dc.contributorPedraza Bonilla, César Augusto
dc.contributorGutiérrez Duarte, Sergio Alonso
dc.contributorGrupo de Investigación Emc-Un
dc.creatorChaparro Arce, Daniel Felipe
dc.date.accessioned2022-08-22T13:04:56Z
dc.date.available2022-08-22T13:04:56Z
dc.date.created2022-08-22T13:04:56Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81981
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa presente tesis de maestría presenta la implementación en entorno simulado de una estrategia de reducción de información y localización de objetivos, basada en el procesamiento de señales acústicas submarinas usando los métodos de Matrix Pencil (MPM) y time reversal (TR). Se realiza el análisis de relación entre la reducción de datos y la confiabilidad en la reconstrucción de señal provista por MPM para señales provenientes de barcos reales, teniendo en cuenta parámetros de tiempo de procesamiento y correlación de señal. La reducción de datos se realiza con el fin de usar de manera óptima el ancho de banda de un canal inalámbrico que facilite la comunicación entre varios sensores y un nodo central, en el que posteriormente, se realiza el proceso de localización. Una vez determinadas las características específicas de las señales y luego de la aplicación de MPM, se busca usar la información proveniente de cada sensor para calcular la localización de los objetivos usando TR. De igual manera se evalúa la efectividad del método considerando variaciones en las características de la reconstrucción provista por MPM y teniendo en cuenta factores de ruido aleatorio presente en el proceso de propagación de señal a través del medio. (Texto tomado de la fuente)
dc.description.abstractThis master thesis document will present the implementation of a strategy of information reduction and the location of objectives in a simulated environment. This strategy is based on the processing of submarine acoustic signals, using Matrix Pencil (MPM) and time-reversal (TR) methods. It analyzed the relationship between data reduction and the reliability of the reconstructed signal provided by MPM. This information was coming from real boats and the analysis was done taking into account parameters of processing time and signal correlation. Data reduction was done to optimally use the bandwidth of a wireless channel which allows to connect of a lot of sensors with a central node and made the localization process. Once the specific characteristics of the signals were established and then using MPM, it is used TR to estimate the location of the objectives. It was evaluated the effectiveness of the proposed method considering the variations in the characteristics of the reconstructed signals given by MPM and using also random noise factors due to signal propagation through the medium.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationM. d. J. Observatorio de Drogas de Colombia, \Reporte de Drogas de Colombia 2015," 2015.
dc.relationD. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, "Locating ships using time reversal and matrix pencil method by their underwater acoustic signals," Sensors, vol. 21, no. 15, pp. 1-15, 2021
dc.relationU. Nations, "World drug report 2018. Executive summary conclusions and policy implications." 2018.
dc.relationA. de Colombia, "Informe de Gestión 2015-2018 Armada Nacional de Colombia," 2019
dc.relationF. Cabrera, N. Molina, M. Tichavska, and V. Araña, "Automatic Identification System modular receiver for academic purposes," Radio Science, vol. 51, no. 7, pp. 1038{1047, 2016
dc.relationC. E. A. F. W. L. K. A. N. Baum, "On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems," Radio Science, 1971.
dc.relationC. E. Baum, "Feature Article Author Tapan Sarkar to," IEEE Antennas and Propagation Society Newsletter, vol. 28, no. 4, pp. 14-23, 1986
dc.relationT. K. Sarkar and O. Pereira, "Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials," IEEE Antennas and Propagation Magazine, vol. 37, no. 1, 1995.
dc.relationA. Caboussat and G. K. Miers, "Numerical approximation of electromagnetic signals arising in the evaluation of geological formations," Computers and Mathematics with Applications, vol. 59, no. 1, pp. 338-351, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.camwa.2009.06.044
dc.relationX. Ma, Z. Zhou, K. Liu, J. Zhang, and W. Raza, "Poles Extraction of Underwater Targets Based on Matrix Pencil Method," IEEE Access, vol. 8, pp. 103 007-103 019, 2020
dc.relationW. Lee, T. K. Sarkar, H. Moon, and M. Salazar-Palma, "Identification of multiple objects using their natural resonant frequencies," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 54-57, 2013
dc.relationS. Wang, Z. C. Wu, L. Du, G. H. Wei, and Y. Z. Cui, "Study on the Matrix Pencil Method with Application to Predict Time-domain Response of a Reverberation Chamber," vol. 28, no. 9, pp. 763-771, 2013
dc.relationO. Verdier, "Reduction and normal forms of matrix pencils," 2011, no. 1, pp. 1{30, 2011. [Online]. Available: https://www.math.ntnu.no/preprint/numerics/2011/N1-2011.pdf
dc.relationY. Hua and T. K. Sarkar, "Matrix Pencil Method for Estimating Parameters of exponetially damped," IEEE Transactions on Acoustics Speech and Signal Processing, vol. 38, no. May, pp. 814{824, 1990
dc.relationM. Fink, C. Prada, F. Wu, and D. Cassereau, "Self focusing in inhomogeneous media with ’time reversal’ acoustic mirrors," Ultrasonics Symposium Proceedings, vol. 2, pp. 681-686, 1989
dc.relationM. Fink, "Time-Reversal of Ultrasonic Fields-Part 111 : Theory of the Closed TimeReversal Cavitv," vol. 39, no. 9201924, 1992
dc.relationJ. Cai, L. Shi, S. Yuan, and Z. Shao, "High spatial resolution imaging for structural health monitoring based on virtual time reversal," Smart Materials and Structures, vol. 20, no. 5, 2011
dc.relationI. D. Arriba-ruiz, J. M. Muñoz-ferreras, and F. Pérez-martínez, "Multipath mitigation techniques based on time reversal concept and superresolution algorithms for inverse synthetic aperture radar imaging," vol. 7, no. October 2012, pp. 413-421, 2013
dc.relationN. Mora, F. Rachidi, and M. Rubinstein, "Application of the time reversal of electromagnetic fi elds to locate lightning discharges," Atmospheric Research, vol. 117, pp. 78-85, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.atmosres.2011.08.016
dc.relationC.-x. Li, W. Xu, S. Member, J.-l. Li, and X.-y. Gong, "Time-Reversal Detection of Multidimensional Signals in Underwater Acoustics," vol. 36, no. 1, pp. 61-71, 2011
dc.relationF. Yuan, Q. Wei, and E. Cheng, "ScienceDirect Multiuser chirp modulation for underwater acoustic channel based on," International Journal of Naval Architecture and Ocean Engineering, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.ijnaoe.2016.09.004
dc.relationX. Sheng, F. Luo, Y. Guo, and L. Guo, "Research on Selective Passive Focusing technology based on Dummy Iterative Time-Reversal Mirror," no. 9140, 2010
dc.relationC. E. Baum, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "The Singularity Expansion Method And Its Application To Target Identification," Proceedings of the IEEE, vol. 79, no. 10, pp. 1481-1492, 1991
dc.relationT. K. Sarkar, S. Park, J. Koh, and S. M. Rao, "Application of the matrix pencil method for estimating the SEM (Singularity Expansion Method) poles of source-free transient responses from multiple look directions," IEEE Transactions on Antennas and Propagation, vol. 48, no. 4, pp. 612-618, 2000
dc.relationM. Fink, "Time Reversal of Ultrasonic Fields-Part," vol. 39, no. 5, 1992
dc.relationC. He, J. Huang, and Z. Ding, "Peer-Reviewed Technical Communication," vol. 34, no. 4, pp. 624-633, 2009
dc.relationW. A. Kuperman, W. S. Hodgkiss, H. C. Song, and D. R. Jackson, "Phase conjugation in the ocean : Experimental demonstration of an acoustic time-reversal mirror a )," vol. 103, no. 1, pp. 25{40, 1998
dc.relationD. Zhang, "A Coefficient of Determination for Generalized Linear Models," The American Statistician, vol. 71, pp. 1-20, 2016
dc.relationY. Fu and Z. Yu, "A Low SNR and Fast Passive Location Algorithm Based on Virtual Time Reversal," IEEE Access, vol. 9, pp. 29 303-29 311, 2021
dc.relationR. Nauber, L. Buttner, and J. Czarske, "Ultrasound Imaging in Hot Melts with Time Reversal Virtual Arrays," IEEE International Ultrasonics Symposium, IUS, vol. 2019-October, pp. 1051-1053, 2019
dc.relationM. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 92-103, 2012
dc.relationE. F. Ruiz, D. Chaparro-Arce, J. J. Pantoja, F. Vega, C. Kasmi, and F. Alyafei, "Radargram Filter Using Singularity Expansion Method (SEM)," Proceedings of the 2020 IEEE International Conference on Computational Electromagnetics, ICCEM 2020, no. 2, pp. 58-59, 2020
dc.relationE. F. Ruiz, D. Chaparro-Arce, J. J. Pantoja, F. Vega, C. Kasmiv, and F. Al Yafei, "Ground penetrating radar radargram filter using singularity expansion method," Applied Computational Electromagnetics Society Journal, vol. 35, no. 11, pp. 1437-1438, 2020
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de estrategia de localización de barcos, usando señales acústicas comprimidas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución