dc.contributor | Rincón Prat, Sonia LucÍa | |
dc.contributor | Biomasa y Optimización Térmica de Procesos Biot | |
dc.creator | Perilla Arango, Daniel Alejandro | |
dc.date.accessioned | 2022-08-16T19:42:38Z | |
dc.date.accessioned | 2022-09-21T14:39:00Z | |
dc.date.available | 2022-08-16T19:42:38Z | |
dc.date.available | 2022-09-21T14:39:00Z | |
dc.date.created | 2022-08-16T19:42:38Z | |
dc.date.issued | 2022-03-18 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81921 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3370331 | |
dc.description.abstract | El interés de lograr cada vez más eficiencia energética en los procesos y reducir la huella de carbono y el calentamiento global, son los principales pilares para buscar sistemas cada vez más eficientes. El uso de sistemas de almacenamiento térmico PCM permite aprovechar, estabilizar y almacenar energía térmica para su posterior uso, lo cual permite mejorar significativamente un proceso si se realiza un correcto diseño. En el presente trabajo se estudió un sistema de refrigeración de moldes de inyección de termoplásticos, al conocer las oscilaciones de temperatura del líquido refrigerante se diseña analíticamente un intercambiador de cambio de fase PCM-HX con geometría de aletas tipo persiana y tubos planos que ayuda a reducir las oscilaciones de temperatura presentes en el sistema. Se encontró una mejora en la estabilidad de las temperaturas del líquido refrigerante al integrar el PCM-HX, reduciendo las oscilaciones hasta un 50%, adicionalmente evidenció que el chiller opera en ciclos más largos de encendido y apagado, lo que significa una reducción del consumo energético del 11%. Los resultados encontrados permiten explorar nuevas alternativas de implementación de acumuladores de energía térmica, con lo cual se pueden tener una disminución importante en el consumo eléctrico y sistemas de refrigeración más estables contribuyendo en la reducción de la huella de carbono. (Texto tomado de la fuente) | |
dc.description.abstract | The interest in achieving more energy efficiency in processes and decreasing the carbon footprint and global warming are the main pillars for seeking increasingly efficient systems. The use of PCM thermal storage systems allows the use, stabilization and storage of thermal energy for later use, which allows a process to be significantly improved if a correct design is carried out. In the present work, a cooling system for thermoplastic injection molds was studied. Knowing the temperature oscillations of the cooling liquid, a phase change exchanger (PCM-HX) with louvered fin and flat tubes geometry is analytically designed to help reduce the temperature oscillations present in the system. An improvement was found in the stability of coolant temperatures by integrating the PCM-HX, reducing oscillations up to 50%, additionally it was shown that the chiller operates in longer cycles on and off, which means a reduction in power consumption up to 11%. The results found allow us to explore new alternatives for the implementation of thermal energy storages, which can lead to a significant decrease in electricity consumption and more stable refrigeration systems, contributing to the reduction of the carbon footprint. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.publisher | Departamento de Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | IEA (2021, Octubre 1). World energy outlook 2021 – analysis. IEA. Paris, Retrieved March 13, 2022, from https://www.iea.org/reports/world-energy-outlook-2021 | |
dc.relation | Li, S.-F., Liu, Z., & Wang, X.-J. (2019). A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy, 255, 113667 | |
dc.relation | Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31–55. | |
dc.relation | Gómez, T., & Ribó, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141. | |
dc.relation | Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703–724. | |
dc.relation | Kumar, L., Hasanuzzaman, M., & Rahim, N. A. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management, 195, 885–908. | |
dc.relation | Miró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301. | |
dc.relation | Pitié, F., Zhao, C. Y., Baeyens, J., Degrève, J., & Zhang, H. L. (2013). Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Applied Energy, 109, 505–513. | |
dc.relation | Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., & Zalewski, L. (2011). A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 15(1), 112–130. | |
dc.relation | Elias, C. N., & Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394. | |
dc.relation | Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345. | |
dc.relation | Oró, E., de Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513–533. | |
dc.relation | Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4) (pp. 314), 313-332. | |
dc.relation | Feng, P. H., Zhao, B. C., & Wang, R. Z. (2020). Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering, 166, 114728. | |
dc.relation | Pop, O. G., Tutunaru, L. F., Bode, F., Abrudan, A. C., & Balan, M. C. (2018). Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions. Applied energy, 212, 976-996. | |
dc.relation | Venegas, T., Ugarte, G., Vasco, D. A., Rouault, F., & Pérez, R. (2019). Feasibility study of the application of a cooling energy storage system in a chiller plant of an office building located in Santiago, Chile. International Journal of Refrigeration, 102, 142–150. | |
dc.relation | Zhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., & Jiang, Y. (2013). Performance analysis of the air-conditioning system in Xi’an Xianyang International Airport. Energy and buildings, 59, 11-20. | |
dc.relation | Said, M. A., & Hassan, H. (2018). Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Applied Energy, 230, 1380-1402. | |
dc.relation | Allouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2017). Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Applied energy, 190, 600-611. | |
dc.relation | Du, J., Nie, B., Zhang, Y., Du, Z., & Ding, Y. (2020). Cooling performance of a thermal energy storage-based portable box for cold chain applications. Journal of Energy Storage, 28, 101238. | |
dc.relation | Park, H. S., & Dang, X. P. (2017). Development of a smart plastic injection mold with conformal cooling channels. Procedia Manufacturing, 10, 48-59. | |
dc.relation | Camarda, M. F. (2017). Eficiencia energética y competitividad industrial: análisis del sistema de incentivos en torno al programa provincial energía eficiente (propee). Administración Pública y Sociedad (APyS), (3), 62-81. | |
dc.relation | Liu, H., Zhang, X., Quan, L., & Zhang, H. (2020). Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units. Journal of Cleaner Production, 242, 118355. | |
dc.relation | Spiering, T., Kohlitz(2015). Energy efficiency benchmarking for injection moulding processes. Robotics and Computer-Integrated Manufacturing, 36, 45–59. | |
dc.relation | Rashid, O (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264, 121375. | |
dc.relation | Le, C. V., Bansal, P. K., & Tedford, J. D. (2004). Three-zone system simulation model of a multiple-chiller plant. Applied Thermal Engineering, 24(14–15), 1995–2015. | |
dc.relation | Incropera, F. P.,Dewitt D. P., Bergman T. L.,Lavine A. S., (2007). 11. Fundamentals of heat and mass transfer 6th edition, John Wiley & Sons. Danvers, Massachusetts | |
dc.relation | Cabeza, L. F. (2015). Advances in thermal energy storage systems: Methods and applications. In Introduction to thermal energy storage (TES) systems (pp. 7). Woodhead Publishing. | |
dc.relation | Naranjo, A., & Sanz, J. R. (2001). Extrusion processing data. Hanser Verlag. | |
dc.relation | Yang, C. C., Ger, J., & Li, C. F. (2008). Formic acid: a rare but deadly source of carbon monoxide poisoning. Clinical Toxicology, 46(4), 287-289. | |
dc.relation | Medrano, M., Yilmaz, M. O., Nogués, M., Martorell, I., Roca, J., & Cabeza, L. F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied energy, 86(10), 2047-2055. | |
dc.relation | Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer-Verlag Berlin Heidelberg; Berlin (Germany). | |
dc.relation | Kays, W. M., & London, A. L. (1984). Compact heat exchangers. MEDTECH | |
dc.relation | Longeon, M., Soupart, A., Fourmigué, J. F., Bruch, A., & Marty, P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied energy, 112, 175-184. | |
dc.relation | Hirata, T., Makino, Y., Kaneko, Y. (1991). Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule. International Journal of Heat and Mass Transfer, 1991, vol. 34, no 12, p. 3097-3106. | |
dc.relation | Bareiss, M., & Beer, H. (1984). An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. International Journal of Heat and Mass Transfer, 27(5), 739-746. | |
dc.relation | Yilmaz, S., Sheth, F., Martorell, I., Paksoy, H. O., & Cabeza, L. F. (2010). Salt-water solutions as PCM for cooling applications. In Proceedings of EuroSun. | |
dc.relation | Çengel Yunus A., & Ghajar, A. J. (2020). Heat and mass transfer: Fundamentals & applications. McGraw-Hill Education. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos | |
dc.type | Tesis | |