dc.contributorMesa Sánchez, Óscar José
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorPosgrado en Aprovechamiento de Recursos Hidráulicos
dc.creatorPeñanaranda Vélez, Victor Manuel
dc.date.accessioned2020-03-13T16:32:12Z
dc.date.available2020-03-13T16:32:12Z
dc.date.created2020-03-13T16:32:12Z
dc.date.issued2019-12-18
dc.identifierV. Peñaranda. Looking for a Physical Basis of Rainfall Multifractality. Disertación Doctoral. Doctorado en Ingeniería Recursos Hidráulicos. Dpto. de Geociencias y Medio Ambiente. Universidad Nacional de Colombia, Medellín, 2019.
dc.identifierPeñaranda, V. (2019). Looking for a Physical Basis of Rainfall Multifractality (Disertación Doctoral). Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76073
dc.description.abstractThe study of rainfall arises from the necessity for knowing large and short-term climatic dynamics, as well as their affectations in the context of engineering practices. This research focus on the study of tropical rainfall and it was guided toward the conceptual exploration of the physical mechanism that explains how the multifractal scaling properties emerges in the rainfall field. On the basis of space-time rainfall records and model outputs analysis, it was possible to collect evidence that confirm rainfall multifractality exists and such a statistical property can be also identified in physically-based model outputs. The conceptual exploration that was developed in this research based on either classic--physics conservation principles or modern theories related to the study of the well-known critical phenomena. Among the findings, multifractality is understood as an essential reflection of the atmospheric instability by convection processes. Either instabilities or their resulting multifractality are sub-products of a diffusive mechanism which takes effect in the atmosphere. Under particular conditions of the dynamical system representing the convection processes, diffusion-driven instabilities give rise to the concentration of spatial structures in the rainfall field, and the organization of such structures is described by multifractality. Although open questions remain about the physics of rainfall multifractality, this work sets up a path for building a general theory and to promote innovative engineering design tools.
dc.description.abstractEl estudio de la precipitación responde a la necesidad inherente por conocer las dinámicas climáticas de corto y largo plazo, como también sus afectaciones en el contexto de las prácticas de ingeniería. La presente investigación se delimitó al estudio de la precipitación tropical y se orientó a la exploración conceptual del mecanismo físico que explica la emergencia de las propiedades de escalamiento multifractal del campo de precipitación. Partiendo del análisis de registros espacio-temporales de precipitación y de patrones simulados por computador se agruparon evidencias que ratifican la existencia de la multifractalidad en la precipitación y que tal propiedad estadística puede también ser identificada en modelo de base física. La exploración conceptual realizada en la investigación se apoyó en los principios de conservación provenientes de la física clásica y en las teorías modernas que han dado lugar a lo que hoy en día es conocido como fenómenos críticos. Entre los hallazgos encontrados, se concibe la multifractalidad como una manifestación inherente de la inestabilidad atmosférica por procesos de convección. Las inestabilidades y consecuentemente la multifractalidad son subproductos inducidos por un mecanismo difusivo en la atmósfera terrestre. Bajo condiciones especiales del sistema dinámico asociado a los procesos de convección, las inestabilidades inducidas por difusión dan lugar a la concentración de estructuras espaciales en el campo de precipitación y la organización de estas estructuras se describen a través de la multifractalidad. Aún cuando se mantienen algunas preguntas abiertas sobre la física de la multifractalidad en la precipitación, esta investigación establece una ruta para la consolidación de una teoría general y el desarrollo de nuevas herramientas de diseño en el marco de la ingeniería..
dc.languageeng
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationA. Aharony. Percolation, fractals, and anomalous diffusion. Journal of Statistical Physics, 34(5):931–939, 1984. doi: 10.1007/BF01009449.
dc.relationS. Allen and J. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095, 1979. doi: https://doi.org/10.1016/0001-6160(79)90196-2.
dc.relationF. Anselmet, Y. Gagne, E. Hopfinger, and R. Antonia. High-order velocity structure functions in turbulent shear flows. Journal of Fluid Mechanics, 140:63–89, 1984. doi: DOI:10.1017/S0022112084000513.
dc.relationA. Arneodo, E. Bacry, S. Manneville, and J. Muzy. Analysis of random cascades using space-scale correlation functions. Physical Review Letters, 80(4):708–711, 1998.
dc.relationE. Bacry, J. Muzy, and A. Arnéodo. Singularity spectrum of fractal signals from wavelet analysis: exact results. Journal of Statistical Physics, 70(3-4):635–674, 1993.
dc.relationO. Barndorff-Nielsen and J. Schmiegel. Incremental similarity and turbulence. arXiv e-prints, 2015.
dc.relationO. Barndorff-Nielsen, P. Blæsild, and J. Schmiegel. A parsimonious and universal description of turbulent velocity increments. The European Physical Journal B - Condensed Matter and Complex Systems, 41(3):345–363, 2004. doi: 10.1140/epjb/e2004-00328-1.
dc.relationM. Barnsley. Fractals Everywhere. Morgan Kaufmann Publishers, 1993.
dc.relationJ. Bedrossian, A. Blumenthal, and S. Punshon-Smith. The batchelor spectrum of passive scalar turbulence in stochastic fluid mechanics. arXiv e-prints, 2019.
dc.relationF. Bernal. Desarrollo de modelos conceptuales y computacionales para simular estocásticamente la dinámica espacio-temporal de la precipitación en Bogotá. Master’s thesis, Universidad Nacional de Colombia, 2008.
dc.relationJ. Bjerknes. Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quarterly Journal of the Royal Meteorological Society, 64:325–330, 1938.
dc.relationD. Blanchard. Mesoscale convective patterns of the southern high plains. Bulletin of the American Meteorological Society, 71(7):994–1005, 1990. doi: 10.1175/1520-0477(1990) 071⟨0994:MCPOTS⟩2.0.CO;2.
dc.relationJ. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4):127–293, 1990. doi: https://doi.org/10.1016/0370-1573(90)90099-N.
dc.relationA. Bray. Theory of phase-ordering kinetics. Advances in Physics, 43:357–459, 1994. doi: 10.1080/00018739400101505.
dc.relationC. Bretherton, M. Peters, and L. Back. Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17(7):1517–1528, 2004.
dc.relationC. Bretherton, P. Blossey, and M. Khairoutdinov. An energy-balance analysis of deep convective self-aggregation above uniform SST. Journal of the Atmospheric Sciences, 62(12): 4273–4292, 2005.
dc.relationA. Cortis, C. Puente, and B. Sivakumar. Encoding hydrologic information via a fractal geometric approach and its extensions. Stochastic Environmental Research and Risk Assessment, 24(5):625–632, 2010. doi: 10.1007/s00477-009-0349-4.
dc.relationA. Cortis, C. Puente, H. Huang, M. Maskey, B. Sivakumar, and N. Obregón. A physical interpretation of the deterministic fractal–multifractal method as a realization of a generalized multiplicative cascade. Stochastic Environmental Research and Risk Assessment, 28(6):1421–1429, 2014. doi: 10.1007/s00477-013-0822-y.
dc.relationD. Cox and V. Isham. A simple spatial-temporal model of rainfall. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 415(1849):317–328, 1988.
dc.relationG. Craig and J. Mack. A coarsening model for self-organization of tropical convection. Journal of Geophysical Research D: Atmospheres, 118(16):8761–8769, 2013.
dc.relationC. De-Michele and P. Bernardara. Spectral analysis and modeling of space-time rainfall fields. Atmospheric Research, 77(1):124–136, 2005. doi: https://doi.org/10.1016/j.atmosres.2004. 10.031.
dc.relationJ. Delour, J. Muzy, and A. Arnéodo. Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis. The European Physical Journal B, 23(2):243–248, 2001.
dc.relationR. Dickman, M. Muñoz, A. Vespignani, and S. Zapperi. Paths to self-organized criticality. Brazilian Journal of Physics, 30:27–41, 2000. doi: 10.1590/S0103-97332000000100004.
dc.relationS. Edwards and D. Wilkinson. The surface statistics of a granular aggregate. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 381(1780): 17–31, 1982.
dc.relationA. Einstein. Uber die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik, 322(8):549–560, 1905. doi: 10.1002/andp.19053220806.
dc.relationC. Evertsz and B. Mandelbrot. Multifractal measures, pages 849–881. Springer, Chaos and Fractals: New Frontiers in Science edition, 1992.
dc.relationK. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Inc., 1990. ISBN 0471922870.
dc.relationF. Family and T. Vicsek. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. Journal of Physics A: Mathematical and General, 18(2):L75–L81, 1985. doi: 10.1088/0305-4470/18/2/005.
dc.relationJ. Feder. Fractals. Plenum Press, 1988.
dc.relationE. Foufoula-Georgiou. On scaling theories of space–time rainfall: some recent results and open problems, volume 7, pages 25—72. World Scientific, 1998.
dc.relationU. Frisch. Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, 1995.
dc.relationU. Frisch and G. Parisi. On the singularity structure of fully developed turbulence. Turbulence and predictability in geophysical fluid dynamics and climate dynamics, 88, 1985.
dc.relationK. Gabriel and J. Neumann. A Markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society, 88(375):90–95, 1962. doi: 10.1002/qj.49708837511.
dc.relationJ. Geiser. Multicomponent and multiscale systems: theory, methods, and applications in engineering. Springer, 2016.
dc.relationL. Gmachowski. Fractal model of anomalous diffusion. European Biophysics Journal, 44(8): 613–621, 12 2015. doi: 10.1007/s00249-015-1054-5.
dc.relationN. Goldenfeld. Lectures on phase transitions and renormalization group. Number 85 in Frontiers in Physics. Addison-Wesley Publishing, 1992.
dc.relationJ. Gómez and G. Poveda. Estimación del espectro multifractal para series de precipitación horaria en los Andes Tropicales de Colombia. Revista de la Academia Colombiana de ciencias exactas, físicas y naturales, 32(125):483–502, 2008.
dc.relationF. Guichard and F. Couvreux. A short review of numerical cloud–resolving models. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 2017. doi: 10.1080/16000870.2017. 1373578.
dc.relationV. Gupta and E. Waymire. A stochastic kinematic study of subsynoptic space–time rainfall. Water Resources Research, 15(3):637–644, 1979. doi: 10.1029/WR015i003p00637.
dc.relationV. Gupta and E. Waymire. A statistical analysis of mesoscale rainfall as a random cascade. Journal of American Meteorological Society, 32:251–267, 1993.
dc.relationH. Hardy and R. Beier. Fractals in Reservoir Engineering. World Scientific, 1994. ISBN 9789810220693.
dc.relationM. Hassan, M. Hassan, and N. Pavel. Dynamic scaling, data-collapse and self-similarity in Barabási-Albert networks. Journal of Physics A: Mathematical and Theoretical, 44(17), 2011. doi: 10.1088/1751-8113/44/17/175101.
dc.relationM. Herman and D. Raymond. WTG cloud modeling with spectral decomposition of heating. Journal of Advances in Modeling Earth Systems, 6(4):1121–1140, 2014. doi: 10.1002/ 2014MS000359.
dc.relationC. Holloway and D. Neelin. Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences, 66(6):1665–1683, 2009.
dc.relationC. Holloway and J. Neelin. Temporal relations of column water vapor and tropical precipitation. Journal of the Atmospheric Sciences, 67(4):1091–1105, 2010.
dc.relationS. Hottovy and S. Stechmann. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. Journal of the Atmospheric Sciences, 72(12):4721–4738, 2015.
dc.relationH. Huang, C. Puente, and A. Cortis. Geometric harnessing of precipitation records: reexamining four storms from Iowa City. Stochastic Environmental Research and Risk Assess- ment, 27(4):955–968, 2013.
dc.relationP. Hubert, Y. Tessier, S. Lovejoy, D. Schertzer, F. Schmitt, P. Ladoy, J. Carbonnel, S. Violette, and I. Desurosne. Multifractals and extreme rainfall events. Geophysical Research Letters, 20(10):931–934, 1993. doi: 10.1029/93GL01245.
dc.relationG. Huffman, R. Adler, D. Bolvin, G. Gu, E. Nelkin, K. Bowman, Y. Hong, E. Stocker, and D. Wolff. The TRMM multi-satellite precipitation analysis: quasi–global, multi–year, combined–sensor precipitation estimates at fine scale. Journal of Hydrometeorology, 8(1): 38–55, 2007.
dc.relationIntergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5). Cambridge University Press, 2013.
dc.relationE. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift fu ̈r Physik, 31(1):253–258, 1925. doi: 10.1007/BF02980577.
dc.relationB. Kang and J. Ramírez. A coupled stochastic space–time intermittent random cascade model for rainfall downscaling. Water Resources Research, 46(10), 2010. doi: 10.1029/ 2008WR007692.
dc.relationM. Khairoutdinov and K. Emanuel. Aggregated convection and the regulation of tropical climate. In 29th Conference on Hurricanes and Tropical Meteorology, 2010.
dc.relationM. Khairoutdinov and D. Randall. Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. Journal of the Atmospheric Sciences, 60(4):607–625, 2003.
dc.relationM. Kolb. Shape and selfsimilarity of diffusion limited aggregation clusters. In A. Pekalski and K. Sznajd-Weron, editors, Anomalous Diffusion From Basics to Applications, pages 253–261. Springer, 1999.
dc.relationA. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds’ numbers. Akademiia Nauk SSSR Doklady, 30:301–305, 1941.
dc.relationD. Koutsoyiannis, A. Paschalis, and N. Theodoratos. Two-dimensional Hurst–Kolmogorov process and its application to rainfall fields. Journal of Hydrology, 398(1):91–100, 2011. doi: doi.org/10.1016/j.jhydrol.2010.12.012.
dc.relationX. Li and S. Gao. Precipitation modeling and quantitative analysis. Springer Atmospheric Science. Springer, 2012. ISBN 9789400723818. doi: 10.1007/978-94-007-2381-8.
dc.relationS. Lovejoy. Area–perimeter relation for rain and cloud areas. Science, 216(4542):185–187, 1982.
dc.relationS. Lovejoy and D. Schertzer. Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. Journal of Geophysical Research: Atmospheres, 95 (D3):2021–2034, 1990. doi: 10.1029/JD095iD03p02021.
dc.relationS. Lovejoy and D. Schertzer. Multifractals and rain, pages 61–103. Cambridge University Press, Cambridge, UK, 1995.
dc.relationS. Lovejoy and D. Schertzer. The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, 2013. ISBN 9781107018983.
dc.relationB. Mandelbrot. The fractal geometry of nature. W. H. Freeman, 1982. ISBN 9780716711865.
dc.relationB. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics, 131:5–42, 1989. doi: 10.1007/BF00874478.
dc.relationB. Mapes, T. Warner, M. Xu, and A. Negri. Diurnal patterns of rainfall in northwestern South America. part I: Observations and context. Monthly Weather Review, 131(5):799– 812, 2003. doi: 10.1175/1520-0493(2003)131⟨0799:DPORIN⟩2.0.CO;2.
dc.relationD. Marzan, D. Schertzer, and S. Lovejoy. Causal space–time multifractal processes: predictability and forecasting of rain fields. Journal of Geophysical Research, 101:D21(26): 333–346, 1996.
dc.relationM. Maskey, C. Puente, B. Sivakumar, and A. Cortis. Encoding daily rainfall records via adaptations of the fractal multifractal method. Stochastic Environmental Research and Risk Assessment, 30(7):1917–1931, 2016. doi: 10.1007/s00477-015-1201-7.
dc.relationM. Maskey, C. Puente, and B. Sivakumar. Deterministic simulation of highly intermittent hydrologic time series. Stochastic Environmental Research and Risk Assessment, 31(10): 2719–2732, 2017. doi: 10.1007/s00477-016-1343-2.
dc.relationJ. Masoliver. Random Processes. World Scientific, 2017.
dc.relationC. Meneveau and K. Sreenivasan. Simple multifractal cascade model for fully developed turbulence. Physical Review Letters, 59(13), 1987.
dc.relationC. Meneveau and K. Sreenivasan. The multifractal nature of turbulent energy dissipation. Journal of Fluid Mechanics, 224(429-484):180, 1991.
dc.relationÓ. Mesa. ¿Adónde va caer este globo? Universidad Nacional de Colombia, Medellín, 2007.
dc.relationÓ. Mesa. Fractales y caos en ingeniería con aplicaciones. Universidad Nacional de Colombia, 2016.
dc.relationÓ. Mesa and V. Peñaranda. Complejidad de la estructura espacio-temporal de la precipitación. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39 (152):304–320, 2015. doi: 10.18257/raccefyn.196.
dc.relationÓ. Mesa, G. Poveda, and L. Carvajal. Introducción al clima de Colombia. Universidad Nacional de Colombia, Medellín, 1997.
dc.relationC. Muller. Impact of convective organization on the response of tropical precipitation extremes to warming. Journal of Climate, 26(14):5028–5043, 2013. doi: 10.1175/ JCLI-D-12-00655.1.
dc.relationC. Muller and I. Held. detailed investigation of the self-aggregation of convection in cloud-resolving simulations. Journal of the Atmospheric Sciences, 69(8):2551–2565, 2012. doi: 10.1175/JAS-D-11-0257.1.
dc.relationC. Muller, L. Back, P. O’Gorman, and K. Emanuel. A model for the relationship between tropical precipitation and column water vapor. Geophysical Research Letters, 36(16), 2009. doi: 10.1029/2009GL039667.
dc.relationK. Nagel and E. Raschke. Self-organizing criticality in cloud formation? Physica A: Statistical Mechanics and its Applications, 182(4):519–531, 1992. doi: http://dx.doi.org/10. 1016/0378-4371(92)90018-L.
dc.relationNational Research Council. Opportunities in the Hydrologic Sciences. National Academy Press, 1991.
dc.relationJ. Neelin, O. Peters, and K. Hales. The transition to strong convection. Journal of the Atmospheric Sciences, 66(8):2367–2384, 2009.
dc.relationK. Nordstrom and V. Gupta. Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall. Nonlinear Processes in Geophysics, 10(6):531–543, 2003.
dc.relationT. Over. Modelling space-time mesoscale rainfal using random cascades. PhD thesis, University of Colorado, 1995.
dc.relationT. Over and V. Gupta. Statistical analysis of mesoscale rainfall: dependence of a random cascade generator on large–scale forcing. Journal of Hydrology, 33:1526–1542, 1994.
dc.relationT. Over and V. Gupta. A space–time theory of mesoscale rainfall using random cascades. Journal of Geophysical Research, 101:26:319–331, 1996.
dc.relationA. Parodi and K. Emanuel. a theory for buoyancy and velocity scales in deep moist convection. Journal of the Atmospheric Sciences, 66(11):3449–3463, 2009. doi: 10.1175/ 2009JAS3103.1.
dc.relationA. Parodi, E. Foufoula-Georgiou, and K. Emanuel. Signature of microphysics on spatial rainfall statistics. Journal of Geophysical Research: Atmospheres, 116(D14), 2011. doi: 10.1029/2010JD015124.
dc.relationA. Paschalis, P. Molnar, S. Fatichi, and P. Burlando. A stochastic model for high-resolution space-time precipitation simulation. Water Resources Research, 49(12):8400–8417, 2013. doi: 10.1002/2013WR014437.
dc.relationV. Peñaranda. Representación geométrica de registros de precipitación puntual en Bogotá con el modelo Fractal–Multifractal. Tesis de Maestría, Universidad Nacional de Colombia, Bogota, 2008.
dc.relationS. Perica and E. Foufoula-Georgiou. Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems. Journal of Geophysical Research, 101:D3:7431–7448, 1996.
dc.relationO. Peters and J. Neelin. Critical phenomena in atmospheric precipitation. Nature Physics, 2:393–396, 2006.
dc.relationO. Peters and J. Neelin. Atmospheric convection as a continuous phase transition: further evidence. International Journal of Modern Physics B, 23(28-29):5453–5465, 2009.
dc.relationG. Poveda and Ó. Mesa. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10):2690–2702, 1997.
dc.relationC. Puente. A new approach to hydrologic modeling: derived distribution revisited. Journal of Hydrology, 187:65–80, 1995.
dc.relationC. Puente and C. Obregon. A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Journal of Water Resources Research, 32:2825–2839, 1996.
dc.relationC. Puente and B. Sivakumar. Modeling geophysical complexity: a case for geometric determinism. Hydrology and Earth System Sciences, 11(2):721–724, 2007. doi: 10.5194/hess-11-721-2007.
dc.relationC. Puente, O. Robayo, M. Díaz, and B. Sivakumar. A fractal-multifractal approach to groundwater contamination. 1. Modeling conservative tracers at the Borden site. Stochastic Environmental Research and Risk Assessment, 15(5):357–371, 2001. doi: 10.1007/PL00009791.
dc.relationD. Randall. Why are cumulus updrafts narrow? Class Material, 2006.
dc.relationD. Raymond and X. Zeng. Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quarterly Journal of the Royal Meteorological Society, 131(608):1301–1320, 2005. doi: 10.1256/qj.03.97.
dc.relationD. Raymond, S. Sessions, A. Sobel, and Z. Fuchs. The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1(3), 2009. doi: 10.3894/JAMES.2009. 1.9.
dc.relationI. Rodríguez-Iturbe. Exploring complexity in the structure of rainfall. Advances in Water Resources, 14(4):162–167, 1991.
dc.relationI. Rodríguez-Iturbe, V. Gupta, and E. Waymire. Scale considerations in the modeling of temporal rainfall. Water Resources Research, 20(11):1611–1619, 1984.
dc.relationI. Rodríguez-Iturbe, B. de Power, and J. Valdés. Rectangular pulses point process models for rainfall: analysis of empirical data. Journal of Geophysical Research: Atmosphere, 92 (D8):9645–9656, 1987.
dc.relationS. Roux, A. Arnéodo, and N. Decoster. A wavelet-based method for multifractal image analysis. III. Applications to high-resolution satellite images of cloud structure. The European Physical Journal B - Condensed Matter and Complex Systems, 15(4):765–786, 2000. doi: 10.1007/s100510051180.
dc.relationS. Roux, V. Venugopal, K. Fienberg, A. Arneodo, and E. Foufoula-Georgiou. Evidence for inherent nonlinearity in temporal rainfall. Advances in Water Resources, 32(1):41–48, 2009. doi: http://dx.doi.org/10.1016/j.advwatres.2008.09.007.
dc.relationG. Rushbrooke. On the thermodynamics of the critical region for the Ising problem. The Journal of Chemical Physics, 39(3):842–843, 1963. doi: 10.1063/1.1734338.
dc.relationA. Santos. Implementación de un modelo de autómata celular para el pronóstico de la precipitación espacial. Caso de estudio ciudad de Bogotá (Colombia). Tesis de Maestría. Universidad Nacional de Colombia, Bogotá, 2011.
dc.relationE. Sarachik and M. Cane. The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, Cambridge, UK, 2010. ISBN 9780521847865.
dc.relationD. Schertzer and S. Lovejoy. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processe. Geophysical Research, 92(D8):9693—9714, 1987a.
dc.relationZ. She, E. Aurell, and U. Frisch. The inviscid burgers equation with initial data of brownian type. Communications in Mathematical Physics, 148(3):623–641, 1992. doi: 10.1007/ BF02096551.
dc.relationJ. Smith and A. Karr. Parameter estimation for a model of space-time rainfall. Water Resources Research, 21(8):1251–1257, 1985. doi: 10.1029/WR021i008p01251.
dc.relationS. Soong and Y. Ogura. response of tradewind cumuli to large-scale processes. Journal of the Atmospheric Sciences, 37(9):2035–2050, 1980. doi: 10.1175/1520-0469(1980)037⟨2035: ROTCTL⟩2.0.CO;2.
dc.relationS. Soong and W. Tao. Response of deep tropical cumulus clouds to mesoscale processes. Journal of the Atmospheric Sciences, 37(9):2016–2034, 1980.
dc.relationD. Sornette. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools. Springer Series in Synergetics, 2004.
dc.relationS. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books Publishing, 1994.
dc.relationC. Sui, K. Lau, W. Tao, and J. Simpson. The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium Climate. Journal of the Atmospheric Sciences, 51 (5):711–728, 1994. doi: 10.1175/1520-0469(1994)051⟨0711:TTWAEC⟩2.0.CO;2.
dc.relationY. Tessier, S. Lovejoy, P. Hubert, D. Schertzer, and S. Pecknold. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geo- physical Research: Atmospheres, 101(D21):26427–26440, 1996. doi: 10.1029/96JD01799.
dc.relationH. Touchette. The large deviation approach to statistical mechanics. Physics Reports, 478 (1):1–69, 2009. doi: https://doi.org/10.1016/j.physrep.2009.05.002.
dc.relationA. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641):37–72, 1952.
dc.relationT. Ursell. Cahn–hilliard kinetics and spinodal decomposition in a diffuse system. Technical notes, 2007.
dc.relationD. Veneziano and P. Furcolo. Multifractality of rainfall and scaling of intensity-duration- frequency curves. Water Resources Research, 38(12):42–1–42–12, 2002. doi: 10.1029/ 2001WR000372.
dc.relationD. Veneziano, A. Langousis, and P. Furcolo. Multifractality and rainfall extremes: A review. Water Resources Research, 42(6), 2006. doi: 10.1029/2005WR004716.
dc.relationV. Venugopal, E. Foufoula-Georgiou, and V. Sapozhnikov. Evidence of dynamic scaling in space–time rainfall. Journal of Geophysical Research: Atmospheres, 104(D24):31599– 31610, 1999. doi: 10.1029/1999JD900437.
dc.relationT. Vicsek and F. Family. Dynamic scaling for aggregation of clusters. Physical Review Letters, 52(19):1669–1672, 1984. doi: 10.1103/PhysRevLett.52.1669.
dc.relationS. Vieira. Modelación de la precipitación convectiva en el Océano Pacífico colombiano. Tesis de Maestría, Universidad Nacional de Colombia, Medellín, 2006.
dc.relationJ. Wallace and P. Hobbs. Atmospheric science: an introductory survey. Elsevier, 2006.
dc.relationE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 3. Some applications of the point process theory to rainfall processes. Water Resources Research, 17(5):1287–1294, 1981a. doi: 10.1029/WR017i005p01287.
dc.relationE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. Water Resources Research, 17(5):1261–1272, 1981b. doi: 10.1029/WR017i005p01261.
dc.relationE. Waymire and V. Gupta. The mathematical structure of rainfall representations: 2. A review of the theory of point processes. Water Resources Research, 17(5):1273–1285, 1981c. doi: 10.1029/WR017i005p01273.
dc.relationE. Waymire, V. Gupta, and I. Rodríguez-Iturbe. A spectral theory of rainfall intensity at the meso-β scale. Water Resources Research, 20(10):1453–1465, 1984. doi: 10.1029/ WR020i010p01453.
dc.relationB. Widom. Equation of state in the neighborhood of the critical point. The Journal of Chemical Physics, 43(11):3898–3905, 1965. doi: 10.1063/1.1696618.
dc.relationD. Wilks. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210(1):178–191, 1998. doi: https://doi.org/10.1016/S0022-1694(98) 00186-3.
dc.relationA. Wing and K. Emanuel. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems, 6(1):59–74, 2014. doi: 10.1002/2013MS000269.
dc.relationT. Witten and L. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47(19):1400–1403, 1981. doi: 10.1103/PhysRevLett.47.1400.
dc.relationM. Yanai, S. Esbensen, and J. Chu. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4):611–627, 1973. doi: 10.1175/1520-0469(1973)030⟨0611:DOBPOT⟩2.0.CO;2.
dc.relationK. Zybin and V. Sirota. Multifractal structure of fully developed turbulence. Physical Review E, 88(4), 2013.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleLooking for a physical basis of rainfall multifractality
dc.typeOtro


Este ítem pertenece a la siguiente institución