dc.contributorZea Ramírez, Hugo Ricardo
dc.contributorSierra Ávila, Cesar Augusto
dc.contributorGrupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.creatorCogua Barrera, Helmer Ricardo
dc.date.accessioned2020-03-10T13:51:36Z
dc.date.available2020-03-10T13:51:36Z
dc.date.created2020-03-10T13:51:36Z
dc.date.issued2019-07-19
dc.identifierRicardo Cogua B., Hugo R. Zea, Cesar A. Sierra. "ESTUDIO DE LA BORRA DE CAFÉ PARA SU USO EN FORMULACIONES DE LIBERACIÓN CONTROLADA DE NUTRIENTES"
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76039
dc.description.abstractCurrently, a big chemical engineering challenge is focus in the design of chemical processes that close production cycles and incorporating waste and products after their use, to a cycle and so reduces the environmental impact. In this work spent coffee ground (SCG) was studied to identify its potential as a base for slow controlled fertilizer synthetize, as SCG is a waste material which can be used in agriculture to increase organic material in soils and decrease fertilizer leaching. SCG was obtained from an industrial coffee factory and its structural properties were characterized (surface area, elemental analysis, cation exchange capacity (CEC), surface groups, point of zero charge (PZC), isoelectric point). NPK nutrients were incorporated into SCG, then leaching effect was studied using soil columns. It was found that SCG can be used for easy and cheap FLC synthesize.
dc.description.abstractUno de los retos actuales de la ingeniería química, se encuentra en el diseño de procesos químicos que cierren los ciclos de producción, incorporando los desechos y los productos luego de cumplir su funcionalidad, a un ciclo que disminuya el impacto ambiental de la producción industrial. En este trabajo se estudió el potencial de un residuo del procesamiento del café (borra de café o cuncho de café) para ser utilizado como base en la formulación de fertilizantes de liberación controlada (FLC), con el objetivo de aumentar la eficiencia de los nutrientes en la producción agrícola y al mismo tiempo reincorporando material orgánico al suelo. Para ello se caracterizaron las propiedades estructurales y superficiales (área superficial, análisis elemental, capacidad de intercambio catiónico (CIC), grupos superficiales, punto de carga cero (PCZ), punto isoeléctrico) de dos tipos de residuos generados en la producción de extractos de café en una planta de café liofilizado de Caldas. A los residuos se les incorporó nutrientes NPK, se cuantificó el porcentaje en masa de las formulaciones finales y por último se evaluó el efecto de retención de las formulaciones agrícolas preparadas con borra de café. Se concluye que a través de procesos simples se puede sintetizar formulaciones de liberación controlada de nutrientes utilizando borra de café.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationJosé Leibovich. “Potencia Agrícola / Análisis Minagricultura Debe Cambiar Su Modelo de Asignación de Recursos.” El Tiempo. (2013) Septiembre 8.
dc.relation“Suelo colombiano, un recurso que ya se comienza a agotar”: El Tiempo. (2015) febrero 27.
dc.relationDennis Navarro S., Jenny Paola Lis-Gutiérrez, Jacobo Campo Robledo, and Juan Pablo Herrera Saavedra. “Estudios Económicos Sectoriales: Estudio Sobre Fertilizantes En Colombia.” Superintendencia de Industria y Comercio. (2013) Octubre 13.
dc.relationShaviv A. “Advances in Controlled Release of Fertilizers”. Adv. Agron. 71 (2000): 1–49.
dc.relationFrederick A. Mumpton. “Using Zeolites in Agriculture.” In Zeo-Agriculture: Use Of Natural Zeolites In Agriculture And Aquaculture. 296 (1984).
dc.relationT. Milosevic, N. Milosevic. “The Effect of Zeolite, Organic and Inorganic Fertilizers on Soil Chemical Properties, Growth and Biomass Yield of Apple Trees.” Plant, Soil and Environment. 55 (2009): 528–525.
dc.relationI. M. Dwair. “Evaluation of Jordanian Zeolite Tuff as a Controlled Slow-Release Fertilizer for NH4.” Environmental Geology 34 (April 1998): 1–4.
dc.relationAmit Kumar Bansiwal, Sadhana Suresh Rayalu, Nitin Kumar Labhasetwar, Asha Ashok Juwarkar, and Sukumar devotta. “Surfactant-Modified Zeolite as a Slow Release Fertilizer for Phosphorus.” Journal of Agricultural and Food Chemistry 54 (2006): 4773–79.
dc.relationAmit Bhatnagar, Mika Sillanpää. “Utilization of Agro-Industrial and Municipal Waste Materials as Potential Adsorbents for Water treatment—A Review.” Chemical Engineering Journal. 157 (2010): 277–96.
dc.relationSolange I. Mussatto, Ercília M. S. Machado, Silvia Martins, José A. Teixeira. “Production, Composition, and Application of Coffee and Its Industrial Residues.” Food Bioprocess Technol. (2011): 661–72.
dc.relationSimón Navarro Blaya, and Gines Navarro G. Química Agrícola. 2° ed. Ediciones Mundi-Prensa, 2003.
dc.relationM. Reha kova a, S. C uvanova a, M. Dziva´k b, J. Rima´r b, Z. Gavalova´ c. “Agricultural and Agrochemical Uses of Natural Zeolite of the Clinoptilolite Type.” Current Opinion in Solid State and Materials Science-ELSEVIER 8 (2004): 397–404.
dc.relationAMIT KUMAR BANSIWAL, SADHANA SURESH RAYALU, NITIN KUMAR LABHASETWAR, ASHA ASHOK JUWARKAR, and SUKUMAR DEVOTTA. “SurfactantModified Zeolite as a Slow Release Fertilizer for Phosphorus.” Journal of Agricultural and Food Chemistry 54 (2006): 4773–79.
dc.relationVerheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I. Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. European Commission; 2010, http://eusoils. jrc.ec.europa.eu/esdbarchive/eusoils docs/other/EUR24099.pdf.
dc.relationLehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change. 11 (2006): 403–27.
dc.relationYeboah E, Ofori P, Quansah GW, Dugan E, Sohi S. Improving soil productivity through biochar amendments to soils. African Journal of Environmental Science and Technology. 3 (2009): 34–41.
dc.relationDuku M.H., Gu S., Hagan E.B. “Biochar production potential in Ghana—A review” Renewable and Sustainable Energy Reviews. 15 (2011): 3539–3551.
dc.relationS. Mandal, B.C. Verma, G.I. Ramkrushna, R.K. Singh, and D.J. Rajkhowa. “Characterization of Biochar Obtained from Weeds and Its Effect on Soil Properties of North Eastern Region of India.” Journal of Environmental Biology 36 (2015): 499–505.
dc.relationZuxiang Liu, Xiaomin Chen, Yan Jing, Qiuxia Li, Jiabao Zhang, and Qianru Huang. “Effects of Biochar Amendment on Rapeseed and Sweet Potato Yields and Water Stable Aggregate in Upland Red Soil.” CATENA. 123 (2014): 45–51.
dc.relationC.A. Masiello, Y. Chen, X. Gao, S. Liu, H.Y. Cheng, M.R. Bennett, J.A. Rudgers, D.S. Wagner, K. Zygourakis, J.J. Silberg. Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ. Sci. Technol. 47 (2013): 11496– 11503
dc.relationGarrido-Herrera, F.J., I. Daza-Fernández, E. González-Pradas, M. Fernández-Pérez. “Lignin-based formulations to prevent pesticides pollution.” J. Hazard. Mater. 168 (2009): 220–225.
dc.relationLehmann, J. and Joseph, S. Biochar for Environmental Management: Science and Technology. (2nd edition) Earthscan, London, UK (2015).
dc.relationToshimitsu Tokimoto, Naohito Kawasaki, Takeo Nakamura, Jyunichi Akutagawa, Seiki Tanada. “Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass.” Journal of Colloid and Interface Science. 281 (2005): 56–61.
dc.relationGeorge Z. Kyzas. “A Decolorization Technique with Spent ‘Greek Coffee’ Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters.” Materials. 5 (2012): 2069–87.
dc.relationIoannis Anastopoulos, Mina Karamesouti, Athanasios C. Mitropoulos, and George Z. Kyzas. “A Review for Coffee Adsorbents.” Journal of Molecular Liquids 229 (2017): 555– 65.
dc.relationF. J. Cerino Cordova P. E. Dıaz Flores R. B. Garcia-Reyes, E. Soto Regalado R. Gomez Gonzalez M. T. Garza Gonzalez, and E. Bustamante Alcantara. “Biosorption of Cu(II) and Pb(II) from Aqueous Solutions by Chemically Modified Spent Coffee Grains.” International Journal of Environmental Science and Technology. 10 (2013): 611–22.
dc.relationHsing Yuan Yena, Chen Pei Lina. “Adsorption of Cd(II) from Wastewater Using Spent Coffee Grounds by Taguchi Optimization.” Desalination and Water Treatment 57 (2016).
dc.relationDjillali Imessaoudene Salah Hanini, and Abdelkader Bouzidi. “Biosorption of Strontium from Aqueous Solutions onto Spent Coffee Grounds.” Journal of Radioanalytical and Nuclear Chemistry. 298 (2013): 893–902.
dc.relationNancy Elizabeth Davila Guzman, Felipe de Jesus Cerino Cordova, Eduardo Soto Regalado, Jose Rene Rangel Mendez, Paola Elizabeth Dıaz Flores, Maria Teresa Garza Gonzalez, and Jose Angel Loredo Medrano. “Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism.” CLEAN Soil Air Water. 41 (2013): 557–64.
dc.relationRoberto Lavecchia, Franco Medici, María Silvina Patterer, Antonio Zuorro. “Lead Removal from Water by Adsorption on Spent Coffee Grounds.” CHEMICAL ENGINEERING TRANSACTIONS. 47 (2016): 295–300.
dc.relationN. E. Davila-Guzman, F. J. Cerino-Córdova, M. Loredo-Cancino, J. R. Rangel-Mendez, and R. Gómez-González, E. Soto-Regalado. “Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a FixedBed Column.” International Journal of Chemical Engineering, 2016
dc.relationYingjie Dai, Kexin Zhang, Danfeng Zhang and Yanjun Chen. “Kinetic and Equilibrium Studies of Neutral Red Adsorption onto Spent Ground Coffee from Aqueous Solution.” Journal of the Chemical Society of Pakistan 38 (2106): 836–42.
dc.relationAdriana S. Franca, Leandro S. Oliveira, Mauro E. Ferreira. “Kinetics and Equilibrium Studies Ofmethylene Blue Adsorption by Spent Coffee Grounds.” Desalination. 249 (2009): 267–72.
dc.relationLina F. Ballesteros, José A. Teixeira & Solange I. Mussatto. “Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin.” Food Bioprocess Technol. 7 (2014): 3493–3503.
dc.relationRocio Campos-Vegaa, Guadalupe Loarca-Pina, Hayde A. Vergara-Castaneda, and and B. Dave Oomah. “Spent Coffee Grounds: A Review on Current Research and Future Prospects.” Trends in Food Science & Technology. 45 (2015): 24–36.
dc.relationRebeca Cruz, Eulália Mendes , Álvaro Torrinha, Simone Morais , José Alberto Pereira, and Paula Baptista, Susana Casal. “Revalorization of Spent Coffee Residues by a Direct Agronomic Approach.” Food Research International. 73 (2015): 190–196.
dc.relationRebeca Cruz, Simone Morais, Eulália Mendes , José A. Pereira, Paula Baptista, Susana Casal. “Improvement of Vegetables Elemental Quality by Espresso Coffee Residues.” Food Chemistry. 148 (2014): 294–99.
dc.relationSarah J Hardgrove, Stephen J Livesley. “Applying Spent Coffee Grounds Directly to Urban Agriculture Soils Greatly Reduces Plant Growth.” Urban Forestry & Urban Greening. 18 (2016): 1–8.
dc.relationB.Q. Zhao, X.Y. Li, H. Liu, B.R. Wang, P. Zhu, S.M. Huang, D.J. Bao, Y.T. Li, H.B. So. “Results from Long-Term Fertilizer Experiments in China: The Risk of Groundwater Pollution by Nitrate.” NJAS - Wageningen Journal of Life Sciences. 58 (2011): 177–83.
dc.relationV.H. Smith, G.D. Tilman, J.C. Nekola. “Eutrophication: Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems.” Environmental Pollution. 100 (1999): 179–96.
dc.relationMartin E. Trenkel. “Controlled-Release and Stabilized Fertilizers in Agriculture.” International Fertilizer Industry Association, 1997.
dc.relationMartin E. Trenkel. “Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture.” International Fertilizer Industry Association, 2010.
dc.relationDi An, Boyang Liu, Ling Yang, Ting-Jie Wang and Chengyou Kan. “Fabrication of Graphene Oxide/Polymer Latex Composite Film Coated on KNO3 Fertilizer to Extend Its Release Duration.” Chemical Engineering Journal. 311 (2017): 318–25.
dc.relationXiaodi Li, Qian Li , Xing Xu, Yuan Su, Qinyan Yue, Baoyu Gao. “Characterization, Swelling and Slow-Release Properties of a New Controlled Release Fertilizer Based on Wheat Straw Cellulose Hydrogel.” Journal of the Taiwan Institute of Chemical Engineers. 60 (2016): 564–72.
dc.relationWenyi Yuan , Solihin, Qiwu Zhang, Junya Kano, Fumio Saito. “Mechanochemical Formation of K–Si–Ca–O Compound as a Slow-Release Fertilizer.” Powder Technology. 260 (2014): 22–26.
dc.relationHarry Marsh, and Francisco Rodriguez-Reinoso. Activated Carbon. Elsevier Science & Technology Books, 2006.
dc.relationJieun Kim, Jechan Lee, Ki-Hyun Kim, Yong Sik Ok, Young Jae Jeon, Eilhann E. Kwon. “Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium”. Applied Thermal Engineering. 110 (2017): 335–345.
dc.relationTravis Fisher, Mohammad Hajaligol, Bruce Waymack, Diane Kellogg. “Pyrolysis behavior and kinetics of biomass derived materials”. Journal of Analytical and Applied Pyrolysis. 62 (2002): 331–349.
dc.relationFrançois-XavierCollard, Joël Blin. “A review on pyrolysis of biomass constituents: Mechanisms and composition oftheproducts obtained from the conversion of cellulose, hemicelluloses and lignin”. Renewable and Sustainable Energy Reviews. 38 (2014): 594– 608.
dc.relationStefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. “A study of ligno cellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol. 105 (2014): 143–50.
dc.relationV. Dhyani, T. Bhaskar. “A comprehensive review on the pyrolysis of lignocellulosic biomass”. Renewable Energy. 129 (2018): 695-716.
dc.relationManon Van de Velden, Jan Baeyens, Anke Brems, Bart Janssens, Raf Dewil. “Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction” Renewable Energy. 35 (2010): 232–242.
dc.relationM. Tripathi, J. Sahu, P. Ganesan. “Effect of process parameters on production of biochar from biomass waste through pyrolysis: Areview”. Renewable and sustainable Energy Reviews. 55 (2016): 467-481.
dc.relationJin Sun Cha, Sung Hoon Park, Sang-Chul Jung, Changkook Ryu, Jong-Ki Jeon, MinChul Shin, Young-Kwon Park. “Production and utilization of biochar: A review”. Journal of Industrial and Engineering Chemistry. 40 (2016): 1-15.
dc.relationD.K. Shen, S. Gu, A.V. Bridgwater. “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR”. Journal of Analytical and Applied Pyrolysis. 87 (2010): 199-206.
dc.relationJ. Scheirs, G. Camino, W. Tumiatti. “Overview of water evolution during the thermal degradation of cellulose”. European Polymer Journal. 37 (2001): 933 – 942.
dc.relationMustafa Balat, Mehmet Balat, Elif Kırtay, Havva Balat. “Main routes for the thermoconversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems”. Energy Conversion and Management. 50 (2009): 3147–3157.
dc.relationM. Ahmad, A. Rajapaksha, J. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. Lee, Y. Sik. “Biochar as a sorbent for contaminant management in soil and water: A review”. Chemosphere. 99 (2014): 19–33.
dc.relationPutro J. N, Soetaredjo F. E, F. E. Lin, S. Y. Ju, Ismadji S. “Pretreatment and conversion of lignocellulose biomass into valuable chemicals”. Putro, J. N., Soetaredjo, F. E., Lin, S.- Y., Ju, Y.-H., & Ismadji, S. (2016). Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Advances. 52 (2016): 46834–46852.
dc.relationT. kashiwagi, H. Nambu. “Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper”. Combustion and Flame. 88 (1992): 345-368.
dc.relationD.K. Shen, S. Gu a, Baosheng Jin, M.X. Fang. “Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods”. Bioresource Technology. 102 (2011): 2047–2052
dc.relationC. Silva, A. Oliveira Carneiro, B. Corradi, B. Rocha, I. Nogueira, M. Alves. “Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process”. Eur. J. Wood Prod. 74 (2016): 845–850.
dc.relationWei-Hsin Chen, Ke-Miao Lu, Shih-Hsien Liu, Chi-Ming Tsai, Wen-Jhy Lee, Ta-Chang Lin. “Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities”. Bioresource Technology. 146 (2013): 152–160.
dc.relationS.P. Sohi, E. Krull, E. Lopez, R. Bol. “Chapter 2: A Review of Biochar and Its Use and Function in Soil”. Advances in Agronomy. 105 (2010): 47-82.
dc.relationS. J. Parikh, K. W. Goyne, A. J. Margenot, F. Mukome, F. J. Calderón. “Chapter One: Soil Chemical Insights Provided through Vibrational Spectroscopy”. Advances in Agronomy. 126 (2014).
dc.relationLehmann J, Gaunt J, Rondon M. “Biochar sequestration in terrestrial ecosystems: a review” Mitigation and Adaptation Strategies for Global Change. 11 (2006): 403–27.
dc.relationC.J. Barrow. “Biochar: Potential for Countering Land Degradation and for Improving Agriculture.” Applied Ge. 34 (2012): 21–28.
dc.relationVerheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I. “Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions”. European Commission; 2010, http://eusoils. jrc.ec.europa.eu/esdbarchive/eusoils docs/other/EUR24099.pdf
dc.relationSolange I. Mussatto, Ercília M. S. Machado, Silvia Martins, José A. Teixeira. “Production, Composition, and Application of Coffee and Its Industrial Residues.” Food Bioprocess Technol. (2011): 661–72.
dc.relationK. KUMAZAWA, H. MASUDA. “Investigation of the Change in the Flavor of a Coffee Drink during Heat Processing”. J. Agric. Food Chem. 51 (2003): 2674–2678.
dc.relationI. Anastopoulosa, M. Karamesoutia, A. Mitropoulosc, G. Kyzas. “A review for coffee adsorbents”. Journal of Molecular Liquids. 2016.
dc.relationRocio Campos-Vegaa, Guadalupe Loarca-Pina, Hayde A. Vergara-Castaneda, and and B. Dave Oomah. “Spent Coffee Grounds: A Review on Current Research and Future Prospects.” Trends in Food Science & Technology. 45 (2015): 24–36.
dc.relationASTM “Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis” ASTM D7582.
dc.relationJ. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-García, C. Moreno-Castilla, “Activated carbon surface modifications and their effect on aqueous lead adsorption” J. Chem. Technol. Biotechnol. 76 (2001): 1209–1215
dc.relationM.A. Martín-Lara, F. Hernáinz, M. Calero, G. Blázquez, G. Tenorio. “Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions” Biochemical Engineering Journal. 44 (2009): 151–159.
dc.relationNorma Técnica Colombiana. “productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo”. NTC 5167 del 2004.
dc.relationD. H. Vitt. “Peatlands” Encyclopedia of Ecology. (2008): 2656-2664.
dc.relationStracher, G. B., G. Rein, and A. Prakash. “Peat: Its Origins, Characteristics, a Geological Transformations.” In Coal and Peat Fires: A Global Perspective. 4, 2016.
dc.relationF. Rezanezhad, J. S. Price, W. L. Quinton, B. Lennartz, T. Milojevic, P. V. Cappellen. “Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists”. Chemical Geology. 429 (2016): 75-84.
dc.relationD. J. Boron, E. W. Evans, J. M. Peterson. “An Overview of Peat Research, Utilization, and Environmental Considerations”. International Journal of Coal Geology. 8 (1987): 1-31
dc.relationM.s Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, S.W. Sing. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”. Pure Appl. Chem. 2015.
dc.relationA. Silvestre, J. Silvestre. M. Martínez, R. Futamura, T. Itohc, K. Kaneko, F. RodríguezReinoso. “Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption”. Carbo. 66 (2014): 699 – 704.
dc.relationJohn K. Brennan, Teresa J. Bandosz, Kendall T. Thomson, Keith E. Gubbins “Water in porous carbons”. Colloids and Surfaces. 187 (2001): 539–568.
dc.relationK. Nakai, M. Yoshida, J. Sonoda, Y. Nakada, M. Hakuman, H. Naono. “High resolution N2 adsorption isotherms by graphitized carbon black and nongraphitized carbon black – as-Curves, adsorption enthalpies and entropies”. Journal of Colloid and Interface Science. 351 (2010): 507–514.
dc.relationFiguereido, J. L., and J. A. Moulijn. “Textural Chracterization of Porous Carbons by Physical Adsorption of Gases.” In Carbon and Coal Gasification: Science and Technology. NATO, 1985.
dc.relationM. MOLINA-SABIO, M. T. GONZALEZ, F. RODRIGUEZ-REINOSO and A. SEPIIJLVEDAESCRIBANO. “EFFECT OF STEAM AND CARBON DIOXIDE ACTIVATION IN THE MICROPORE SIZE DISTRIBUTION OF ACTIVATED CARBON.” Carbon. 34 (1996): 505–9.
dc.relationH. P. BOEHM. “SOME ASPECTS OF THE SURFACE CHEMISTRY OF CARBON BLACKS AND OTHER CARBONS.” Carbon. 32 (1994): 759–69.
dc.relationRivka B. Fidel, David A. Laird, Michael L. Thompson “Evaluation of Modified Boehm Titration Methods for Use with Biochars” Journal of Environmental Quality. 42 (2103): 1771–1778.
dc.relationJ. Lützenkirchen, T. Preočanin, D. Kovačević, V. Tomišić, L. Lövgren, N. Kallay. “Potentiometric Titrations as a Tool for Surface Charge Determination”. Croat. Chem. 85 (2012): 391–417.
dc.relationM. N. Khan, A. Sarwar. “Determination of points of zero charge of natural and treated adsorbentes” Surface Review and Letters. 14 (2007): 461 – 489.
dc.relationLangmuir, I. “THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.” Journal of the American Chemical Society. (1918).
dc.relationW. Rudzinski D. Everett. “Adsorption of Gases on Heterogeneous Surfaces” Elsevier Ltd. 1991.
dc.relationIoannis Anastopoulos, George Z. Kyzas. “Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?” Journal of Molecular Liquids. 218 (2016): 174–185.
dc.relationL. Martínez, A. Arteaga, E. Hernández, C. Márquez “Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants” Advances in Colloid and Interface Science. 247 (2017): 178–184.
dc.relationS. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju “Relevance of isotherm models in biosorption of pollutants by agricultural Byproducts.” Journal of Environmental Chemical Engineering. 2 (2014): 398–414.
dc.relationG. Limousin, J. Gaudet, L. Charlet, S. Szenknect, V. Barthe`s, M. Krimissa. “Sorption isotherms: A review on physical bases, modeling and measurement.” Applied Geochemistry. 22 (2007): 249–275.
dc.relationNimibofa Ayawei, Augustus Newton Ebelegi, and Donbebe Wankasi. “Modelling and Interpretation of Adsorption Isotherms.” Journal of Chemistry. 2017.
dc.relationGiles, C.H., MacEwan, T.H., Nakhwa, S.N. and Smith, D. “Studies in Adsorption: Part XI. A System of Classification of Solution Adsorption Isotherms and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Area Solids.” Journal of the Chemical Society.14 (1960): 3973-3993.
dc.relationC.H. Giles, D. Smith, A. Huitson, “A general treatment and classification of the solute adsorption isotherm” Journal of Colloid and Interface Science. 47 (1974): 755–765.
dc.relationChristoph Hinz. “Description of sorption data with isotherm equations” Geoderma. 99 (2001): 225–243
dc.relationAssociation of American Plant Food Control Officials (AAPFCO). “Official Publication No. 57”. Association of American Plant Food Control Officials, Inc., West Lafayette, Indiana, USA. 1997.
dc.relationAvi Shaviv. “Advances in controlled-release fertilizers.” Advances in Agronomy. 71 (2001): 1-49.
dc.relationJiajia Fu, Chenyi Wang, Xianxian Chen, Zhaowei Huang, Daomin Chen. “Classification research and types of slow controlled release fertilizers (SRFs) used - a review” Communications in Soil Science and Plant Analysis. 2018.
dc.relationBabar Azeem, KuZilati KuShaari, Zakaria B. Man, Abdul Basit, Trinh H. Thanh “Review on materials & methods to produce controlled release coated urea fertilizer.” Journal of Controlled Release. 181 (2014): 11–21.
dc.relationmarket research future (2019). “Controlled Release Fertilizers Market Research Report – Forecast to 2023”.
dc.relationmarkets and markets (2018). “Controlled-Release Fertilizers Market by Type (Slow-release, Coated & Encapsulated, N-Stabilizers), Crop Type (Cereal & Grain, Oilseed & Pulse, Fruit & Vegetable, Plantation, Turf & Ornamental), Application Method, and Region - Global Forecast to 2022”.
dc.relationGuodong Liu, Lincoln Zotarelli, Yuncong Li, David Dinkins, Qingren Wang, and Monica Ozores-Hampton. “Controlled-Release and Slow-Release Fertilizers as Nutrient Management Tools”. Horticultural Sciences Department, UF/IFA, (2014).
dc.relationY. J. Dong, M.R. He, Z.L. Wang, W.F. Chen, J. Hou, X.K. Qiu, J.W. Zhang. “Effects of new coated release fertilizer on the growth of maize.” Journal of soil science and plant nutrition. (2016).
dc.relationK. Mohd, F. Babadi, RobiahYunus. “Comparative performance of different urea coating materials for slow reléase” Particuology. 17 (2014): 165-172.
dc.relationM. Yasin Naz, S. A. Sulaiman “Slow release coating remedy for nitrogen loss from conventional urea: a review”. Journal of Controlled Release. 225 (2016): 109–120.
dc.relationAndré M. Senna, J. Carmo, J. Santana, V. Botaro “Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil.” Journal of Environmental Chemical Engineering. 3 (2015): 996-1002.
dc.relationM.E. González, M. Cea, J.Medina, A. González, M.C. Diez, P. Cartes, C. Monreal, R. Navia. “Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material”. Science of the Total Environment. 505 (2015): 446–453.
dc.relationStandard de ASTM D3860, 2014 “Standard Practice for Determination of Adsorptive Capacity of Activated Carbon by Aqueous Phase Isotherm Technique”.
dc.relationToshimitsu Tokimoto, Naohito Kawasaki, Takeo Nakamura, Jyunichi Akutagawa, Seiki Tanada. «Removal of lead ions in drinking water by coffee grounds as vegetable biomass». Journal of Colloid and Interface Science. 281 (2005): 56-61.
dc.relationF. J. Cerino Cordova P. E. Dıaz Flores R. B. Garcia-Reyes, y E. Soto Regalado R. Gomez Gonzalez M. T. Garza Gonzalez. «Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains». International Journal of Environmental Science and Technology. 10 (2013): 611-22.
dc.relationNancy Elizabeth Davila Guzman, Felipe de Jesus Cerino Cordova, Eduardo Soto Regalado1, Jose Rene Rangel Mendez, Paola Elizabeth Dıaz Flores, Maria Teresa Garza Gonzalez, y Jose Angel Loredo Medrano. «Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism». CLEAN Soil Air Water. 41 (2013): 557-64.
dc.relationAmerican Public Health Association, American Water Works Association and the Water Environment Federation. Standard Methods For the Examination of Water and Wastewater, 2012.
dc.relationNorma tecnica colombiana “Calidad del suelo. Determinacion de fosforo total” NTC 6259. 2018.
dc.relationDada, A.O, Olalekan, A.P, Olatunya, A.M., DADA, O. «Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk». Journal of Applied Chemistry, (2012): 2278-5736.
dc.relationOCDE. “Guidelines for chemical testing: leaching in soils columns”. 312 adapted: (2004) April 13.
dc.relationK.Y. Foo, B.H. Hameed. “Insights into the modeling of adsorption isotherm systems” Chemical Engineering Journal. 156 (2010): 2–10.
dc.relationS. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju. “Relevance of isotherm models in biosorption of pollutants by agricultural byproducts” Journal of Environmental Chemical Engineering. 2 (2014): 398–414.
dc.relationSlobodan K.Milonjić. “Comments on: factors influencing the removal of divalent cations by hydroxyapatite” Journal of Hazardous Materials.162 (2009): 1588-1589.
dc.relationHai Nguyen Tran, Sheng-Jie You, Ahmad Hosseini-Bandegharaei, Huan-Ping Chao. “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review” Water Research. 120 (2017): 88-116.
dc.relationG. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthe`s, M. Krimissa. “Sorption isotherms: A review on physical bases, modeling and measurement” Applied Geochemistry. 22 (2007): 249–275.
dc.relationA. Naga Babu, D. Srinivasa Reddy, G. Suresh Kumar, K. Ravindhranath, G.V. Krishna Mohan. “Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent” Journal of Environmental Management. 218 (2018): 602-612.
dc.relationIoannis Anastopoulos, Mina Karamesouti, C. Mitropoulos, Z. Kyzas. “A review for coffee adsorbents” Journal of Molecular Liquids. 229 (2017): 555–565.
dc.relationAdriana S. Franca a, Leandro S. Oliveira, Mauro E. Ferreira. “Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds” Desalination. 249 (2009): 267–272.
dc.relationHamza Laksaci , Aissa Khelifi, Mohamed Trari, Abdelhamid Addoun, “Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides” Journal of Cleaner Production. 147 (2017): 254-262.
dc.relationHongbo Li , Xiaoling Dong , Evandro B. da Silva, Letuzia M. de Oliveira, Yanshan Chen , Lena Q. Ma. “Mechanisms of metal sorption by biochars: Biochar characteristics and modifications” Chemosphere. 178 (2017): 466-478.
dc.relationHongbo Peng, Peng Gao, Gang Chu, Bo Pan, Jinhui Peng , Baoshan Xing. “Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars” Environmental Pollution. 229 (2017): 846-853.
dc.relationGang Chu, Jing Zhao, Yu Huang, Dandan Zhou, Yang Liu, Min Wu, Hongbo Peng, Qing Zhao, Bo Pan, Christian E.W. Steinberg. “Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores” Environmental Pollution. 240 (2018): 1-9.
dc.relationN. E. Davila-Guzman, F. J. Cerino-Córdova, M. Loredo-Cancino, J. R. Rangel-Mendez, and R. Gómez-González, E. Soto-Regalado. “Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a Fixed-Bed Column.” International Journal of Chemical Engineering. 2016.
dc.relationF. J. Cerino Cordova P. E. Dıaz Flores R. B. Garcia-Reyes, E. Soto Regalado R. Gomez Gonzalez M. T. Garza Gonzalez, and E. Bustamante Alcantara. “Biosorption of Cu(II) and Pb(II) from Aqueous Solutions by Chemically Modified Spent Coffee Grains.” International Journal of Environmental Science and Technology. 10 (2013): 611–22.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio de la borra de café para su uso en formulaciones de liberación controlada de nutrientes
dc.typeOtro


Este ítem pertenece a la siguiente institución