dc.relation | Acevedo-Garcia, J., Gruner, K., Reinstädler, A., Kemen, A., Kemen, E., Cao, L., … Panstruga, R. (2017). The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-07188-7
Adam, H., Jouannic, S., Escoute, J., Duval, Y., Verdeil, J. L., & Tregear, J. W. (2005). Reproductive developmental complexity in the African oil palm (Elaeis guineensis, Arecaceae). American Journal of Botany, 92(11), 1836–1852. https://doi.org/10.3732/ajb.92.11.1836
Ajengui, A., Bertolini, E., Ligorio, A., Chebil, S., Ippolito, A., & Sanzani, S. M. (2018). Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. Plant Cell Reports, 37(3), 483–499. https://doi.org/10.1007/s00299-017-2244-7
Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., … Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213(March), 29–37. https://doi.org/10.1016/j.micres.2018.04.008
Ali, S. S., Shao, J., Lary, D. J., Kronmiller, B. A., Shen, D., Strem, M. D., … Bailey, B. A. (2017). Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome Biology and Evolution, 9(3), 536–557. https://doi.org/10.1093/gbe/evx021
Alves, M., Dadalto, S., Gonçalves, A., de Souza, G., Barros, V., & Fietto, L. (2014). Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes, 2(1), 85–106. https://doi.org/10.3390/proteomes2010085
Amaro, T. M. M. M., Thilliez, G. J. A., Mcleod, R. A., & Huitema, E. (2018). Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s). Molecular Plant Pathology, 19(5), 1114–1126. https://doi.org/10.1111/mpp.12590
Asai, S., & Shirasu, K. (2015). Plant cells under siege: Plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. https://doi.org/10.1016/j.pbi.2015.08.008
Baggs, E., Dagdas, G., & Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Current Opinion in Plant Biology, 38(Figure 1), 59–67. https://doi.org/10.1016/j.pbi.2017.04.012
Bahia, R. de C., Aguilar-Vildoso, C. I., Luz, E. D. M. N., Lopes, U. V., Machado, R. C. R., & Corrêa, R. X. (2015). Resistance to Black Pod Disease in a Segregating Cacao Tree Population. Tropical Plant Pathology, 40(1), 13–18. https://doi.org/10.1007/s40858-014-0003-7
Barcelos, E., Rios, S. de A., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6(March), 1–16. https://doi.org/10.3389/fpls.2015.00190
Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. https://doi.org/10.1093/jxb/ert375
Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(May), 228. https://doi.org/10.3389/fpls.2014.00228
Benítez, É., & García, C. (2015). The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana, 32(3), 390–398. https://doi.org/10.15446/agron.colomb.v32n3.46240
Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T., & Tsuda, K. (2017). Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 55(1), annurev-phyto-080516-035544. https://doi.org/10.1146/annurev-phyto-080516-035544
Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354. https://doi.org/10.1038/nature22011
Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. https://doi.org/10.1128/EC.00192-12
Bigeard, J., Colcombet, J., & Hirt, H. (2015a). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022
Bigeard, J., Colcombet, J., & Hirt, H. (2015b). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022
Bolger, A. M., Poorter, H., Dumschott, K., Bolger, M. E., Arend, D., Osorio, S., … Usadel, B. (2019). Computational aspects underlying genome to phenome analysis in plants. Plant Journal, 97(1), 182–198. https://doi.org/10.1111/tpj.14179
Bolouri Moghaddam, M. R., Vilcinskas, A., & Rahnamaeian, M. (2016). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Molecular Plant Pathology, 17(3), 464–471. https://doi.org/10.1111/mpp.12299
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871–879. https://doi.org/10.1016/j.tplants.2017.06.013
Cao, Z., & Deng, Z. (2017). De novo assembly, annotation, and characterization of root transcriptomes of three caladium cultivars with a focus on necrotrophic pathogen resistance/defense-related genes. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040712
Chan, P. L., Rose, R. J., Abdul Murad, A. M., Zainal, Z., Leslie Low, E. T., Ooi, L. C. L., … Singh, R. (2014). Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099774
Chang, Y. H., Yan, H. Z., & Liou, R. F. (2015). A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology, 16(2), 123–136. https://doi.org/10.1111/mpp.12166
Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E., & Ortiz, R. (2019). High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 9(5), 258. https://doi.org/10.3390/agronomy9050258
Chen, X. R., Huang, S. X., Zhang, Y., Sheng, G. L., Li, Y. P., & Zhu, F. (2018). Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Molecular Genetics and Genomics, 0(0), 1–13. https://doi.org/10.1007/s00438-018-1432-7
Cochard, B., Amblard, P., & Durand-Gasselin, T. (2005). Oil palm genetic improvement and sustainable development. Oléagineux, Corps Gras, Lipides, 12(2), 141–147. https://doi.org/10.1051/ocl.2005.0141
Comer, J. R., Zomlefer, W. B., Barrett, C. F., Stevenson, D. W., Heyduk, K., & Leebens-Mack, J. H. (2016). Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Molecular Phylogenetics and Evolution, 97, 32–42. https://doi.org/10.1016/j.ympev.2015.12.015
Cros, D., Denis, M., Sánchez, L., Cochard, B., Flori, A., Durand‑gasselin, T., … Bouvet, J. (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 128, 397–410. https://doi.org/10.1007/s00122-014-2439-z
Dalio, R. J. D., Herlihy, J., Oliveira, T. S., McDowell, J. M., & Machado, M. (2017). Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Molecular Plant-Microbe Interactions, 31(1), 22–33. https://doi.org/10.1094/mpmi-07-17-0174-fi
Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24(1), 275–287. https://doi.org/10.1105/tpc.111.093039
De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191884
Derevnina, L., Petre, B., Kellner, R., Dagdas, Y. F., Sarowar, M. N., Giannakopoulou, A., … Kamoun, S. (2016). Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150459. https://doi.org/10.1098/rstb.2015.0459
Efombagn, M. I. B., Bieysse, D., Nyassé, S., & Eskes, A. B. (2011). Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: Repeatability and reliability of screening tests and field observations. Crop Protection, 30(2), 105–110. https://doi.org/10.1016/j.cropro.2010.10.012
El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible faba bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. Plant Pathology Journal, 30(4), 355–366. https://doi.org/10.5423/PPJ.OA.06.2014.0050
Evangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., … Schornack, S. (2017). Time-resolved dual root-microbe transcriptomics reveals early induced Nicotiana benthamiana genes and conserved infection-promoting Phytophthora palmivora effectors. BioRxiv, 1–24. https://doi.org/10.1186/s12915-017-0379-1
Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537
Fawke, S., Doumane, M., & Schornack, S. (2015a). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/mmbr.00010-15
Fawke, S., Doumane, M., & Schornack, S. (2015b). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/MMBR.00010-15
Fedepalma. (2016). Guía de bolsillo para el reconocimiento y manejo de las principales enfermedades e insectos plaga en el cultivo de la palma de aceite. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Semanario Palmero/12 - 13 abril/Guía de bolsillo plagas.pdf
Fedepalma. (2018). Anuario Estadistico 2018.
Figueiró, A. de A., Reese, N., Gonzalez Hernandez, J. L., Pacheco, M. T., Martinelli, J. A., Federizzi, L. C., & Delatorre, C. A. (2015). Reactive Oxygen Species are not Increased in Resistant Oat Genotypes Challenged by Crown Rust Isolates. Journal of Phytopathology, 163(10), 795–806. https://doi.org/10.1111/jph.12377
Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. https://doi.org/10.1016/j.mib.2018.01.020
Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066-16. https://doi.org/10.1128/MMBR.00066-16
Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(November), 1–22. https://doi.org/10.3389/fpls.2016.01766
Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F., & Martínez de Ilárduya, Ó. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-232
Guo, N., Zhao, J., Yan, Q., Huang, J., Ma, H., Rajput, N. A., … Dou, D. (2018). Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. Journal of Phytopathology, (April 2017), 379–385. https://doi.org/10.1111/jph.12695
Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., … Kumar, A. (2017). Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Frontiers in Plant Science, 8(April), 1–11. https://doi.org/10.3389/fpls.2017.00643
Huang, G., Liu, Z., Gu, B., Zhao, H., Jia, J., Fan, G., … Shan, W. (2019). An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20(3), 356–371. https://doi.org/10.1111/mpp.12760
Huang, S., Van Aken, O., Schwarzländer, M., Belt, K., & Millar, A. H. (2016). The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 171(3), 1551–1559. https://doi.org/10.1104/pp.16.00166
Imam, J., Singh, P. K., & Shukla, P. (2016). Plant microbe interactions in post genomic era: Perspectives and applications. Frontiers in Microbiology, 7(SEP), 1–15. https://doi.org/10.3389/fmicb.2016.01488
Islam, M. T., Hussain, H. I., Rookes, J. E., & Cahill, D. M. (2018). Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. Plant Biology, 20(1), 130–142. https://doi.org/10.1111/plb.12624
Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 94(4–5), 453–467. https://doi.org/10.1007/s11103-017-0617-5
Jindřichová, B., Fodor, J., Šindelářová, M., Burketová, L., & Valentová, O. (2011). Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environmental and Experimental Botany, 72(2), 149–156. https://doi.org/10.1016/j.envexpbot.2011.02.018
Jones, J. D. G., & Dangl, L. (2006). The plant immune system. Nature, 444(November), 323–329. https://doi.org/10.1038/nature05286
Judelson, H. S. (2017). Metabolic Diversity and Novelties in the Oomycetes. Annual Review of Microbiology, 71(1), annurev-micro-090816-093609. https://doi.org/10.1146/annurev-micro-090816-093609
Judelson, H. S., & Ah-Fong, A. M. V. (2019). Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 179(4), 1198–1211. https://doi.org/10.1104/pp.18.00979
Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 44(1), 41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436
Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., … Govers, F. (2015). The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16(4), 413–434. https://doi.org/10.1111/mpp.12190
Kanwar, P., & Jha, G. (2019). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta, 249(2), 305–318. https://doi.org/10.1007/s00425-018-3018-3
Kanyuka, K., & Rudd, J. J. (2019). Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Current Opinion in Plant Biology, 50, 1–8. https://doi.org/10.1016/j.pbi.2019.02.005
Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19(April), 100182. https://doi.org/10.1016/j.plgene.2019.100182
Kebdani, N., Pieuchot, L., Deleury, E., Panabières, F., Le Berre, J. Y., & Gourgues, M. (2010). Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist, 185(1), 248–257. https://doi.org/10.1111/j.1469-8137.2009.03048.x
Khan, M., Seto, D., Subramaniam, R., & Desveaux, D. (2018). Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant Journal, 93(4), 651–663. https://doi.org/10.1111/tpj.13780
Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden, G. (2016). Future-proof crops: challenges and strategies for climate resilience improvement. Current Opinion in Plant Biology, 30, 47–56. https://doi.org/10.1016/j.pbi.2016.01.005
Koç, E., & Sülün ÜSTÜN, A. (2012). Infl uence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turk J Biol, 36, 357–371. https://doi.org/10.3906/biy-1109-12
Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1–18. https://doi.org/10.1007/s13205-016-0389-7
Latifah, M., Zainal Abidin, M. A., Kamaruzaman, S., & Nusaibah, S. A. (2017). Cross-infectivity of oil palm by Phytophthora spp. isolated from perennial crops in Malaysia. Forest Pathology, 47(6), 1–6. https://doi.org/10.1111/efp.12374
Lee, H. A., & Yeom, S. I. (2015). Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 14(4), 233–242. https://doi.org/10.1093/bfgp/elv012
Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112(1), 54–62. https://doi.org/10.1016/j.phytochem.2014.08.027
Lenzoni, G., Liu, J., & Knight, M. R. (2018). Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. New Phytologist, 217(4), 1598–1609. https://doi.org/10.1111/nph.14924
Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 19(5), 641–650. https://doi.org/10.1016/j.chom.2016.04.011
Li, Q., Zhang, M., Shen, D., Liu, T., Chen, Y., Zhou, J. M., & Dou, D. (2016). A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Scientific Reports, 6(March), 1–13. https://doi.org/10.1038/srep26951
Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11(October 2016), 192–204. https://doi.org/10.1016/j.redox.2016.12.009
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Lo Presti, L., & Kahmann, R. (2017a). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005
Lo Presti, L., & Kahmann, R. (2017b). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005
Louise, C. (2016). Resistencia a la Pudrición del cogollo en el material Guineensis. Revista Palmas, 37(Especial), 183–189.
Ma, X., Xu, G., He, P., & Shan, L. (2016). SERKing Coreceptors for Receptors. Trends in Plant Science, 21(12), 1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014
Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., … Wang, Y. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. The Plant Cell (Vol. 27). https://doi.org/10.1105/tpc.15.00390
Macho, A. P., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54(2), 263–272. https://doi.org/10.1016/j.molcel.2014.03.028
Maliogka, V. I., Minafra, A., Saldarelli, P., Ruiz-García, A. B., Glasa, M., Katis, N., & Olmos, A. (2018). Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10(8), 1–23. https://doi.org/10.3390/v10080436
Martínez, G., Arango, M., Sarria, G., Velez, D., Rodriguez, J., Mestizo, Y., … Guest, D. (2013). Avances en la investigación sobre las dos enfermedades más importantes en la palma de aceite en Colombia la Pudrición del cogollo y la Marchitez letal. Palmas, 34(1), 39–48.
Martínez, G., & Sarria, G. (2013). Estado del arte de la investigación y control de la Pudrición del cogollo (PC). Revista Palmas, 34(2), 47–57.
Martínez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Phytophthora palmivora es el agente causal de la pudrición del cogollo de la palma de aceite Palabras clAve. Palmas, 31(No. especial Tomo I), 334–344.
Martínez, G., Sarria, G., Torres, G., & Varon, F. (2010). Avances en la investigación de Phytophthora palmivora , el agente causal de la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 31(1), 55–63.
Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014a). Nuevos hallazgos sobre la Pudrici{ó}n del cogollo de la palma de aceite en Colombia: biolog{í}a, detecci{ó}n y estrategias de manejo. Palmas, 35(1), 11–17.
Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014b). Nuevos hallazgos sobre la Pudrición del cogollo de la palma de aceite en Colombia: biología, detección y estrategias de manejo. Palmas, 35(1), 11–17.
Martínez, G., & Torres, G. A. (2007). Presencia de la pudrición de cogollo de la palma de aceite (PC) en plantas de vivero. Palmas, 28(4), 13–20.
Mcgowan, J., & Fitzpatrick, D. A. (2017). Genomic, network and phylogenetic analysis of the oomycete effector arsenal. MSphere, 2(6), 1–22. https://doi.org/https://doi.org/10.1128/mSphere .00408-17. Editor
Meijaard, E., Garcia-Ulloa, Sheil, J., Carlson, S. A., Juffe-Bignoli, & Brooks. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil Palm Task Force. INTERNATIONAL UNION FOR CONSERVATION OF NATURE. Retrieved from https://www.iucn-optf.org/
Meyer, F. E., Shuey, L. S., Naidoo, S., Mamni, T., Berger, D. K., Myburg, A. A., … Naidoo, S. (2016). Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility. Frontiers in Plant Science, 7(March), 1–15. https://doi.org/10.3389/fpls.2016.00191
Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.164376
Ml, C. C. (2007). Red ring and other diseases of the oil palm in Central and South America The red ring / little leaf disease, 1–13.
Monteiro, F., & Nishimura, M. T. (2018). Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 56(1), 243–267. https://doi.org/10.1146/annurev-phyto-080417-045817
Naidoo, S., Visser, E. A., Zwart, L., Toit, Y., Bhadauria, V., & Shuey, L. S. (2014). Dual RNA-seq to Elucidate the Plant – Pathogen Duel.
Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2017). Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37(2), 229–237. https://doi.org/10.3109/07388551.2015.1134437
Nobori, T., & Tsuda, K. (2019). The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 50, 58–66. https://doi.org/10.1016/j.pbi.2019.02.003
Nocker, S. Van, & Gardiner, S. E. (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1(March), 1–8. https://doi.org/10.1038/hortres.2014.22
Nugroho, Y. A., Sumertajaya, I. M., Wiendi, N. M. A., & Toruan-Mathius, N. (2014). Estimation of genetic parameters for in vitro culture traits and selection best progenies for tenera oil palm tissue culture. Energy Procedia, 47, 316–322. https://doi.org/10.1016/j.egypro.2014.01.231
Nyadanu, D., Assuah, M. K., Adomako, B., & Opoku, I. Y. (2009). EFFICACY OF SCREENING METHODS USED IN BREEDING FOR BLACK POD DISEASE RESISTANCE VARIETIES IN COCOA. African Crop Science Journal, 17(4), 175–186.
Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of phytophthora palmivora infection in oil palm leaflets with fluorescent proteins and cell viability markers. Plant Pathology Journal, 35(1), 19–31. https://doi.org/10.5423/PPJ.OA.02.2018.0034
Orłowska, E., Llorente, B., & Cvitanich, C. (2013). An important factor in plant-pathogen interactions Plant integrity © 2013 Landes Bioscience . Do not distribute © 2013 Landes Bioscience . Do not distribute. Plant Signaling & Behavior, e225-13–131. https://doi.org/10.4161/psb.22513
Osuna-Cruz, C. M., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Cigliano, R. A., … Ercolano, M. R. (2018). PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Research, 46(D1), D1197–D1201. https://doi.org/10.1093/nar/gkx1119
Panstruga, R., & Peter Dodds. (2009). Terrific Protein Traffic : The Mystery. Science, 1575(2008), 2008–2010. https://doi.org/10.1126/science.1171652
Peng, Y., van Wersch, R., & Zhang, Y. (2017). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 31(4), 403–409. https://doi.org/10.1094/mpmi-06-17-0145-cr
Petitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. (2016). Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 17(6), 860–874. https://doi.org/10.1111/mpp.12334
Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7(June), 1–14. https://doi.org/10.3389/fpls.2016.00760
Pilet-Nayel, M.-L., Moury, B., Caffier, V., Montarry, J., Kerlan, M.-C., Fournet, S., … Delourme, R. (2017). Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01838
Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021
Rival, A. (2017). Breeding the oil palm ( Elaeis guineensis Jacq.) for climate change. Ocl, 24(1), D107. https://doi.org/10.1051/ocl/2017001
Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49. https://doi.org/10.1016/j.pbi.2017.04.010
Saijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808
Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/j.compag.2010.02.007
Santos, C., Duarte, S., Tedesco, S., Fevereiro, P., & Costa, R. L. (2017). Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Frontiers in Plant Science, 8(April), 1–12. https://doi.org/10.3389/fpls.2017.00515
Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9
Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008a). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrici{ó}n del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41.
Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008b). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrición del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41.
Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9
Sarria, Greicy Andrea, Mestizo, Y., Betancourt, W., & Garcia, A. (2016). Pudrición del cogollo: avances, retos y oportunidades en el manejo integrado de esta enfermedad. Palmas, 37(4), 91–107.
Sarria, Greicy Andrea, Varón, F. H., Martínez, G., Drenth, A., & Guest, D. I. (2013). Nuevas evidencias del cumplimiento de los postulados de Koch en el estudio de las relaciones Phytophthora palmivora y la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 34(4), 41–45.
Seedlings, P., Saunders, J. A., & Mcclure, J. W. (1974). The Suitability of a Quantitative Spectrophotometric Assay for Phenylalanine Ammonia-lyase Activity in Barley , 412–413.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
Sharpee, W. C., & Dean, R. A. (2016). Form and function of fungal and oomycete effectors. Fungal Biology Reviews, 30(2), 62–73. https://doi.org/10.1016/j.fbr.2016.04.001
Shen, D., Li, Q., Sun, P., Zhang, M., & Dou, D. (2017). Intrinsic disorder is a common structural characteristic of RxLR effectors in oomycete pathogens. Fungal Biology, 121(11), 911–919. https://doi.org/10.1016/j.funbio.2017.07.005
Shine, M. B., Yang, J. W., El-Habbak, M., Nagyabhyru, P., Fu, D. Q., Navarre, D., … Kachroo, A. (2016). Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212(3), 627–636. https://doi.org/10.1111/nph.14078
Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Imran-Ul-Haq, & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions, 9(1), 702–711. https://doi.org/10.1080/17429145.2014.905800
Silva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(February), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013
Sniezko, R. A., & Koch, J. (2017). Breeding trees resistant to insects and diseases : putting theory into application. Biological Invasions, 19(11), 3377–3400. https://doi.org/10.1007/s10530-017-1482-5
Soh, A. C., Wong, G., Tan, C. C., Chew, P. S., Chong, S., Ho, Y. W., … Ku Mar, K. (2011). Commercial-scale propagation and planting of elite oil palm clones: Research and development towards realization. Journal of Oil Palm Research, 23(APRIL), 935–952.
Su, J., Spears, B. J., Kim, S. H., & Gassmann, W. (2018). Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 93(4), 637–650. https://doi.org/10.1111/tpj.13798
Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protection, 101, 58–67. https://doi.org/10.1016/j.cropro.2017.07.010
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021800
Tahi, M., Kebe, I., Eskes, A. B., Ouattara, S., Sangare, A., & Mondeil, F. (2000). Rapid screening of cacao genotypes for field resistance to Phytophthora palmivora using leaves, twigs and roots. European Journal of Plant Pathology, 106(1), 87–94. https://doi.org/10.1023/A:1008747800191
Takemoto, D., Shibata, Y., Ojika, M., Mizuno, Y., Imano, S., Ohtsu, M., … Camagna, M. (2018). Resistance to Phytophthora infestans: exploring genes required for disease resistance in Solanaceae plants. Journal of General Plant Pathology, 84(5), 312–320. https://doi.org/10.1007/s10327-018-0801-8
Thatcher, L. F., Williams, A. H., Garg, G., Buck, S. A. G., & Singh, K. B. (2016). Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics, 17(1), 1–19. https://doi.org/10.1186/s12864-016-3192-2
Thevenin, J. M., Rossi, V., Ducamp, M., Doare, F., Condina, V., & Lachenaud, P. (2012). Numerous clones resistant to Phytophthora palmivora in the “Guiana” genetic group of Theobroma cacao L. PLoS ONE, 7(7), 1–6. https://doi.org/10.1371/journal.pone.0040915
Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
Torkamaneh, D., Boyle, B., & Belzile, F. (2018). Efficient genome-wide genotyping strategies and data integration in crop plants. Theoretical and Applied Genetics, 131(3), 499–511. https://doi.org/10.1007/s00122-018-3056-z
Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016a). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW
Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016b). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW
Torres, G., Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW
Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204
Trapet, P., Kulik, A., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Francès, V., … Wendehenne, D. (2015). NO signaling in plant immunity: A tale of messengers. Phytochemistry, 112(1), 72–79. https://doi.org/10.1016/j.phytochem.2014.03.015
Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. Y., Aerts, A., … Boore, J. L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. https://doi.org/10.1126/science.1128796
Unamba, C. I. N., Nag, A., & Sharma, R. K. (2015). Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Frontiers in Plant Science, 6(December). https://doi.org/10.3389/fpls.2015.01074
Van de Wouw, A. P., & Idnurm, A. (2019). Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnology Advances, (April), 1–10. https://doi.org/10.1016/j.biotechadv.2019.04.009
Vanhove, A.-C., Vermaelen, W., Panis, B., Swennen, R., & Carpentier, S. C. (2012). Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Frontiers in Plant Science, 3(August), 176. https://doi.org/10.3389/fpls.2012.00176
Varden, F. A., De la Concepcion, J. C., Maidment, J. H., & Banfield, M. J. (2017). Taking the stage: effectors in the spotlight. Current Opinion in Plant Biology, 38, 25–33. https://doi.org/10.1016/j.pbi.2017.04.013
Velásquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–Pathogen Warfare under Changing Climate Conditions. Current Biology, 28(10), R619–R634. https://doi.org/10.1016/j.cub.2018.03.054
Wang, W., & Jiao, F. (2019). Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta, 250(2), 413–425. https://doi.org/10.1007/s00425-019-03219-x
Windram, O., Penfold, C. A., & Denby, K. J. (2014). Network Modeling to Understand Plant Immunity. Annual Review of Phytopathology, 52(1), 93–111. https://doi.org/10.1146/annurev-phyto-102313-050103
Woittiez, L.S., Wijk, M.T. van, Slingerland, M., Noordwijk, M. van and Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/https://dx.doi.org/10.1016/j.eja.2016.11.002
Wu, S., Shan, L., & He, P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science, 228, 118–126. https://doi.org/10.1016/j.plantsci.2014.03.001
Wu, Y. L., Yi, G. J., & Peng, X. X. (2010). Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay. European Journal of Plant Pathology, 128(3), 409–415. https://doi.org/10.1007/s10658-010-9669-y
Yang, J. K., Tong, Z. J., Fang, D. H., Chen, X. J., Zhang, K. Q., & Xiao, B. G. (2017). Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-00481-5
Zhao, M., Hui-Min, J., Ying, G., Cao, X.-X., Mao, H.-Y., Peng, L., & Shou-Qiang, O. (2018). Integrated RNA-seq and sRNA-seq revelad differences in transcriptome between susceptible and resistant tomato responding to Fusarium oxymporum. BioRxiv, (4). https://doi.org/10.1590/s1809-98232013000400007 | |