dc.contributor | Rodríguez Velásquez, Elkin | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.creator | Múnera Cardona, Wilson Andrés | |
dc.date.accessioned | 2020-08-13T21:27:41Z | |
dc.date.available | 2020-08-13T21:27:41Z | |
dc.date.created | 2020-08-13T21:27:41Z | |
dc.date.issued | 2020-07-08 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78033 | |
dc.description.abstract | Among the different kind of logistics warehouse activities, the process of materials separation, made to complete orders, understands the operation of the highest cost for a distribution center. In the following application, it arises the strategic optimization of Slotting in a logistic company of auto-parts, with the objective of increase the efficiency of the process by minimizing the total distance traveled to complete a sample of orders. According to the literature review, diverse solution techniques have been proposed for the solution of the theoretical Storage Location Assignment Problem (SLAP) according to the definitions and operating conditions of each approach; for this case, and in continuity with theoretical lines of research, a genetic algorithm is defined as a solution technique. The algorithm parameters are calibrated trough one experimental design to obtain the combination that maximize its performance. The results show that the methodology reduces order completion time by 11.7% compared to current operating conditions based on random allocation policies, by 9.2% contrasted with a benchmark solution founded on allocation rules based on frequencies and classes. With the proposed solution, the company shows a saving in labor and an increase in customer responsiveness, concluding that evolutionary computing metaheuristics obtain acceptable solutions at low computational cost, in the face of solving real application problems in the context of warehouse management. | |
dc.description.abstract | Entre las distintas actividades logísticas de almacén, el proceso de separación de materiales para completar las órdenes de pedido comprende la operación de más alto costo para un centro de distribución. En el presente caso de aplicación se plantea la optimización de la estrategia de Slotting en una compañía logística de autopartes, con el fin aumentar la eficiencia de este proceso a través de la minimización de la distancia total recorrida para completar una muestra de pedidos. Según la revisión de literatura, diversas técnicas de solución han sido propuestas para la solución del problema teórico Storage Location Assignment Problem (SLAP) de acuerdo con las definiciones y condiciones de operación de cada planteamiento; para este caso, y en continuidad con líneas de investigación teóricas, se define un algoritmo genético como técnica de solución. Los parámetros del algoritmo son calibrados a través de un diseño de experimentos para obtener la combinación que maximiza su rendimiento, los resultados muestran que la metodología reduce el tiempo de completitud de pedidos en un 11.7% respecto a las condiciones actuales de operación basadas en políticas de asignación aleatorias, y un 9.2% contrastada con una solución benchmark fundamentada en reglas de asignación basadas en frecuencias y clases. Con la solución propuesta, la compañía evidencia un ahorro en mano de obra y un aumento en la capacidad de respuesta al cliente, lo que concluye que metaheurísticas de computación evolutiva obtienen soluciones aceptables a bajo costo computacional, ante la solución de problemas reales de aplicación en el contexto de la gestión de almacenes. | |
dc.language | spa | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería Industrial | |
dc.publisher | Departamento de Ingeniería de la Organización | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abd, Z. (2015). Ant Colony Hyper-heuristics for Travelling Salesman Problem. 76(Iris), 534–538. https://doi.org/10.1016/j.procs.2015.12.333 | |
dc.relation | Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). Order picking system design: The storage assignment and travel distance estimation (SA&TDE) joint method. International Journal of Production Research, 53(4), 1077–1093. https://doi.org/10.1080/00207543.2014.944282 | |
dc.relation | Bottani, E., Cecconi, M., Vignali, G., & Montanari, R. (2012). Optimisation of storage allocation in order picking operations through a genetic algorithm. International Journal of Logistics Research and Applications, 15(2), 127–146. https://doi.org/10.1080/13675567.2012.694860 | |
dc.relation | Chan, H. L., & Pang, K. W. (2011). Association Rule Based Approach for Improving Operation Efficiency in a Randomized Warehouse. (January 2011), 704–710. | |
dc.relation | Chen, L., Langevin, A., & Riopel, D. (2010). The storage location assignment and interleaving problem in an automated storage/retrieval system with shared storage. International Journal of Production Research, 48(4), 991–1011. https://doi.org/10.1080/00207540802506218 | |
dc.relation | Chiang, D. M.-H., Lin, C.-P., & Chen, M.-C. (2011). The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterprise Information Systems, 5(2), 219–234. https://doi.org/10.1080/17517575.2010.537784 | |
dc.relation | Chuang, Y., Lee, H., & Lai, Y. (2012). Item-associated cluster assignment model on storage allocation problems. Computers & Industrial Engineering, 63(4), 1171–1177. https://doi.org/10.1016/j.cie.2012.06.021 | |
dc.relation | Dijkstra, A. S., & Roodbergen, K. J. (2017). Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses. Transportation Research Part E: Logistics and Transportation Review, 102, 38–59. https://doi.org/10.1016/j.tre.2017.04.003 | |
dc.relation | Ene, S., & Öztürk, N. (2012). Storage location assignment and order picking optimization in the automotive industry. International Journal of Advanced Manufacturing Technology, 60(5–8), 787–797. https://doi.org/10.1007/s00170-011-3593-y | |
dc.relation | Fontana, M. E., Nepomuceno, V. S., & Garcez, T. V. (2020). a Hybrid Approach Development To Solving the Storage Location Assignment Problem in a Picker-To-Parts System. Brazilian Journal of Operations & Production Management, 17(1), 1–14. https://doi.org/10.14488/bjopm.2020.005 | |
dc.relation | Frazelle, E. A., & Sharp, G. . (1989). Correlated assignment strategy can improve any order-picking operation. Industrial Engineering, 21((4)), 33–37. | |
dc.relation | Gao, W. (2020). New ant colony optimization algorithm for the traveling salesman problem. International Journal of Computational Intelligence Systems, 13(1), 44–55. https://doi.org/10.2991/ijcis.d.200117.001 | |
dc.relation | He, Y., Wang, A., Su, H., & Wang, M. (2019). Particle Swarm Optimization Using Neighborhood-Based Mutation Operator and Intermediate Disturbance Strategy for Outbound Container Storage Location Assignment Problem. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/9132315 | |
dc.relation | Holland, J. (1975). Adaptation in natural and artificial systems. The University of Michigan Press. | |
dc.relation | Jiao, Y., Xing, X., Zhang, P., Xu, L., & Liu, X.-R. (2018). Multi-objective storage location allocation optimization and simulation analysis of automated warehouse based on multi-population genetic algorithm. Concurrent Engineering, 26(4). | |
dc.relation | Kovacs, A. (2011). Optimizing the storage assignment in a warehouse served by milkrun logistics. 133, 312–318. https://doi.org/10.1016/j.ijpe.2009.10.028 | |
dc.relation | Li, H., FANG, Z., & JI, S. (2010). Research on the Slotting Optimization of Automated Stereoscopic Warehouse Based on Discrete Particle Swarm Optimization. 1404–1407. | |
dc.relation | Li, Jianbin, Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447–461. https://doi.org/10.1080/00207543.2016.1187313 | |
dc.relation | Li, Jiaxi, Moghaddam, M., & Nof, S. Y. (2016). Dynamic storage assignment with product affinity and ABC classification—a case study. International Journal of Advanced Manufacturing Technology, 84(9–12), 2179–2194. https://doi.org/10.1007/s00170-015-7806-7 | |
dc.relation | Marchet, G., Melacini, M., & Perotti, S. (2015). Investigating order picking system adoption: a case-study-based approach. International Journal of Logistics Research and Applications, 18(1), 82–98. https://doi.org/10.1080/13675567.2014.945400 | |
dc.relation | Marinakis, Y. (2008). Heuristic and Metaheuristic Algorithms for the Traveling Salesman Problem. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-0-387-74759-0 | |
dc.relation | Montgomery, D. C. (2012). Design and Analysis of Experiments. In Design (8th ed., Vol. 2). https://doi.org/10.1198/tech.2006.s372 | |
dc.relation | Pan, J. C. H., Shih, P. H., Wu, M. H., & Lin, J. H. (2015). A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Computers and Industrial Engineering, 81, 1–13. https://doi.org/10.1016/j.cie.2014.12.010 | |
dc.relation | Pang, K., & Chan, H. (2017). Data mining-based algorithm for storage location assignment in a randomised warehouse. International Journal of Production Research, 7543(August), 0. https://doi.org/10.1080/00207543.2016.1244615 | |
dc.relation | Park, C., & Seo, J. (2010). Comparing heuristic algorithms of the planar storage location assignment problem. Transportation Research Part E, 46(1), 171–185. https://doi.org/10.1016/j.tre.2009.07.004 | |
dc.relation | Petersen, C. G., & Aase, G. (2004). A comparison of picking , storage , and routing policies in manual order picking. 92, 11–19. https://doi.org/10.1016/j.ijpe.2003.09.006 | |
dc.relation | Pierre, B., Vannieuwenhuyse, B., & Dominanta, D. (2003). DYNAMIC ABC STORAGE POLICY IN ERRATIC DEMAND ENVIRONMENTS. 1–12. | |
dc.relation | Reddy, V., Muppant, M., & Adil, G. K. (2008a). A branch and bound algorithm for class based storage location assignment. 189, 492–507. https://doi.org/10.1016/j.ejor.2007.05.050 | |
dc.relation | Reddy, V., Muppant, M., & Adil, G. K. (2008b). Efficient formation of storage classes for warehouse storage location assignment : A simulated annealing approach. 36, 609–618. https://doi.org/10.1016/j.omega.2007.01.006 | |
dc.relation | RUNT, & Mintransporte. (2019). CIFRAS RUNT: BALANCE 2018. 2018–2019. | |
dc.relation | Schuur, P. C. (2015). The worst-case performance of the Cube per Order Index slotting strategy is infinitely bad - A technical note. International Journal of Production Economics, 170, 801–804. https://doi.org/10.1016/j.ijpe.2015.05.027 | |
dc.relation | Urzúa, M., Mendoza, A., & González, A. O. (2019). Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logistica, 6(4), 103–114. https://doi.org/10.22306/al.v6i4.129 | |
dc.relation | van Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. M. (2018). Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), 1–15. https://doi.org/10.1016/j.ejor.2017.09.002 | |
dc.relation | Wang, M., & Zhang, R. Q. (2019). A dynamic programming approach for storage location assignment planning problem. Procedia CIRP, 83, 513–516. https://doi.org/10.1016/j.procir.2019.04.113 | |
dc.relation | Wisittipanich, W., & Kasemset, C. (2015). Metaheuristics for warehouse storage location assignment problems. Chiang Mai University Journal of Natural Sciences, 14(4), 361–377. https://doi.org/10.12982/cmujns.2015.0093 | |
dc.relation | Yang, P., Peng, Y., Ye, B., & Miao, L. (2017). Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern. Engineering Optimization, 49(9). | |
dc.relation | Yang, S., Chen, X., & Xiao, X. (2016). Research on Slotting Optimization of Storage System in the Provincial Measuring Center. (Iceta), 489–494 | |
dc.relation | Zangaro, F., Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2018). A Model to Optimize the Reference Storage Assignment in a Supermarket to Expedite the Part Feeding Activities. IFAC-PapersOnLine, 51(11), 1470–1475. https://doi.org/10.1016/j.ifacol.2018.08.296 | |
dc.relation | Zhang, R. Q., Wang, M., & Pan, X. (2019). New model of the storage location assignment problem considering demand correlation pattern. Computers and Industrial Engineering, 129(January), 210–219. https://doi.org/10.1016/j.cie.2019.01.027 | |
dc.relation | Zhang, Y. (2016). Correlated Storage Assignment Strategy to reduce Travel Distance in Order Picking. IFAC-PapersOnLine, 49(2), 30–35. https://doi.org/10.1016/j.ifacol.2016.03.006 | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Optimización de la estrategia de Slotting en un centro de distribución logístico de autopartes mediante técnicas heurísticas basadas en computación evolutiva | |
dc.type | Otro | |