dc.contributor | Vargas-Ramírez, Mario | |
dc.contributor | Biodiversidad y Conservación Genética | |
dc.creator | Briceño Zea, Jhon Sebastian | |
dc.date.accessioned | 2022-08-31T20:54:03Z | |
dc.date.available | 2022-08-31T20:54:03Z | |
dc.date.created | 2022-08-31T20:54:03Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82229 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El desarrollo de investigaciones en sistemática molecular (i.e. genética de
poblaciones, filogenética y filogeografía) se ha beneficiado del avance en las
técnicas de secuenciación recientes, las cuales ofrecen la posibilidad de obtener
secuencias de ADN de manera económica y rápida. El análisis adecuado de estas
secuencias enmarcado en disciplinas como la filogenética molecular y la
filogeografía, han incrementado el conocimiento acerca de las relaciones evolutivas
de linajes genéticos a nivel intra e interespecíficos, patrones de distribución
geográfica de dichos linajes, e identificación de posibles procesos que formaron
estos patrones. Adicionalmente, estos análisis se han convertido en herramienta
fundamental de la taxonomía integrativa, complementando análisis provenientes de
otras líneas de evidencia como por ejemplo la morfología y la bioacústica. La
taxonomía integrativa se ha utilizado generalmente para evaluar especies
ampliamente distribuidas, la cuales pueden constituir complejos de especies. Este
es el caso de las tortugas continentales semiacuáticas neotropicales Kinosternon
leucostomum y Kinosternon scorpioides (Testudines: Kinosternidae), cuyas
extensas distribuciones y su presencia en diferentes hábitats, impulsan la hipótesis
de que existe variación genética interespecífica no reconocida entre las poblaciones
a lo largo de sus rangos de distribución, pudiendo corresponder con varios linajes
evolutivos dentro de cada taxón. En esta investigación se obtuvieron y analizaron
secuencias de tres genes mitocondriales (12s, 16s y Cytb) y siete fragmentos
cleares (BDNF, CMOS, HMGB, ODC, R35, RAG1, RAG2) de individuos
provenientes de gran parte del rango de distribución de las dos especies en el neo
trópico con los siguientes objetivos: 1. Evaluar si existe variación genética
interespecífica no reconocida, 2. Evaluar las relaciones evolutivas entre linajes
detectados, 3. determinar la distribución geográfica de estos posibles linajes y 4.
Establecer inferencias taxonómicas comparando los resultados con la clasificación
taxonómica actual. Los análisis filogenéticos (Inferencia Bayesiana y Máxima
Verosimilitud), además de Análisis de Componentes Principales y redes de Máxima
Parsimonia de haplotipos, revelaron patrones de diferenciación genética
contrastantes para cada especie. Para K. escorpioides se identificó una fuerte
estructura genética compuesta de varios linajes evolutivos independientes. Para K.
leucostomum no se identificó estructura genética, constituyendo un solo linaje
evolutivo con algunas diferencias geográficas. Se discute acerca de las causas y
consecuencias de estos patrones en un contexto filogenético, filogeográfico y
taxonómico. Adicionalmente se discute acerca de las consecuencias de estos
resultados para la conservación de las dos especies. (Texto tomado de la fuente) | |
dc.description.abstract | The growth of research in molecular systematics (i.e., population genetics,
phylogenetics and phylogeography) has benefited from advances in recent
sequencing techniques, which offer the possibility of obtaining DNA sequences
economically and rapidly. Adequate analysis of these sequences in disciplines such
as molecular phylogenetics and phylogeography has increased knowledge about the
evolutionary relationships of genetic lineages at intra- and interspecific levels,
patterns of geographic distribution of these lineages, and identification of possible
processes that formed these patterns. Additionally, these analyses have become a
fundamental tool for integrative taxonomy, complementing analyses from other lines
of evidence such as morphology and bioacoustics. Integrative taxonomy has
generally been used to evaluate widely distributed species, which may constitute
species complexes. This is the case of the neotropical semi-aquatic continental
turtles Kinosternon leucostomum and Kinosternon scorpioides (Testudines:
Kinosternidae), whose wide distributions and presence in different habitats, support
the hypothesis that there is unrecognized interspecific genetic variation among
populations throughout their distribution ranges, which may correspond to several
evolutionary lineages within each taxon. In this research, sequences of three
mitochondrial genes (12s, 16s and Cytb) and seven nuclear loci (BDNF, CMOS,
HMGB, ODC, R35, RAG1, RAG2) were obtained and analyzed from individuals from
a large part of the distribution range of the two species in the neotropics with the
following goals: 1. To evaluate if there is unrecognized interspecific genetic variation,
2. To evaluate the evolutionary relationships between detected lineages, 3. to
determine the geographic distribution of these possible lineages and 4. to establish
taxonomic inferences by comparing the results with the current taxonomic
classification. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood),
in addition to Principal Component Analysis and Maximum Parsimony networks of
haplotypes revealed contrasting patterns of genetic differentiation for each species.
For K. scorpioides, a strong genetic structure composed of several independent
evolutionary lineages was identified. For K. leucostomum no genetic structure was
identified, constituting a single evolutionary lineage with some geographic
differences. The causes and consequences of these patterns are discussed in a
phylogenetic, phylogeographic and taxonomic context. In addition, the
consequences of these results for the conservation of the two species are discussed. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Biología | |
dc.publisher | Departamento de Biología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Acuña Mesen, R., Marquez B., C., 1993. El dimorfismo sexual de Kinosternon
scorpioides (Testudines: Kinosternidae) en Palo Verde, Costa Rica. Rev. Biol.
Trop. 41, 261–265. https://doi.org/10.15517/rbt.v41i2.23360 | |
dc.relation | Ardila-Marulanda, M., De La Ossa V., J., De La Ossa-Lacayo, A., 2016. Uso de
quelonios continentales en el golfo de Morrosquillo, Sucre, Colombia. Rev.
Colomb. Cienc. Anim. - RECIA 8, 361.
https://doi.org/10.24188/recia.v8.n0.2016.392 | |
dc.relation | Avendaño, J.E., Cortés-Herrera, J.O., Briceño-Lara, E.R., Rincón-Guarín, D.A.,
2013. Crossing or bypassing the Andes: a commentary on recent range extensions
of cis-Andean birds to the West of the Andes of Colombia. Orinoquia 17, 207–214 | |
dc.relation | Backström, N., Fagerberg, S., Ellegren, H., 2008. Genomics of natural bird
populations: A gene-based set of reference markers evenly spread across the
avian genome. Mol. Ecol. 17, 964–980. https://doi.org/10.1111/j.1365-
294X.2007.03551.x | |
dc.relation | Baker, P.A.; Sherilyn, C.F.; Battisti, D.S.; Dick, C.W.; Vargas, O.M., Asner, G.P.,
Matin, R.E., Wheatley, A., Prates, I., 2020. Beyond Refugia: New Insights on
Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South
America. In V. Rull, A. C. Carnaval (eds.), Neotropical Diversification: Patterns and
Processes, Fascinating Life Sciences (1st ed., pp. 54-71). Springer, Cham. | |
dc.relation | Barley, A.J., Spinks, P.Q., Thomson, R.C., Shaffer, H.B., 2010. Fourteen nuclear
genes provide phylogenetic resolution for difficult nodes in the turtle tree of life.
Mol. Phylogenet. Evol. 55, 1189–1194.
https://doi.org/10.1016/j.ympev.2009.11.005 | |
dc.relation | Battey, C.J., Klicka, J., 2017. Cryptic speciation and gene flow in a migratory
songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus).
Mol. Phylogenet. Evol. 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006 | |
dc.relation | Berger, W.H., 1990. The younger dryas cold spell - a quest for causes. Global and
Planetary Change, 3(3), 219–237. doi:10.1016/0921-8181(90)90018-8 | |
dc.relation | Berriozabal-Islas, C., Ramírez-Bautista, A., Torres-Ángeles, F., Mota Rodrigues,
J.F., Macip-Ríos, R., Octavio-Aguilar, P., 2020. Climate change effects on turtles
of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat
suitability and climate niche conservatism. Hydrobiologia 847, 4091–4110.
https://doi.org/10.1007/s10750-020-04402-y | |
dc.relation | Berry J, F., 1978. Variation and systematics in the Kinosternon scorpioides and K.
leucostomum complexes (Reptilia: Testudines: Kinosternidae) of Mexico and
Central. University of Utah. | |
dc.relation | Berry, J.F., Iverson, J.B., 2001a. Kinosternon scorpioides. Cat. Am. Amphib.
Reptil. doi:10.15781/T2GB1XN2W | |
dc.relation | Berry, J.F., Iverson, J.B., 2001b. Kinosternon leucostomum. Cat. Am. Amphib.
Reptil. doi:10.15781/T2M32NF5J | |
dc.relation | Berry, J. F., J. B. Iverson y G. Forero-Medina. 2012. Kinosternon scorpioides
(Linnaeus 1766). Pp. 340-348. En: Páez-Nieto V. P., Morales-Betacourt M. A.,
Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de
Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos
Biológicos Alexander von Humboldt (IAvH). | |
dc.relation | Bhaskar, R., Mohindra, V., 2019. Phylogenetic relationships among Indian
freshwater turtles (family Trionychidae and Geoemydidae) with special reference
to Lissemys punctata, inferred from mitochondrial cytochrome b gene sequences.
Meta Gene 22, 100610. https://doi.org/10.1016/j.mgene.2019.100610 | |
dc.relation | Brumfield, R.T., Capparella, A.P., 1996. Historical diversification of birds in
Northwestern South America: A molecular perspective on the role of vicariant
events. Evolution (N. Y). 50, 1607–1624. https://doi.org/10.1111/j.1558-
5646.1996.tb03933.x | |
dc.relation | Brusquetti, F., Netto, F., Baldo, D., Haddad, C., 2019. The influence of Pleistocene
glaciations on Chacoan fauna: genetic structure and historical demography of an
endemic frog of the South American Gran Chaco. Biological Journal of the Linnean
Society, 126(3), 404-616. https://doi.org/10.1093/biolinnean/bly203 | |
dc.relation | Bryson, R.W., García-Vázquez, U.O., Riddle, B.R., 2012. Diversification in the
Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Mol. Phylogenet. Evol. 62, 87–96. https://doi.org/10.1016/j.ympev.2011.09.007 | |
dc.relation | Bush, M.B., Oliveira, P.E. 2006. The rise and fall of the Refugial Hypothesis of
Amazonian speciation: a paleoecological perspective. Biota Neotropica, 6(1).
doi:10.1590/S1676-06032006000100002 | |
dc.relation | Butler, C.J., 2019. A review of the effects of climate change on chelonians.
Diversity 11. https://doi.org/10.3390/d11080138 | |
dc.relation | Cabrera, M.R., Colantonio, S.E., 1997. Taxonomic Revision of the South American
Subspecies of the Turtle Kinosternon scorpioides. Soc. Study Amphib. Reptil. 31,
507–513. | |
dc.relation | Cáceres-Martínez, C.H., Acevedo Rincón, A.A., Sierra Leal, J.A., González-Maya,
J.F., 2017. Kinosternon scorpioides scorpioides (Testudines: kinosternidae):
nuevo reporte en el Nororiente de Colombia. Acta Biol. Colomb. 22, 242–245.
https://doi.org/10.15446/abc.v22n2.59804 | |
dc.relation | Cadena, C.D., Pedraza, C.A., Brumfield, R.T., 2016. Climate, habitat associations
and the potential distributions of Neotropical birds: Implications for diversification
across the Andes. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 40, 275.
https://doi.org/10.18257/raccefyn.280 | |
dc.relation | Carter, A.L., Janzen, F.J., 2021. Predicting the effects of climate change on
incubation in reptiles : methodological advances and new directions 1–10.
https://doi.org/10.1242/jeb.236018 | |
dc.relation | Ceballos, C.P., Zapata, D., Alvarado, C., Rincón, E., 2016. Morphology, Diet, and
Population Structure of the Southern White-lipped Mud Turtle Kinosternon
leucostomum postinguinale (Testudines: Kinosternidae) in the Nus River
Drainage, Colombia. J. Herpetol. 50, 374–380. https://doi.org/10.1670/15-035 | |
dc.relation | Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona
Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of
colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774.
https://doi.org/10.1111/j.1365-294X.2004.02367.x | |
dc.relation | Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona
Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of
colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774.
https://doi.org/10.1111/j.1365-294X.2004.02367.x | |
dc.relation | Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B.,
Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A.J., Taborda, A., 1995. Basin
development and tectonic history of the Llano Basin, Eastern Cordillera, and
middle Magdalena Valley, Colombia. AAPG Bull. 79, 1421–1444 | |
dc.relation | Cordero, G.A., Reeves, R., Swarth, C.W., 2012. Long distance aquatic movement
and home-range size of an eastern mud turtle, Kinosternon Subrubrum, population
in the Mid-Atlantic Region of the United States. Chelonian Conserv. Biol. 11, 121–
124. https://doi.org/10.2744/CCB-0874.1 | |
dc.relation | Corredor-Londoño, G.A., Kattan, G., Galvis-Rizo, C.A., Amorocho, D., 2007.
Tortugas del Valle del Cauca. Corporación Autónoma Regional del Valle del
Cauca, Cali | |
dc.relation | Crawford, N.G., Parham, J.F., Sellas, A.B., Faircloth, B.C., Glenn, T.C.,
Papenfuss, T.J., Henderson, J.B., Hansen, M.H., Simison, W.B., 2015. A
phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257.
https://doi.org/10.1016/j.ympev.2014.10.021 | |
dc.relation | D'Apolito, C., Absy, M.L., Latrubesse, E.M. 2013. The Hill of Six Lakes revisited:
new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science
Reviews, 76, 140–155. doi:10.1016/j.quascirev.2013.07.013 | |
dc.relation | Davis, M.A., Douglas, M.R., Collyer, M.L., Douglas, M.E., 2016. Deconstructing a
species-complex: Geometric morphometric and molecular analyses define species
in the Western Rattlesnake (Crotalus viridis). PLoS One 11, 1–21.
https://doi.org/10.1371/journal.pone.0146166 | |
dc.relation | Dias, R.M., Lima, S.M.Q., Mendes, L.F., Almeida, D.F., Paiva, P.C., Britto, M.R.,
2019. Different speciation processes in a cryptobenthic reef fish from the Western
Tropical Atlantic. Hydrobiologia 837, 133–147. https://doi.org/10.1007/s10750-
019-3966-z | |
dc.relation | Dutcher, K.E., Vandergast, A.G., Esque, T.C., Mitelberg, A., Matocq, M.D.,
Heaton, J.S., Nussear, K.E., 2020. Genes in space: what Mojave desert tortoise
genetics can tell us about landscape connectivity. Conserv. Genet. 21, 289–303. https://doi.org/10.1007/s10592-020-01251-z | |
dc.relation | Ennen, J.R., Kalis, M.E., Patterson, A.L., Kreiser, B.R., Lovich, J.E., Godwin, J.,
Qualls, C.P., 2014. Clinal variation or validation of a subspecies? A case study of
the graptemys nigrinoda complex (testudines: Emydidae). Biol. J. Linn. Soc. 111,
810–822. https://doi.org/10.1111/bij.12234 | |
dc.relation | Fritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M.G., Lenk, P., Joger, U.,
Wink, M., 2005. A new cryptic species of pond turtle from southern Italy, the hottest
spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool. Scr.
34, 351–371. https://doi.org/10.1111/j.1463-6409.2005.00188.x | |
dc.relation | Fritz, U., Gong, S., Auer, M., Kuchling, G., Schneewei, N., Hundsdörfer, A.K.,
2010. The world’s economically most important chelonians represent a diverse
species complex (Testudines: Trionychidae: Pelodiscus). Org. Divers. Evol. 10,
227–242. https://doi.org/10.1007/s13127-010-0007-1 | |
dc.relation | Fritz, U., Guicking, D., Auer, M., Sommer, R.S., Wink, M., Hundsdörfer, A.K., 2008.
Diversity of the Southeast Asian leaf turtle genus Cyclemys: How many leaves on
its tree of life? Zool. Scr. 37, 367–390. https://doi.org/10.1111/j.1463-
6409.2008.00332.x | |
dc.relation | Frost, D.R., Rodrigues, M.T., Grant, T., Titus, T.A., 2001. Phylogenetics of the
lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct
optimization, descriptive efficiency, and sensitivity analysis of congruence between
molecular data and morphology. Mol. Phylogenet. Evol. 21, 352–371. https://doi.org/10.1006/mpev.2001.1015 | |
dc.relation | Fujita, M.K., Engstrom, T.N., Starkey, D.E., Shaffer, H.B., 2004. Turtle phylogeny:
Insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31, 1031–1040.
https://doi.org/10.1016/j.ympev.2003.09.016 | |
dc.relation | Giraldo, F., Garcés-Restrepo, F.M., Carr, J.L., 2012. Kinosternon scorpioides, in:
Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B.
(Ed.), Biología y Conservación de Las Tortugas Continentales de Colombia.
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). | |
dc.relation | Haffer, J. 1969. Speciation in Amazonian Forest Birds. Science, 165(3889), 131–
137. doi:10.1126/science.165.3889.131 | |
dc.relation | Hall, T., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and
Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. | |
dc.relation | Hernández Morales, C., Sturaro, M.J., Nunes, P.M.S., Lotzkat, S., Peloso, P.L.V.,
2020. A species-level total evidence phylogeny of the microteiid lizard family
Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics 36, 301–321.
https://doi.org/10.1111/cla.12407 | |
dc.relation | Hillis, D.M., 2019. Species delimitation in herpetology. J. Herpetol. 53, 3–12.
https://doi.org/10.1670/18-123 | |
dc.relation | Hu, Y., Thapa, A., Fan, H., Ma, T., Wu, Q., Ma, S., Zhang, D., Wang, B., Li, M.,
Yan, L., Wei, F., 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, 1–11.
https://doi.org/10.1126/sciadv.aax5751 | |
dc.relation | Iverson, J.B., 1991. Phylogenetic hypotheses for the evolution of modern
kinosternine turtles. Herpetol. Monogr. 5, 1–27. https://doi.org/10.2307/1466974 | |
dc.relation | Iverson, J.B., 2010. Reproduction in the red-cheeked mud turtle (Kinosternon
scorpioides cruentatum) in Southeastern Mexico and Belize, with comparisons
across the species range. Chelonian Conserv. Biol. 9, 250–261.
https://doi.org/10.2744/CCB-0827.1 | |
dc.relation | Iverson, J.B., Brown, R.M., Akre, T.S., Near, T.J., Le, M., Thomson, R.C., Starkey,
D.E., 2007. In Search of the Tree of Life for Turtles. Defin. Turt. Divers. Proc. a
Work. Genet. Ethics, Taxon. Freshw. Turtles Tortoises 85–106. | |
dc.relation | Iverson, J.B., Le, M., Ingram, C., 2013. Molecular phylogenetics of the mud and
musk turtle family Kinosternidae. Mol. Phylogenet. Evol. 69, 929–939.
https://doi.org/10.1016/j.ympev.2013.06.011 | |
dc.relation | Iverson, J.D., Mata-Silva, V., García, E., Wilson, L.D., 2015. The herpetofauna of
Chiapas , Mexico : composition , distribution , and conservation 271–329.
Johnson, J.D., 1990. Biogeographic Aspects of the Herpetofauna of the Central
Depression of Chiapas, México, with Comments on Surrounding Areas 35, 268–
278 | |
dc.relation | Jombart, T., 2015. An introduction to adegenet 2.0.0. R Package. | |
dc.relation | Juste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., Ibáñez, C., 2018. Two New
Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae,
Chiroptera) from the Western Palaearctic. Acta Chiropterologica 20, 285–300.
https://doi.org/10.3161/15081109ACC2018.20.2.001 | |
dc.relation | Kartavtsev, Y.P., 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different
taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22, 55–
65. https://doi.org/10.3109/19401736.2011.588215 | |
dc.relation | Kieswetter, C.M., Schneider, C.J., 2013. Phylogeography in the northern Andes:
Complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum
(Craugastoridae). Mol. Phylogenet. Evol. 69, 462–468.
https://doi.org/10.1016/j.ympev.2013.08.007 | |
dc.relation | Knaus, B., Winter, D., Paradis, E., Jombart, T., Kamvar, Z.N., Knaus, B., Schliep,
K., Alastair, P., Winter, D., 2020. Package ‘ pegas .’ | |
dc.relation | Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca,
F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals:
Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S.
A. 86, 6196–6200. https://doi.org/10.1073/pnas.86.16.6196 | |
dc.relation | Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular
evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35,
1547–1549. https://doi.org/10.1093/molbev/msy096 | |
dc.relation | Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., Calcott, B., 2016.
PartitionFinder 2: new methods for selecting partitioned models of evolution for
molecular and morphological phylogenetic analyses. Mol. Biol. Evol.
https://doi.org/dx.doi.org/10.1093/molbev/msw260 | |
dc.relation | Leaché, A.D., McGuire, J.A., 2006. Phylogenetic relationships of horned lizards
(Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading
mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644.
https://doi.org/10.1016/j.ympev.2005.12.016 | |
dc.relation | Loc-Barragán, J.A., Reyes-Velasco, J., Woolrich-Piña, G.A., Grünwald, C.I.,
Venegas de Anaya, M., Rangel-Mendoza, J.A., López-Luna, M.A., 2020. A new
species of mud turtle of genus kinosternon (Testudines: Kinosternidae) from the
pacific coastal plain of northwestern Mexico. Zootaxa 4885, 509–529.
https://doi.org/10.11646/zootaxa.4885.4.3 | |
dc.relation | López-Luna, M.A., Cupul-Magaña, F.G., Escobedo-Galván, A.H., GonzálezHernández, A.J., Centenero-Alcalá, E., Rangel-Mendoza, J.A., Ramírez-Ramírez,
M.M., Cazares-Hernández, E. 2018. A Distinctive New Species of Mud Turtle from
Western México. Chelonian Conservation and Biology, 17(1), 2–13.
doi:10.2744/CCB-1292.1 | |
dc.relation | López-Luna, M.A., Venegas-Anaya, M., Cupul-Magaña, F.G., Rangel-Mendoza,
J.A., Escobedo-Galván, A.H. 2021. Mitochondrial DNA data support the
recognition of the mud turtle, Kinosternon vogti (Cryptodira: Kinosternidae). Chelonian Conservation and Biology, 20(1), 97-102. https://doi.org/ 10.2744/CCB1387.1 | |
dc.relation | Maddison, W., Knowles, L., 2006. Inferring phylogeny despite incomplete lineage
sorting. Syst. Biol. 55, 21–30. https://doi.org/10.1080/10635150500354928 | |
dc.relation | Márquez, C., 1995. Historia natural y dimorfismo sexual de la tortuga Kinosternon
scorpioides en Palo Verde Costa Rica. Rev. Ecol. Latino-Americana 2, 37–44 | |
dc.relation | Mata-Silva, V., DeSantis, D.L., García-Padilla, E., Johnson, J.D., Wilson, L.D.,
2019. The endemic herpetofauna of Central America: A casualty of
anthropocentrism. Amphib. Reptil. Conserv. 13, 1–64 | |
dc.relation | McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013.
Applications of next-generation sequencing to phylogeography and phylogenetics.
Mol. Phylogenet. Evol. 66, 526–538. https://doi.org/10.1016/j.ympev.2011.12.007 | |
dc.relation | McCranie, J.R. 2018. The Lizards, Crocodiles, and Turtles of Honduras.
Systematics, Distribution, and Conservation. Bulletin of the Museum of
Comparative Zoology, 1–129. doi:10.3099/0027-4100-15.1.1 | |
dc.relation | Mendoza-Henao, A.M., Arias, E., Townsend, J.H., Parra-Olea, G., 2020.
Phylogeny-based species delimitation and integrative taxonomic revision of the
Hyalinobatrachium fleischmanni species complex, with resurrection of H.
viridissimum (Taylor, 1942). Syst. Biodivers. 0, 1–21.
https://doi.org/10.1080/14772000.2020.1776781 | |
dc.relation | Morales-Betancourt, M.A., Lasso, C.A., Páez, V.P., Bock, B.C., 2015. Libro rojo de
reptiles de Colombia., in: Instituto de Investigación de Recursos Biológicos
Alexander von Humboldt. Instituto de Investigación de Recursos Biológicos
Alexander Von Humboldt, p. 247 | |
dc.relation | Morales-Martínez, D.M., Rodríguez-Posada, M.E., Ramírez-Chaves, H.E., 2021.
Erratum to: A new cryptic species of yellow-eared bat Vampyressa melissa species
complex (Chiroptera: Phyllostomidae) from Colombia. J. Mammal.
https://doi.org/10.1093/jmammal/gyab016 | |
dc.relation | Morales-Verdeja, S.A., Vogt, R.C., 1997. Terrestrial movements in relation to
aestivation and the annual reproductive cycle of Kinosternon leucostomum.
Copeia 1997, 123–130. https://doi.org/10.2307/1447847 | |
dc.relation | Mothes, C.C., Howell, H.J., Searcy, C.A., 2020. Habitat suitability models for the
imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’
persistence under future climate change. Glob. Ecol. Conserv. 24, e01247.
https://doi.org/10.1016/j.gecco.2020.e01247 | |
dc.relation | Nascimento, F.F., Reis, M. Dos, Yang, Z., 2017. A biologist’s guide to Bayesian
phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454.
https://doi.org/10.1038/s41559-017-0280-x | |
dc.relation | Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast
and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 | |
dc.relation | Padial, J.M., De La Riva, I., 2009. Integrative taxonomy reveals cryptic Amazonian
species of Pristimantis (Anura: Strabomantidae). Zool. J. Linn. Soc. 155, 97–122.
https://doi.org/10.1111/j.1096-3642.2008.00424.x | |
dc.relation | Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B.
(1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de
Colombia. Instituto de Investigación de Recursos Biológicos Alexander von
Humboldt (IAvH) | |
dc.relation | Pereira, L.A., Santos, E.M. Dos, Tchaicka, L., De Sousa, A.L., 2019. Population
analysis of Kinosternon scorpioides using SSR markers. AIP Conf. Proc. 2186, 1–
5. https://doi.org/10.1063/1.5138059 | |
dc.relation | Pérez-Pérez, A., López-Moreno, A.E., Suárez-Rodríguez, O., Rheubert, J.L.,
Hernández-Gallegos, O., 2017. How far do adult turtles move? Home range and
dispersal of Kinosternon integrum. Ecol. Evol. 7, 8220–8231.
https://doi.org/10.1002/ece3.3339 | |
dc.relation | Petzold, A., Vargas-Ramírez, M., Kehlmaier, C., Vamberger, M., Branch, W.R., Du
Preez, L., Hofmeyr, M.D., Meyer, L., Schleicher, A., Široký, P., Fritz, U., 2014. A
revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa),
with descriptions of six new species. Zootaxa 3795, 523–548.
https://doi.org/10.11646/zootaxa.3795.5.2 | |
dc.relation | Phillips, J.G., Deitloff, J., Guyer, C., Huetteman, S., Nicholson, K.E., 2015.
Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae). BMC Evol. Biol. 15, 20–24.
https://doi.org/10.1186/s12862-015-0391-4 | |
dc.relation | Pine, R.H., Timm, R.M., Weksler, M., 2012. A newly recognized clade of transAndean Oryzomyini (Rodentia: Cricetidae), with description of a new genus. J.
Mammal. 93, 851–870. https://doi.org/10.1644/11-MAMM-A-012.1 | |
dc.relation | Praschag, P., Hundsdörfer, A.K., Fritz, U., 2007. Phylogeny and taxonomy of
endangered South and South-east Asian freshwater turtles elucidated by mtDNA
sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella,
Kachuga, Pangshura). Zool. Scr. 36, 429–442. https://doi.org/10.1111/j.1463-
6409.2007.00293.x | |
dc.relation | Pritchard, P.C., Trebbau, P., 1984. Turtles of Venezuela. Soc. Study Amphib.
Reptil. 403. | |
dc.relation | Quijada-Mascareñas, J, Ferguson, J.E., Pook, C.E., Salomão M.G., Thorpe, R.S.,
Wüster, W., 2007. Phylogeographic patterns of trans-Amazonian vicariants and
Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex)
as an example. 34(8), 1296–1312. https://doi.org/10.1111/j.1365-
2699.2007.01707.x | |
dc.relation | Rambaut, A., 2018. FigTree. | |
dc.relation | Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior
summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 | |
dc.relation | Ramírez-Guerra, N., 2016. Caracterización filogenética de la tortuga Tapaculo
Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) (MSc
Thesis). Universidad de Antioquia. | |
dc.relation | Rhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van
Dijk, P.P., 2021. Turtles of the World: Annotated Checklist and Atlas of Taxonomy,
Synonymy, Distribution, and Conservation Status (9th Ed.). Chelonian Research
Foundation & Turtle Conservancy.
https://doi.org/10.3854/crm.8.checklist.atlas.v9.2021 | |
dc.relation | Ríos, N., Bouza, C., Gutiérrez, V., García, G., 2017. Species complex delimitation
and patterns of population structure at different geographic scales in Neotropical
silver catfish (Rhamdia: Heptapteridae). Environ. Biol. Fishes 100, 1047–1067.
https://doi.org/10.1007/s10641-017-0622-1 | |
dc.relation | Rocha-Méndez, A., Sánchez-González, L.A., González, C., Navarro-Sigüenza,
A.G., 2019. The geography of evolutionary divergence in the highly endemic
avifauna from the Sierra Madre del Sur, Mexico. BMC Evol. Biol. 19, 1–21.
https://doi.org/10.1186/s12862-019-1564-3 | |
dc.relation | Rocha D.G., Igor K., 2019. What has become of the refugia hypothesis to explain
biological diversity in Amazonia?. Ecology and Evolution, 9, 4302-4309.
doi:10.1002/ece3.5051 | |
dc.relation | Rocha, M.B. da, Molina, F. de B., 1990. Reproductive Biology of Kinosternon
scorpioides (Testudines: Kinosternidae) in Captivity. Tortoises & Turtles. | |
dc.relation | Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S.,
Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. Mrbayes 3.2: Efficient
bayesian phylogenetic inference and model choice across a large model space.
Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 | |
dc.relation | Rubinoff, D., Holland, B.S., 2005. Between two extremes: mitochondrial DNA is
neither the panacea nor the nemesis of phylogenetic and taxonomic inference.
Syst. Biol. 54, 952–961. https://doi.org/10.1080/10635150500234674 | |
dc.relation | Rueda-Almonacid, J. V, Carr, J., Mittermeier, R., Rodríguez-Mahecha, J. V, Mast,
R., Vogt, R., Rhodin, A., Velasquez, J., Rueda, J.N., Mittermeier, C., 2007. Las
Tortugas y los Cocodrilianos de los Países Andinos del Trópico. | |
dc.relation | Savage, J.M., 1966. The Origins and History of the Central American
Herpetofauna. Copeia 1966, 719. https://doi.org/10.2307/1441404 | |
dc.relation | Scott, P.A., Glenn, T.C., Rissler, L.J., 2018. Resolving taxonomic turbulence and
uncovering cryptic diversity in the musk turtles (Sternotherus) using robust
demographic modeling. Mol. Phylogenet. Evol. 120, 1–15.
https://doi.org/10.1016/j.ympev.2017.11.008 | |
dc.relation | Serb, J.M., Phillips, C.A., Iverson, J.B., 2001. Molecular phylogeny and
biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences. Mol. Phylogenet. Evol. 18, 149–162.
https://doi.org/10.1006/mpev.2000.0858 | |
dc.relation | Shaffer, B.H., FitzSimmons, N.N., Georges, A., Rhodin, A.G.J., 2007. Defining
Turtle Diversity, Chelonian Research Monographs. | |
dc.relation | Slavenko, A., Itescu, Y., Ihlow, F., Meiri, S., 2016. Home is where the shell is:
Predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114.
https://doi.org/10.1111/1365-2656.12446 | |
dc.relation | Spinks, P.Q., Shaffer, H.B., 2007. Conservation phylogenetics of the Asian box
turtles (Geoemydidae, Cuora): Mitochondrial introgression, numts, and inferences
from multiple nuclear loci. Conserv. Genet. 8, 641–657.
https://doi.org/10.1007/s10592-006-9210-1 | |
dc.relation | Spinks, P.Q., Shaffer, H.B., 2009. Conflicting mitochondrial and nuclear
phylogenies for the widely disjunct emys (testudines: emydidae) species complex,
and what they tell us about biogeography and hybridization. Syst. Biol. 58, 1–20.
https://doi.org/10.1093/sysbio/syp005 | |
dc.relation | Spinks, P.Q., Thomson, R.C., Gidiş, M., Bradley Shaffer, H., 2014. Multilocus
phylogeny of the New-World mud turtles (Kinosternidae) supports the traditional
classification of the group. Mol. Phylogenet. Evol. 76, 254–260.
https://doi.org/10.1016/j.ympev.2014.03.025 | |
dc.relation | Spinks, P.Q., Thomson, R.C., Pauly, G.B., Newman, C.E., Mount, G., Shaffer,
63
H.B., 2013. Misleading phylogenetic inferences based on single-exemplar
sampling in the turtle genus Pseudemys. Mol. Phylogenet. Evol. 68, 269–281.
https://doi.org/10.1016/j.ympev.2013.03.031 | |
dc.relation | Spitzweg, C., Vamberger, M., Ihlow, F., Fritz, U., Hofmeyr, M.D., 2020. How many
species of angulate tortoises occur in Southern Africa? (Testudines: Testudinidae:
Chersina). Zool. Scr. 49, 412–426. https://doi.org/10.1111/zsc.12418 | |
dc.relation | Stafford, P., Meyer, J., 2000. A Guide to the Reptiles pf Belize. The Natural History
Musum, London, United Kingdom, and Academic Press, San Diego, California,
United States. | |
dc.relation | Swarth, C.W., 2010. Notes on the Movement and Aquatic Behavior 26, 233–235 | |
dc.relation | Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of
phenotypic associations with haplotypes inferred from restriction endonuclease
mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–
633. https://doi.org/10.1093/genetics/132.2.619 | |
dc.relation | Torres-Carvajal, O., Lobos, S.E., 2014. A new species of alopoglossus lizard
(squamata, gymnophthalmidae) from the tropical andes, with a molecular
phylogeny of the genus. Zookeys 120, 105–120.
https://doi.org/10.3897/zookeys.410.7401 | |
dc.relation | Túnez, J.I., Cappozzo, H.L.., Pavés, H., Albareda, D.A., Cassini, M.H., 2013. The
role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). New Zealand Journal of Marine and
Freshwater Research, 47(2), 139–152.
https://doi.org/10.1080/00288330.2012.753463 | |
dc.relation | Vargas-Ramírez, M., Caballero, S., Morales-Betancourt, M.A., Lasso, C.A.,
Amaya, L., Martínez, J.G., das Neves Silva Viana, M., Vogt, R.C., Farias, I.P.,
Hrbek, T., Campbell, P.D., Fritz, U., 2020. Genomic analyses reveal two species
of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their
phylogeography. Mol. Phylogenet. Evol. 148, 106823.
https://doi.org/10.1016/j.ympev.2020.106823 | |
dc.relation | Vargas-Ramírez, M., Carr, J.L., Fritz, U., 2013. Complex phylogeography in
Rhinoclemmys melanosterna: conflicting mitochondrial and nuclear evidence
suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670, 238.
https://doi.org/10.11646/zootaxa.3670.2.8 | |
dc.relation | Vargas-Ramírez, M., Maran, J., Fritz, U., 2010. Red- And yellow-footed tortoises,
Chelonoidis carbonaria and C. denticulam (Reptilia: Testadines: Testudinidae), in
South American savannahs and forests: Do their phylogeographies reflect distinct
habitats? Org. Divers. Evol. 10, 161–172. https://doi.org/10.1007/s13127-010-
0016-0 | |
dc.relation | Vargas-Ramírez, M., Moreno-Arias, R., 2014. Unknown evolutionary lineages and
population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from
the Eastern and Central Cordilleras of Colombia Revealed by DNA Sequence Data. South Am. J. Herpetol. 9, 131–141. https://doi.org/10.2994/SAJH-D-13-
00013.1 | |
dc.relation | Vargas-Ramírez, M., Vences, M., Branch, W.R., Daniels, S.R., Glaw, F., Hofmeyr,
M.D., Kuchling, G., Maran, J., Papenfuss, T.J., Široký, P., Vieites, D.R., Fritz, U.,
2010. Deep genealogical lineages in the widely distributed African helmeted
terrapin: Evidence from mitochondrial and nuclear DNA (Testudines:
Pelomedusidae: Pelomedusa subrufa). Mol. Phylogenet. Evol. 56, 428–440.
https://doi.org/10.1016/j.ympev.2010.03.019 | |
dc.relation | Viana, D.C., Rui, L.A., Santos, A.C. dos, Miglino, M.A., Assis Neto, A.C. de, Araujo,
L.P.F., Oliveira, A.S., Sousa, A.L., 2014. Seasonal morphological variation of the
vas deferens of scorpion mud turtle (Kinosternon scorpioides). Biota Neotrop. 14.
https://doi.org/10.1590/1676-06032014006413 | |
dc.relation | Vogt, R.C., Flores-Villela, O., 1992. Effects of Incubation Temperature on Sex
Determination in a Community of Neotropical Freshwater Turtles in Southern
Mexico. Herpetol. J. 48, 265–270 | |
dc.relation | Weinell, J.L., Bauer, A.M., 2018. Systematics and phylogeography of the widely
distributed African skink Trachylepis varia species complex. Mol. Phylogenet. Evol.
120, 103–117. https://doi.org/10.1016/j.ympev.2017.11.014 | |
dc.relation | Will, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species
cannot replace morphology for identification and classification. Cladistics 20, 47–
55. https://doi.org/10.1111/j.1096-0031.2003.00008.x | |
dc.relation | Witt, C., Brichau, S., Carter, A., 2012. New constraints on the origin of the Sierra
Madre de Chiapas (south Mexico) from sediment provenance and apatite
thermochronometry. Tectonics 31, 1–15. https://doi.org/10.1029/2012TC003141 | |
dc.relation | Whinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R.,
Simpson, F., Joron, M., Lamas, G., Mallet, J. 2005. Strikingly variable divergence
times inferred across an Amazonian butterfly 'suture zone'. Proceedings of the
Royal Society B: Biological Sciences, 272(1580), 2525–2533.
doi:10.1098/rspb.2005.3247 | |
dc.relation | Wong, R.A., Fong, J.J., Papenfuss, T.J., 2010. Phylogeography of the African
Helmeted Terrapin, Pelomedusa subrufa: Genetic Structure, Dispersal, and
Human Introduction. Proc. Calif. Acad. Sci. Ser. 4, 575–585 | |
dc.relation | Zhang, D., Tang, L., Cheng, Y., Hao, Y., Xiong, Y., Song, G., Qu, Y., Rheindt, E.,
Alström, P., Jia, C., Lei, F., 2019. “ghost Introgression” As a Cause of Deep
Mitochondrial Divergence in a Bird Species Complex. Mol. Biol. Evol. 36, 2375–
2386. https://doi.org/10.1093/molbev/msz170 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | ¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico | |
dc.type | Trabajo de grado - Maestría | |