dc.contributorSaavedra Trujillo, Carlos Humberto
dc.contributorDíaz Rojas, Jorge Augusto
dc.contributorGrupo de Investigacion en Enfermedades Infecciosas
dc.creatorParra González, Daniel Sebastián
dc.date.accessioned2022-02-03T20:46:25Z
dc.date.available2022-02-03T20:46:25Z
dc.date.created2022-02-03T20:46:25Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80871
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos pacientes con neoplasias hematológicas y neutropenia febril postquimioterapia podrían presentar alteraciones fisiológicas que lleven a cambios en la farmacocinética (PK) de los fármacos comparado a individuos sin cáncer o neutropenia. Estos cambios, en la PK de antibióticos, podrían resultar en fallos terapéuticos y esto a su vez en hospitalizaciones prolongadas, empeoramiento en la severidad de la infección e inclusive en la muerte. En este estudio, se desarrollaron modelos de PK poblacional para cefepime (FEP) y vancomicina (VAN) en el tratamiento empírico de infecciones en pacientes con neutropenia post-quimioterapia. La farmacocinética de FEP fue descrita por un modelo de dos compartimentos con aclaramiento dependiente del nivel de creatinina sérica (SCR), variabilidad interindividual en todos los parámetros y variabilidad residual con una función aditiva. Por otra parte, la farmacocinética de VAN fue descrita con un modelo de dos compartimentos con aclaramiento dependiente del aclaramiento renal de creatinina (ClCr), variabilidad interindividual en todos los parámetros, correlación entre los parámetros V1 y V2 y una variabilidad residual con funciones aditivas dependientes del método de determinación de VAN. Mediante simulaciones de Monte Carlo se encontró que para FEP, el alcance de los objetivos PK/PD (60%fT>MIC y 100%fT>MIC) es muy dependiente de la duración de infusión, así como del efecto de SCR. Para VAN se encuentra que el alcance del indicador AUC/MIC ≥ 400 se ve afectado por cambios en la dosis diaria total y la prolongación de la duración de infusión no afecta el PTA. Se realizó una comparación entre objetivos dependientes de AUC vs Cmin, y se encuentró que el último no es un predictor adecuado del primero. (Texto tomado de la fuente).
dc.description.abstractPatients with haematological malignancies and post-chemotherapy febrile neutropenia may present with physiological alterations that could lead to changes in the pharmacokinetics (PK) of drugs compared to individuals without cancer or neutropenia. These changes, in the PK of antibiotics, could result in therapeutic failures and this in turn in prolonged hospitalizations, worsening the severity of infection and even death. In this study, population PK models were developed for cefepime (FEP) and vancomycin (VAN) in the empirical treatment of infections in patients with post-chemotherapy neutropenia. FEP pharmacokinetics was described by a two-compartment model with clearance dependent on serum creatinine level (SCR), interindividual variability in all parameters, and residual variability with an additive function. On the other hand, the PK of VAN was described with a two-compartment model with clearance dependent on renal creatinine clearance (CrCl), interindividual variability in all parameters, correlation between parameters V1 and V2, and a residual variability with additive functions dependent on the VAN determination method. Through Monte Carlo simulations, it was found that the achievement of PK/PD objectives (60%fT>MIC and 100%fT>MIC) for FEP is highly dependent on the duration of the infusion, as well as the effect of SCR. It was found that the achievement of the PK/PD objective AUC/MIC ≥ 400 with VAN was affected by changes in the total daily dose and the prolongation of the duration of the infusion does not affect the PTA. A comparison was made between targets relying on AUC or Cmin, and it was found that the latter is not an adequate predictor of the former.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.publisherDepartamento de Farmacia
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBireme
dc.relationAarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991;32(6):669–670.
dc.relationFood and Drug Administration (FDA). Guidance for Industry Population Pharmacokinetics. 1st ed. February. Rockville, MD: Food and Drug Administration (FDA); 1999.
dc.relationMould DR, Upton RN. Basic Concepts in Population Modeling, Simulation, and Model- Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.
dc.relationBonate PL. Pharmacokinetic-Pharmacodynamic Modeling and Simulation. 2nd ed. New York: Springer International Publishing; 2011.
dc.relationFood and Drug Administration (FDA), FDA. Guidance for Industry: Exposure-Response Relationships - Study Design, Data Analysis and Regulatory Applications. FDA Guid. 2003;(April):1–25.
dc.relationSheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445– 479.
dc.relationAarons L. Software for Population Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet. 1999;36(4):255–264.
dc.relationShargel L,Wu-Pong S, Yu A. Applied Biopharmaceutics and Pharmacokinetics, 5th Edition. vol. 94; 2004.
dc.relationDartois C, Brendel K, Comets E, Laffont CM, Laveille C, Tranchand B, et al. Overview of model-building strategies in population PK/PD analyses: 2002-2004 Literature survey. Br J Clin Pharmacol. 2007;64(5):603–612.
dc.relationWang Y. Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn. 2007;34:575–593.
dc.relationPinheiro JC, Bates DM. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model. J Comput Graph Stat. 1995;4(1):12–35.
dc.relationGibiansky L, Gibiansky E, Bauer R. Comparison of NONMEM 7.2 estimation methods and parallel processing efficiency on a target-mediated drug disposition model. J Pharmacokinet Pharmacodyn. 2012;39(1):17–35.
dc.relationDempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J R Stat Soc Ser B. 1977;39(1):1–22.
dc.relationD Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User’s Guide: Pharmacokinetic/ Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Resource (BMSR); 2009.
dc.relationKarimi B, Lavielle M. Efficient Metropolis-Hastings sampling for nonlinear mixed effects models. In: Proc. BAYSM. Warwick, United Kingdom; 2018.
dc.relationGelman A, Lee D, Guo J. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. J Educ Behav Stat. 2015;40(5):530–543.
dc.relationTatarinova T, Neely MN, Barttoff J, van Guilder M, Yamada W, Bayard D, et al. Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian. J Pharmacokinet Pharmacodyn. 2013;40(2):189–199.
dc.relationBustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Parametric and Nonparametric Population Methods : Their Comparative Performance in Analysing a Clinical Data Set and Two Monte Carlo Simulation Studies. Clin Pharmacokinet. 2006;45(4):1–40.
dc.relationYamada WM, Bartroff J, Bayard D, Burke J, Van Guilder M, Jelliffe RW, et al. The Nonparametric Adaptive Grid Algorithm for Population Pharmacokinetic Modeling; 2013.
dc.relationDudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: Ready for prime time. Curr Opin Microbiol. 2000;3(5):515–521.
dc.relationEtte EI, Ludden T. Population Pharmacokinetic Modeling: The Importance of Informative Graphics. Pharm Res. 1995;12(12):1845–1855.
dc.relationMandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic- pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511– 528.
dc.relationBauer RJ. NONMEM users guide: introduction to NONMEM 7.2.0. ICON Dev Solut Ellicott City, MD. 2011.
dc.relationByon W, Smith MK, Chan P, Tortorici MA, Riley S, Dai H, et al. Establishing best practices and guidance in population modeling: An experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):1–8.
dc.relationBrendel K, Dartois C, Comets E, Diot AL, Laveille C, Tranchand B, et al. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet. 2007;46(3):221–234.
dc.relationRescigno A, Beck JS, Thakur AK. The use and abuse of models. J Pharmacokinet Biopharm. 1987;15(3):327–340.
dc.relationYano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28(2):171–192.
dc.relationBennet JE, Dolin R, Blaser MJ. Principles and Practice of Infectious Diseases. Eigth edit ed. Elsevier Saunders; 2015.
dc.relationAndrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48 Suppl 1(Suppl S1):5–16.
dc.relationCraig WAA. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin Infect Dis. 2007;26(1):1–10.
dc.relationCraig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1991;74:63–70.
dc.relationMouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/ pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J Antimicrob Chemother. 2005;55(5):601–607.
dc.relationCalbo E, Garau J. Application of Pharmacokinetics and Pharmacodynamics to Antimicrobial Therapy of Community-Acquired Respiratory Tract Infections. Respiration. 2005;72(2):561– 571.
dc.relationScaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents. 2008;32(4):294–301.
dc.relationRubinstein RY, Kroese DP. Simulation and the Monte Carlo Method. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017.
dc.relationRoberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: Maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011;66(2):227–231.
dc.relationAsín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/ pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319–329.
dc.relationTheuretzbacher U. Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin Infect Dis. 2012;54(12):1785–1792.
dc.relationÁlvarez Rodríguez JC, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de cefepime en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá [Tesis de Especialidad]. Universidad Nacional de Colombia; 2015.
dc.relationPérez Mesa JA, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de un producto de Vancomicina en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá –Colombia [Tesis de Especialidad]. Universidad Nacional de Colombia; 2016.
dc.relationOwen JS, Fiedler-Kelly J. Introduction to Population PK-PD Analysis with NONMEM. 1st ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014.
dc.relationDelattre M, Lavielle M, Poursat MA. A note on BIC in mixed-effects models. Electron J Stat. 2014;8(1):456–475.
dc.relationFood and Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry. vol. 1043. Rockville, MD: Food and Drug Administration (FDA); 2018.
dc.relationJusko WJ. Use of pharmacokinetic data below lower limit of quantitation values. Pharm Res. 2012;29(9):2628–2631.
dc.relationNguyen THT, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT Pharmacometrics Syst Pharmacol. 2017;6(2):87–109.
dc.relationProost JH. Combined proportional and additive residual error models in population pharmacokinetic modelling. Eur J Pharm Sci. 2017;109(May):S78–S82.
dc.relationLixoft. Monolix 2019 User Guide; 2019 [citado 2020-03-04]. Disponible en: http: //monolix.lixoft.com/single-page/.
dc.relationRyan TP. Modern Regression Methods. John Wiley & Sons, Inc; 2009.
dc.relationMaronna RA, Zamar RH. Robust estimates of location and dispersion for high-dimensional datasets. Technometrics. 2002;44(4):307–317.
dc.relationHutmacher MM, Kowalski KG. Covariate selection in pharmacometric analyses: A review of methods. Br J Clin Pharmacol. 2015;79(1):132–147.
dc.relationThai HT, Mentré F, Holford NHG, Veyrat-Follet C, Comets E. Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: A simulation study in population pharmacokinetics. J Pharmacokinet Pharmacodyn. 2014;41(1):15–33.
dc.relationEfron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26. Efron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26.
dc.relationJamsen KM, Patel K, Nieforth K, Kirkpatrick CMJ. A Regression Approach to Visual Predictive Checks for Population Pharmacometric Models. CPT Pharmacometrics Syst Pharmacol. 2018;7(10):678–686.
dc.relationRoberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083.
dc.relationFink DJ, Sluss PM, Januzzi JL, Lewandrowski KB. Appendix: Laboratory Values of Clinical Importance. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s Princ. Intern. Med.. 18th ed. New York: The McGraw-Hill Companies, Inc; 2012. .
dc.relationUdy AA, Roberts JA, Lipman J. Antibiotic Pharmacokinetic/ Pharmacodynamic Considerations in the Critically Ill. 1st ed. Melbourne, Australia: Springer Nature Singapore; 2018.
dc.relationSavic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: Problems and solutions. AAPS J. 2009;11(3):558–569.
dc.relationDuval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res. 2002;19(12):1835– 1840.
dc.relationDuggan JX. Quantification below the LLOQ in regulated LC-MS/MS assays: A review of bioanalytical considerations and cautions. Bioanalysis. 2019;11(8):797–814.
dc.relationDosne AG, Bergstrand M, Karlsson MO. A strategy for residual error modeling incorporating scedasticity of variance and distribution shape. J Pharmacokinet Pharmacodyn. 2016;43(2):137–151.
dc.relationEndimiani A, Perez F, Bonomo RA. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(6):805–824.
dc.relationBarbhaiya RH, Knupp CA, Thomas Forgue S, Matzke GR, Guay DRP, Pittman KA. Pharmacokinetics of cefepime in subjects with renal insufficiency. Clin Pharmacol Ther. 1990;48(3):268–276.
dc.relationCronqvist J, Nilsson-Ehle I, Oqvist B, Norrby SR. Pharmacokinetics of cefepime dihydrochloride arginine in subjects with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2676–2680.
dc.relationJonckheere S, De Neve N, De Beenhouwer H, Berth M, Vermeulen A, Van Bocxlaer J, et al. A model-based analysis of the predictive performance of different renal function markers for cefepime clearance in the ICU. J Antimicrob Chemother. 2016;71(9):2538–2546.
dc.relationTam VH, Mckinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and Pharmacodynamics of Cefepime in Patients with Various Degrees of Renal Function. Antimicrob Agents Chemother. 2003;47(6):1853–1861.
dc.relationLevey A, Perrone RD, Madias NE. Serum Creatinine And Renal Function. Annu Rev Med. 1988;39(1):465–490.
dc.relationAnderson GD. Sex and racial differences in pharmacological response: Where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Women’s Heal. 2005;14(1):19–29.
dc.relationBarbhaiya RH, Knupp CA, Pittman KA. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob Agents Chemother. 1992;36(6):1181–1185.
dc.relationBarbhaiya RH, Forgue ST, Shyu WC, Papp EA, Pittman KA. High-pressure liquid chromatographic analysis of BMY-28142 in plasma and urine. Antimicrob Agents Chemother. 1987;31(1):55–59.
dc.relationBenet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121.
dc.relationT’jollyn H, Vermeulen A, Van Bocxlaer J, Colin P. A Physiologically Based Pharmacokinetic Perspective on the Clinical Utility of Albumin-Based Dose Adjustments in Critically Ill Patients. Clin Pharmacokinet. 2018;57(1):59–69.
dc.relationLi D. Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism. J Bioanal Biomed. 2017;09(02):107–113.
dc.relationDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.
dc.relationWhited L, Grove M, Rose D, Rhodes NJ, Scheetz MH, O’Donnell JN, et al. Pharmacokinetics of Cefepime in Patients with Cancer and Febrile Neutropenia in the Setting of Hematologic Malignancies or Hematopoeitic Cell Transplantation. Pharmacother J Hum Pharmacol Drug Ther. 2016 sep;36(9):1003–1010.
dc.relationRhodes NJ, Grove ME, Kiel PJ, O’Donnell JN, Whited LK, Rose DT, et al. Population pharmacokinetics of cefepime in febrile neutropenia: implications for dose-dependent susceptibility and contemporary dosing regimens. Int J Antimicrob Agents. 2017;50(3):482– 486.
dc.relationLee DG, Choi SM, Yoo JH, Yim DS, Bae KS, Shin WS, et al. Population pharmacokinetics of cefepime in febrile neutropenic patients. J Korean Soc Clin Pharmacol Ther. 2003;11(1):23–29.
dc.relationSime FB, Roberts MS, Tiong IS, Gardner JH, Lehman S, Peake SL, et al. Adequacy of High- Dose Cefepime Regimen in Febrile Neutropenic Patients with Hematological Malignancies. Antimicrob Agents Chemother. 2015;59(9):5463–5469.
dc.relationRoos JF, Bulitta J, Lipman J, Kirkpatrick CMJ. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–993.
dc.relationGeorges B, Conil JM, Seguin T, Dieye E, Cougot P, Decun JF, et al. Cefepime in intensive care unit patients: Validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther. 2008 apr;46(04):157–164.
dc.relationNicasio AM, Ariano RE, Zelenitsky SA, Kim A, Crandon JL, Kuti JL, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically 111 patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476– 1481.
dc.relationDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.
dc.relationMcKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351.
dc.relationCrandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1111–1116.
dc.relationRhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu J, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60(3):1401–1410.
dc.relationBarbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, et al. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36(3):552–557.
dc.relationThe European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10 ed. Version 10.0. EUCAST; 2020. Disponible en: https://www.eucast.org/.
dc.relationButterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP. Refining vancomycin protein binding estimates: Identification of clinical factors that influence protein binding. Antimicrob Agents Chemother. 2011;55(9):4277–4282.
dc.relationNeely MN, Kato L, Youn G, Kraler L, Bayard D, Van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):1–12.
dc.relationLixoft SAS. Monolix Version 2019R2. 1st ed. Antony, France: Lixoft SAS; 2019. Disponible en: http://lixoft.com/products/monolix/.
dc.relationZamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clinical and Experimental Pharmacology and Physiology. 2019;46(4):292–301.
dc.relationCole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. American Journal of Epidemiology. 2014;179(2):252–260.
dc.relationRybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clinical Infectious Diseases. 2006;42(SUPPL. 1):35–39.
dc.relationMarsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: A review of population pharmacokinetic analyses. Clinical Pharmacokinetics. 2012;51(1):1–13.
dc.relationConil JM, Georges B, Breden A, Ruiz S, Cougot P, Fourcade O, et al. Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: Superiority of the Chronic Kidney Disease Epidemiology Collaboration equation? Anaesthesia and Intensive Care. 2014;42(2):178–184.
dc.relationLi X, Nielsen J, Cirincione B, Li H, Addy C, Wagner J, et al. Development of a population pharmacokinetic model for taranabant, a cannibinoid-1 receptor inverse agonist. AAPS Journal. 2010;12(4):537–547.
dc.relationStec GP, Atkinson AJ. Analysis of the contributions of permeability and flow to intercompartmental clearance. Journal of Pharmacokinetics and Biopharmaceutics. 1981;9(2):167–180.
dc.relationBrussee JM, Krekels EHJ, Calvier EAM, Pali´c S, Rostami-Hodjegan A, Danhof M, et al. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clearance of Selected CYP3A Substrates in Children. AAPS Journal. 2019;21(5):1–11.
dc.relationZane NR, Reedy MD, Gastonguay MR, Himebauch AS, Ramsey EZ, Topjian AA, et al. A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated from Cardiac Arrest. Pediatric Critical Care Medicine. 2017;18(7):e290–e297.
dc.relationYoshitsugu H, Sakurai T, Ishikawa H, Roy A, Bifano M, Pfister M, et al. Pooled modelbased approach to compare the pharmacokinetics of entecavir between Japanese and non- Japanese chronic hepatitis B patients. Diagnostic Microbiology and Infectious Disease. 2011;70(1):91–100. Disponible en: http://dx.doi.org/10.1016/j.diagmicrobio. 2010.12.009.
dc.relationMartinez JM, Khier S, Morita S, Rauch C, Fabre D. Population pharmacokinetic analysis of fexofenadine in Japanese pediatric patients. Journal of Pharmacokinetics and Pharmacodynamics. 2014;41(2):187–195.
dc.relationMangin O, Urien S, Mainardi JL, Fagon JY, Faisy C. Vancomycin Pharmacokinetic and Pharmacodynamic Models for Critically Ill Patients with Post-Sternotomy Mediastinitis. Clinical Pharmacokinetics. 2014;53(9):849–861.
dc.relationShi S, Klotz U. Age-related changes in pharmacokinetics. Current Drug Metabolism. 2011;12:601–610.
dc.relationMangoni AA, Jackson SHD. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. British Journal of Clinical Pharmacology. 2004;57(1):6–14.
dc.relationLe Normand Y, Milpiedb N, Kergueris MF, Harousseau Jl. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. International Journal of Bio-Medical Computing. 1994;36:121–125.
dc.relationSantos Buelga D, Del Mar Fernandez De Gatta M, Herrera EV, Dominguez-Gil A, García MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrobial Agents and Chemotherapy. 2005;49(12):4934–4941.
dc.relationAl-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. Journal of Oncology Pharmacy Practice. 2010;16(4):245–250.
dc.relationJarkowski III A, Forrest A, Sweeney RP, Tan W, Segal BH, Almyroudis N, et al. Characterization of vancomycin pharmacokinetics in the adult acute myeloid leukemia population. Journal of Oncology Pharmacy Practice. 2012;18(1):91–96.
dc.relationHaeseker MB, Croes S, Neef C, Bruggeman CA, Stolk LML, Verbon A. Vancomycin dosing in neutropenic patients. PLoS ONE. 2014;9(11).
dc.relationHirai K, Ishii H, Shimoshikiryo T, Shimomura T, Tsuji D, Inoue K, et al. Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin. Therapeutic Drug Monitoring. 2016;38(6):706–710.
dc.relationBury D, ter Heine R, van de Garde EMW, Nijziel MR, Grouls RJ, Deenen MJ. The effect of neutropenia on the clinical pharmacokinetics of vancomycin in adults. European Journal of Clinical Pharmacology. 2019;75:921–928. 187
dc.relationGuo T, van Hest RM, Roggeveen LF, Fleuren LM, Thoral PJ, Bosman RJ, et al. External Evaluation of Population Pharmacokinetic Models of Vancomycin in Large Cohorts of Intensive Care Unit Patients. Antimicrobial Agents and Chemotherapy. 2019;63(5):1–9. Disponible en: https://doi.org/10.1128/AAC.01708-10.
dc.relationÁlvarez R, Cortés LEL, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy. 2016;60(5):2601–2609.
dc.relationMen P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24 /MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic review and meta-analysis. PLoS ONE. 2016;11(1):1–11.
dc.relationLodise TP, Rhoney DH, Tam VH, McKinnon PS, Drusano GL. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–230.
dc.relationRybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2020;77(11):835–863.
dc.relationJung Y, Song KH, Cho JE, Kim HS, Kim NH, Kim TS, et al. Area under the concentrationtime curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. International Journal of Antimicrobial Agents. 2014;43(2):179–183. Disponible en: http://dx.doi.org/10. 1016/j.ijantimicag.2013.10.017.
dc.relationCasapao AM, Lodise TP, Davis SL, Claeys KC, Kullar R, Levine DP, et al. Association between Vancomycin Day 1 Exposure Profile and Outcomes among Patients with Methicillin- Resistant Staphylococcus aureus Infective Endocarditis. Antimicrobial Agents and Chemotherapy. 2015;59(6):2978–2985. Disponible en: http://dx.doi.org/10.1128.
dc.relationGawronski KM, Goff DA, Jack Brown, Khadem TM, Bauer KA. A stewardship program’s retrospective evaluation of vancomycin auc24/mic and time to microbiological clearance in patients with methicillin-resistant staphylococcus aureus bacteremia and osteomyelitis. Clinical Therapeutics. 2013;35(6):772–779. Disponible en: http://dx.doi.org/10. 1016/j.clinthera.2013.05.008.
dc.relationKullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clinical Infectious Diseases. 2011;52(8):975–981.
dc.relationSuzuki Y, Tokimatsu I, Morinaga Y, Sato Y, Takano K, Kohno K, et al. A retrospective analysis to estimate target trough concentration of vancomycin for febrile neutropenia in patients with hematological malignancy. Clinica Chimica Acta. 2015;440:183–187. Disponible en: http://dx.doi.org/10.1016/j.cca.2014.11.027.
dc.relationRybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2009;66(1):82–98.
dc.relationLundberg SM, Lee SI. A unified approach to interpreting model predictions; 2017. Disponible en: https://github.com/slundberg/shap.
dc.relationAljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin Area under the Curve and Acute Kidney Injury: A Meta-analysis. Clinical Infectious Diseases. 2019;69(11):1881–1887.
dc.relationHof F, Bridge LJ. Exact solutions and equi-dosing regimen regions for multi-dose pharmacokinetics models with transit compartments. Journal of Pharmacokinetics and Pharmacodynamics. 2021;48(1):99–131. Disponible en: https://doi.org/10.1007/ s10928-020-09719-8.
dc.relationYap BW, Sim CH. Comparisons of various types of normality tests. J Stat Comput Simul. 2011;81(12):2141–2155.
dc.relationNyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, et al. Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol. 2015;79(1):6–17.
dc.relationSnowden TJ, Graaf PHVD, Tindall MJ. Model reduction in mathematical pharmacology. Journal of Pharmacokinetics and Pharmacodynamics. 2018;45(4):537–555. Disponible en: https://doi.org/10.1007/s10928-018-9584-y.
dc.relationDerbalah A, Al-Sallami HS, Duffull SB. Reduction of quantitative systems pharmacology models using artificial neural networks. Journal of Pharmacokinetics and Pharmacodynamics. 2021;3. Disponible en: https://doi.org/10.1007/s10928-021-09742-3.
dc.relationHornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 1991;4(2):251–257.
dc.relationAbadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large- Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Disponible en: https://www.tensorflow.org/.
dc.relationKingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015:1–15.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleFarmacocinética poblacional en el manejo empírico de infecciones en pacientes con neoplasias hematológicas y neutropenia febril pos-quimioterapia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución