
dc.relationSakagami, S. (1966). Techniques for the observation of behaviour and social organization of stingless bees by using a special hive. Papéis Avulsos Do Departamento de Zoologia.
dc.relationSakagami, S. F., & Zucchi, R. (1974). Oviposition Behavior of Two Dwarf Stingless Bees, Hypotrigona (Leurotrigona) muelleri and H (Trigonisca) duckei, with Notes on the Temporal Articulation of Oviposition Process in Stingless Bees (With 27 Text-figures and 8 Tables). Journal of the Faculty of Science Hokkaido University Series VI. ZOOLOGY, 19(2), 361–421.
dc.relationSakagami, S. F., Beig, D., Zucchi, R., & Akahira, Y. (1963). Occurence of ovary-developed workers in queenright colonies of stingless bees.
dc.relationSanto Domingo, J., Kaufman, M., Klug, M., Holben, W., Harris, D., & Tiedje, J. (1998). Influence of diet on the structure and function of the bacterial hindgut community of crickets. Molecular Ecology, 7(6), 761-767. http://doi: 10.1046/j.1365-294x.1998.00390.x
dc.relationScheiner, R., Abramson, C. I., Brodschneider, R., Crailsheim, K., Farina, W. M., Fuchs, S., & Thenius, R. (2013). Standard methods for behavioural studies of Apis mellifera. Journal of Apicultural Research, 52(4), 1–58. http://doi.org/10.3896/IBRA.1.52.4.04
dc.relationSchultz, T. R., Engel, M. S., & Aschier, J. S. (2001). Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 74(1), 10–16.
dc.relationSilva, W., & Paz, J. (2012). Abelhas sem ferrão: muito mais do que uma importância econômica. Natureza Online.
dc.relationSilva-Matos, E. V, Noll, F. B., & Zucchi, R. (2000). Sistemas de regulação social encontrados em abelhas altamente eussociais (Hymenoptera; Apidae, Meliponinae). Anais IV Encontro Sobre Abelhas, Ribeirão Preto, 95–101.
dc.relationStark, R., Hefetz, A., Gerling, D., & Velthuis, H. (1990). Reproductive competition involving oophagy in the socially nesting bee Xylocopa sulcatipes. Naturwissenschaften, 77(1), 38-40. doi: 10.1007/bf01131797
dc.relationSzolderits, M., & Crailsheim, K. (1993). A comparison of pollen consumption and digestion in honeybee (Apis mellifera carnica). Drones and Workers, 39(10), 877–881.
dc.relationTarpy, D., Mattila, H., & Newton, I. (2015). Development of the Honey Bee Gut Microbiome throughout the Queen-Rearing Process. Applied And Environmental Microbiology, 81(9), 3182-3191. doi: 10.1128/aem.00307-15
dc.relationTeixeira, A., Marini, M., Nicoli, J., Antonini, Y., Martins, R., Lachance, M. & Rosa, C. (2003) Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. Int. J. Syst. Evol. Microbiol. 53, 339-343. doi:10.1099/ijs.0.02262-0
dc.relationThompson, G. J., & Oldroyd, B. P. (2004). Evaluating alternative hypotheses for the origin of eusociality in corbiculate bees. Molecular Phylogenetics and Evolution, 33(2), 452–456. http://doi.org/10.1016/j.ympev.2004.06.016
dc.relationTierney, S., Smith, J., Chenoweth, L., & Schwarz, M. (2008). Phylogenetics of allodapine bees: a review of social evolution, parasitism and biogeography. Apidologie, 39(1), 3-15. doi: 10.1051/apido:2007045
dc.relationTorres, A., Hoffmann, W., & Lamprecht, I. (2009). Thermal investigations of a nest of the stingless bee Trigona (Frieseomelitta) nigra paupera provancher in Colombia. Journal Of Thermal Analysis And Calorimetry, 95(3), 737-741. doi: 10.1007/s10973-008-9466-4
dc.relationVanEngelsdorp, D., Evans, J., Saegerman, C., Mullin, C., Haubruge, E., & Nguyen, B. et al. (2009). Colony Collapse Disorder: A Descriptive Study. Plos ONE, 4(8), e6481.
dc.relationVasquez, A., & Olofsson, T. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. J Apicult Res, 48: 189–195.
dc.relationVásquez, A., Forsgren, E., Fries, I., Paxton, R., Flaberg, E., Szekely, L., & Olofsson, T. (2012). Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. Plos ONE, 7(3), e33188. doi: 10.1371/journal.pone.0033188
dc.relationVeen, J., & Sommeijer, M. (2000). Colony reproduction in Tetragonisca angustula (Apidae, Meliponini), 47, 70–75.
dc.relationVojvodic, S., Rehan, S., & Anderson, K. (2013). Microbial gut diversity of africanized and european honey bee larval instars. Plos ONE, 8(8), e72106. doi: 10.1371/journal.pone.0072106
dc.relationWANG, M., ZHAO, W., XU, H., WANG, Z., & HE, S. (2015). Bacillus in the guts of honey bees (Apis mellifera; Hymenoptera: Apidae) mediate changes in amylase values. European Journal Of Entomology, 112(4), 619-624. doi: 10.14411/eje.2015.095
dc.relationWeinstock, G. M., Robinson, G. E., Gibbs, R. A., Worley, K. C., Evans, J. D., Maleszka, R., & Wright, R. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. http://doi.org/10.1038/nature05260
dc.relationWille, A. (1983). Biology of the stingless bees. Annual Review of Entomology, 28(1), 41-64. doi: 10.1146/annurev.en.28.010183.000353
dc.relationWilson, E. O., & Hölldobler, B. (2005). Eusociality: Origin and consequences. PNAS, 102(38), 651–652. http://doi.org/10.1016/j.pbi.2009.10.009
dc.relationWinston, L. (2014). The division of labor among worker honey bees (Hymenoptera : Apidae): The effects of multiple patrilines Author (s): S. A .Kolmes, M. L. Winston and L. A. Fergusson Source : Journal of the Kansas Entomological Society , Vol . 62 , No . 1 ( Jan , 62(1), 80–95.
dc.relationWinston, M. L., Michener, C. D., & Canada, A. (1977). Dual origin of highly social behavior among bees. Proceedings of the National Academy of Sciences of the United States of America, 74(3), 1135–1137. http://doi.org/10.1073/pnas.74.3.1135
dc.relationXU Long-long, WU Jie, GUO Jun, LI Ji-lian. Dynamic Variation of Symbionts in Bumblebees During Hosts Growth and Development. Scientia Agricultura Sinica, 47(10): 2030-2037 doi: 10.3864/j.issn.0578-1752.2014.10.017
dc.relationXU Long-long, WU Jie, GUO Jun, LI Ji-lian. Dynamic Variation of Symbionts in Bumblebees During Hosts Growth and Development. Scientia Agricultura Sinica, 47(10): 2030-2037 doi: 10.3864/j.issn.0578-1752.2014.10.017
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.titleMicroorganismos cultivables asociados a los estadios y edades de Trigona (Tetragonisca) angustula Latreille (Hymenoptera: Meliponini)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución