dc.contributorRamírez Hernández, María Helena
dc.contributorLIBBIQ UN
dc.creatorOstos Peña, Derly Melissa
dc.date.accessioned2020-08-06T23:05:11Z
dc.date.available2020-08-06T23:05:11Z
dc.date.created2020-08-06T23:05:11Z
dc.date.issued2019-04-22
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77974
dc.description.abstractGiardia duodenalis is a parasite that causes giardiasis. This affects humans and mammals, and it is currently considerated a public health problem. G. duodenalis is a high relevance organism due to its basal evolution and simple metabolism, it is an excellent model to study metabolic pathways as well as its approximation in higher eukaryotic organisms. NAD+ is a fundamental molecule for cell viability because is involved in different biological processes, such as energy production, cell signalling, DNA reparation and gene expression regulation. Because of the importance of NAD+, our research group is focused on the study of existing enzymes in its metabolism. In G. duodenalis has been identified: NAD kinase (GINADK), nicotinamide mononucleotide adenylyltransferase (GINMNAT) and the sirtuins GdSir 2.1 y GdSir 2.2. However, nothing is known about its regulation. This study is emphasized on the regulation of the first two enzymes. The in-silico analysis of the regulation of both enzymes in a transcriptional and post-translational level was made. Regarding the first level, the promoter regions of both genes were studied. Afterwards, a candidate transcription factor (Myb2), for the regulation of gInadk was identified. About the second level, the regulation of GINADK by covalent modification and, protein-protein interaction with Ca2+/calmodulin (CaM) was evaluated. Later on, we applied the experimental approach. It was found that GINADK expression is modulated in stress response. Additionally, we produced three tools to evaluate the interaction between Myb2 and the gInadk promoter. Finally, in a postranslational level, it was discovered that GINADK is probably phosphorylated by calmodulin-dependent protein kinases. Considering the previous findings, it was concluded that there are different mechanisms for the regulation of this protein in both levels.
dc.description.abstractGiardia duodenalis es el agente causal de la enfermedad gastrointestinal giardiasis, la cual afecta tanto a humanos como mamíferos y es considerado un problema de salud pública. Este organismo es de gran relevancia biológica por su evolución basal y metabolismo simple, que por sus características se convierte en un excelente modelo para el estudio de vías metabólicas y su aproximación en eucariotas superiores. El NAD+ es una molécula fundamental para la viabilidad celular, participando en diferentes procesos biológicos como la producción de energía, la señalización celular, la reparación del DNA y la regulación de la expresión génica. Dada la importancia del NAD+, nuestro grupo de investigación se ha centrado en el estudio de las enzimas presentes en su metabolismo. Para G. duodenalis se han identificado: la NAD quinasa (GINADK), la nicotinamida/ nicotinato mononucleótido adenilil transferasa (GINMNAT) y 2 sirtuinas (GdSir 2.1 y GdSir 2.2), sin embargo, nada se conoce de la regulación de estas. Este trabajo se enfocó en el estudio de la regulación de las dos primeras enzimas. Se realizó un análisis in silico de la regulación de ambas proteínas a nivel transcripcional y postraduccional. Para el primer nivel, se estudiaron los promotores de ambos genes, encontrando elementos propios de G. duodenalis. Posteriormente, se seleccionó un factor de transcripción candidato (Myb2) para la regulación de gInadk. En el segundo nivel, se evaluó la posible regulación de GINADK por modificación covalente e interacción proteína-proteína con Ca2+/calmodulina (CaM). Después de ello, se realizó la aproximación experimental, en la que se encontró que la expresión de GINADK es modulada en respuesta a estrés. Adicionalmente, se generaron tres herramientas para el estudio de la interacción de Myb2 con el promotor de gInadk, las cuales podrán ser de gran utilidad en el estudio de este mecanismo en análisis posteriores. Finalmente, a nivel postraduccional se reconoció que esta misma proteína es fosforilada, probablemente, por quinasas dependientes de Ca2+/calmodulina. Paralelo, se realizó una aproximación experimental su posible interacción con GICaM. Con lo anterior, se pudo concluir que existen diferentes mecanismos de regulación para GINADK en ambos niveles.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationDubourg A, Xia D, Tyler K. Giardiasis from Proteomics to Pathogenesis. BioMed Central. https://blogs.biomedcentral.com/bugbitten/2018/03/23/giardiasis-from-proteomics-to-pathogenesis/. Published 2018.
dc.relationYee J, Mowat MR, Dennis PP, et al. Giardia immunity - An update. Trends Parasitol. 2017;33(11):798–805. doi:10.1074/jbc.275.15.11432
dc.relationLalle M, Hanevik K. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist. 2018;Volume 11:1921–1933. doi:10.2147/IDR.S141468
dc.relationLuján HD, Svard SG. Giardia: A model organism. 1st ed. (Luján HD, Svard SG, eds.). New York; 2011.
dc.relationForero-Baena N, Sanchez-Lancheros D, Buitrago JC, Bustos V, Ramirez-Hernandez MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61–69. doi:10.1016/j.biopen.2015.11.001
dc.relationContreras Rodríguez LE, Jutinico Shubach LLM, García Castañeda JE, Ramírez Hernández MH. Functional identification and subcellular localization of NAD kinase in the protozoan parasite Giardia intestinalis. Rev Colomb Química. 2019;48(1):16–25. doi:10.15446/rev.colomb.quim.v48n1.75273
dc.relationWang Y-H, Zheng G-X, Li Y-J. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a nuclear-located and NAD+-dependent deacethylase. Exp Parasitol. 2016;169:28–33. doi:10.1016/j.exppara.2016.07.002
dc.relationHerrera T. EA, Contreras LE, Suárez AG, Diaz GJ, Ramírez MH. GlSir2.1 of Giardia lamblia is a NAD+-dependent cytoplasmic deacetylase. Heliyon. 2019;5(4):e01520. doi:10.1016/j.heliyon.2019.e01520
dc.relationAdam RD. Biology of Giardia lamblia. Clin Microbiol Rev. 2001;14(3):447–475. doi:10.1128/CMR.14.3.447-475.2001
dc.relationI IH, Binta Y, E YS. Original Article Asymptomatic Giardiasis and Nutritional Status of Children in Two Local Government Areas in Kaduna State , Nigeria. Sierra. 2011;3(3):157–162.
dc.relationMuhsen K, Levine MM. A systematic review and meta-analysis of the association between giardia lamblia and endemic pediatric diarrhea in developing countries. Clin Infect Dis. 2012;55(SUPPL. 4). doi:10.1093/cid/cis762
dc.relationThe University of Lowa. Giardia duodenalis. Giardia on Lumen of Rat Intestine (SEM). https://cmrf.research.uiowa.edu/file/549.
dc.relationRoxström-Lindquist K, Palm D, Reiner D, Ringqvist E, Svärd SG. Giardia immunity - An update. Trends Parasitol. 2006;22(1):26–31. doi:10.1016/j.pt.2005.11.005
dc.relationFink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol. 2017;33(11):901–913. doi:10.1016/j.pt.2017.08.001
dc.relationMinisterio de salud y protección social, Universidad de Antioquia. ENCUESTA NACIONAL DE PARASITISMO INTESTINAL EN POBLACIÓN ESCOLAR, COLOMBIA, 2012 – 2014. Medellín; 2015. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/encuesta-nacional-de-parasitismo-2012-2014.pdf.
dc.relationCURRIE SL, STEPHENSON N, PALMER AS, JONES BL, ALEXANDER CL. Under-reporting giardiasis: time to consider the public health implications. Epidemiol Infect. 2017;145(14):3007–3011. doi:10.1017/S0950268817001959
dc.relationHalliez MCM, Buret AG. Extra-intestinal and long term consequences of Giardia duodenalis infections. World J Gastroenterol. 2013;19(47):8974–8985. doi:10.3748/wjg.v19.i47.8974
dc.relationAnsell BRE, McConville MJ, Ma’ayeh SY, et al. Drug resistance in Giardia duodenalis. Biotechnol Adv. 2015;33(6). doi:10.1016/j.biotechadv.2015.04.009
dc.relationCarter ER, Nabarro LE, Hedley L, Chiodini PL. Nitroimidazole-refractory giardiasis: a growing problem requiring rational solutions. Clin Microbiol Infect. 2018;24(1):37–42. doi:10.1016/j.cmi.2017.05.028
dc.relationAdam RD. Biology of Giardia lamblia. Clin Microbiol Rev. 2001;14(3):447–475. doi:10.1128/CMR.14.3.447-475.2001
dc.relationErlandsen SL, Bemrick WJ, Pawley J. High-Resolution Electron Microscopic Evidence for the Filamentous Structure of the Cyst Wall in Giardia muris and Giardia duodenalis. J Parasitol. 1989;75(5):787. doi:10.2307/3283065
dc.relationAnkarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol. 2010;8(6):413–422. doi:10.1038/nrmicro2317
dc.relationHahn J, Seeber F, Kolodziej H, et al. High Sensitivity of Giardia duodenalis to Tetrahydrolipstatin (Orlistat) In Vitro. Russell B, ed. PLoS One. 2013;8(8):e71597. doi:10.1371/journal.pone.0071597
dc.relationVanlinden MR, Skoge RH, Ziegler M. Discovery , metabolism and functions of NAD and NADP. Biochem (Lond). 2015;37(1):9–13.
dc.relationYing W. NAD + /NADH and NADP + /NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences. Antioxid Redox Signal. 2008;10(2):179–206. doi:10.1089/ars.2007.1672
dc.relationRuggieri S, Orsomando G, Sorci L, Raffaelli N. Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. Biochim Biophys Acta - Proteins Proteomics. 2015;1854(9):1138–1149. doi:10.1016/j.bbapap.2015.02.021
dc.relationRongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. BioEssays. 2003;25(7):683–690. doi:10.1002/bies.10297
dc.relationMattevi A. A close look at NAD biosynthesis. Nat Struct Mol Biol. 2006;13(7):563–564. doi:10.1038/nsmb0706-563
dc.relationFoster JW, Moat a G. Nicotinamide Adenine-Dinucleotide Biosynthesis and Pyridine-Nucleotide Cycle Metabolism in Microbial Systems. Microbiol Rev. 1980;44(1):83–105.
dc.relationSchmid F, Bruhn S, Weber K, Mittrücker HW, Guse AH. CD38: A NAADP degrading enzyme. FEBS Lett. 2011;585(22):3544–3548. doi:10.1016/j.febslet.2011.10.017
dc.relationVerdin E. NAD+ in aging, metabolism, and neurodegeneration. Science (80- ). 2015;350(6265):1208–1213. doi:10.1126/science.aac4854
dc.relationCastaño J, Rivera Z, Ramírez-Hernández MH. Diseño y producción de una herramienta molecular para el estudio del N-terminal de la Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) en Leishmania braziliensis. Rev Colomb Química. 2013;41(2):195–210.
dc.relationJayaram HN, Kusumanchi P, Yalowitz J a. NMNAT expression and its relation to NAD metabolism. Curr Med Chem. 2011;18(13):1962–1972. doi:10.2174/092986711795590138
dc.relationZhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature. 2008;452(7189):887–891. doi:10.1038/nature06721
dc.relationAli YO, McCormack R, Darrand A, Zhai RG. Nicotinamide mononucleotide adenylyltransferase is a stress response protein regulated by the heat shock factor/hypoxia-inducible factor 1?? pathway. J Biol Chem. 2011;286(21):19089–19099. doi:10.1074/jbc.M111.219295
dc.relationRallis A, Lu B, Ng J. Molecular chaperones protect against JNK- and Nmnat-regulated axon degeneration in Drosophila. J Cell Sci. 2013;126(Pt 3):838–849. doi:10.1242/jcs.117259
dc.relationBrazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It’s an NAD + synthase… It’s a chaperone… It’s a neuroprotector. Curr Opin Genet Dev. 2017;44:156–162. doi:10.1016/j.gde.2017.03.014
dc.relationShi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai). 2009;41(5):352–361. doi:10.1093/abbs/gmp029
dc.relationMesquita I, Varela P, Belinha A, et al. Exploring NAD+ metabolism in host–pathogen interactions. Cell Mol Life Sci. 2016;73(6):1225–1236. doi:10.1007/s00018-015-2119-4
dc.relationGazanion E, Garcia D, Silvestre R, et al. The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Mol Microbiol. 2011;82(1):21–38. doi:10.1111/j.1365-2958.2011.07799.x
dc.relationBeas Zarate C, Ortuño Sahagún D, Armendáriz Borunda JS. Biología Molecular Fundamentos y aplcaciones. 1ra ed. (Romero Hernández G, García Carbajal NL, eds.). México: McGraw-Hill; 2009.
dc.relationNelson D, Cox M. Lehninger: Principles of biochemistry. 5a ed. New York; 2008.
dc.relationCatalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression : An Overview of Nuclear Functions. Int J Mol Sci. 2016:1–17. doi:10.3390/ijms17101712
dc.relationWeaver RF. Molecular Biology. 5th editio. New York: McGraw-Hill; 2012.
dc.relationRuan K, Zhu Y, Li C, Brazill JM, Zhai RG. Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress. Nat Commun. 2015;6:10057. doi:10.1038/ncomms10057
dc.relationZhou R-M, Shen Y, Yao J, et al. Nmnat 1: a Security Guard of Retinal Ganglion Cells (RGCs) in Response to High Glucose Stress. Cell Physiol Biochem. 2016;38(6):2207–2218. doi:10.1159/000445576
dc.relationSchweiger M, Hennig K, Lerner F, et al. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS Lett. 2001;492(1–2):95–100. doi:10.1016/S0014-5793(01)02180-9
dc.relationZhou T, Kurnasov O, Tomchick DR, et al. Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J Biol Chem. 2002;277(15):13148–13154. doi:10.1074/jbc.M111469200
dc.relationLau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J Biol Chem. 2010;285(24):18868–18876. doi:10.1074/jbc.M110.107631
dc.relationSanchez-Lancheros DM, Ospina-Giraldo LF, Ramírez-Hernández MH. Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): a cytosol protein target for serine kinases. Mem Inst Oswaldo Cruz. 2016;111(11):670–675. doi:10.1590/0074-02760160103
dc.relationGrose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci U S A. 2006;103(20):7601–7606. doi:10.1073/pnas.0602494103
dc.relationLi WY, Wang X, Li R, Li WQ, Chen KM. Genome-wide analysis of the NADK gene family in plants. PLoS One. 2014;9(6). doi:10.1371/journal.pone.0101051
dc.relationGoldstein O, Meyer K, Greenshpan Y, et al. Mapping Whole-Transcriptome Splicing in Mouse Hematopoietic Stem Cells. Stem Cell Reports. 2016;8(1):163–176. doi:10.1016/j.stemcr.2016.12.002
dc.relationLove NR, Pollak N, Dölle C, et al. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A. 2015;112(5):1–6. doi:10.1073/pnas.1417290112
dc.relationBest AA. Evolution of Eukaryotic Transcription: Insights From the Genome of Giardia lamblia. Genome Res. 2004;14(8):1537–1547. doi:10.1101/gr.2256604
dc.relationMacrae IJ, Macrae IJ, Zhou K, et al. Structural Basis for Double-Stranded RNA Processing by Dicer. Science (80- ). 2012;195(2006). doi:10.1126/science.1121638
dc.relationGargantini PR, Serradell MDC, Ríos DN, Tenaglia AH, Luján HD. Antigenic variation in the intestinal parasite Giardia lamblia. Curr Opin Microbiol. 2016;32:52–58. doi:10.1016/j.mib.2016.04.017
dc.relationSaraiya AA, Wang CC. snoRNA , a Novel Precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008;4(11). doi:10.1371/journal.ppat.1000224
dc.relationLi W, Saraiya AA, Wang CC. Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA. PLoS Negl Trop Dis. 2011;5(10). doi:10.1371/journal.pntd.0001338
dc.relationGallego E, Alvarado M, Wasserman M. Identification and expression of the protein ubiquitination system in Giardia intestinalis. Parasitol Res. 2007:1–7. doi:10.1007/s00436-007-0458-2
dc.relationRatner DM, Cui J, Steffen M, Moore LL, Robbins PW, Samuelson J. Changes in the N -Glycome, Glycoproteins with Asn-Linked Glycans, of Giardia lamblia with Differentiation from Trophozoites to Cysts. Eukaryot Cell. 2008;7(11):1930–1940. doi:10.1128/EC.00268-08
dc.relationMerino MC, Zamponi N, Vranych C V., Touz MC, Rópolo AS. Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process. Singer SM, ed. PLoS Negl Trop Dis. 2014;8(7):e2997. doi:10.1371/journal.pntd.0002997
dc.relationGenova BM, da Silva R, da Cunha J, Gargantini P, Mortara RA, Tonelli RR. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia. J Eukaryot Microbiol. 2016. doi:10.1111/jeu.12386 -4873
dc.relationMoreno-gonzáles PA. Producción y purificación de anticuerpos aviares ( IgYs ) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo Production and purification of avian antibodies (IgYs) from inclusion bodies of a recombinant protein centr. 2013;42(2):12–20.
dc.relationMoreno-Gonzáles PA. ESTUDIO DE LA NICOTINAMIDA/NICOTINATO MONONUCLEOTIDO ADENILILTRANSFERASA DE Giardia lamblia (gNMNAT): DETERMINACION DE LA LOCALIZACION SUBCELULAR Y APROXIMACION ESTRUCTURAL. 2013. http://bdigital.unal.edu.co/57937/1/01188158 2013.pdf.
dc.relationForero-Baena N, Sánchez-Lancheros D, Buitrago JC, Bustos V, Ramírez-Hernández MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61–69. doi:10.1016/j.biopen.2015.11.001
dc.relationHerrera Tequia EA. Estudio molecular y bioquímico de un candidato a sirtuina en Giardia duodenalis. 2017. http://www.bdigital.unal.edu.co/60846/1/1031136992.2017.pdf.
dc.relationEinarsson E, Ma’ayeh S, Svärd SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol. 2016;34. doi:10.1016/j.mib.2016.07.019
dc.relationWolfsberg TG. Using the NCBI map viewer to browse genomic sequence data. Curr Protoc Bioinforma. 2010;(SUPPL. 29):151–1525. doi:10.1002/0471250953.bi0105s16
dc.relationMesseguer X, Escudero R. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333–334.
dc.relationRice P, Longden L, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000. doi:10.1016/S0168-9525(00)02024-2
dc.relationVerspurten J, Gevaert K, Declercq W, Vandenabeele P. SitePredicting the cleavage of proteinase substrates. Trends Biochem Sci. 2009;34(7):319–323. doi:10.1016/j.tibs.2009.04.001
dc.relationXue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy. Mol Cell Proteomics. 2008;7(9):1598–1608. doi:10.1074/mcp.M700574-MCP200
dc.relationIakoucheva LM, Radivojac P, Brown CJ, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 2004;32(3):1037–1049. doi:10.1093/nar/gkh253
dc.relationBlom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633–1649. doi:10.1002/pmic.200300771
dc.relationGupta R, Jung E, Brunak S. NetNGlyc: Prediction of N-glycosylation sites in human proteins.; 2004.
dc.relationRadivojac P, Vacic V, Haynes C, et al. Identification, analysis, and prediction of protein ubiquitination sites. Proteins Struct Funct Bioinforma. 2010. doi:10.1002/prot.22555
dc.relationZhao Q, Xie Y, Zheng Y, et al. GPS-SUMO: A tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res. 2014. doi:10.1093/nar/gku383
dc.relationYap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M. Calmodulin target database. J Struct Funct Genomics. 2000. doi:10.1023/A:1011320027914
dc.relationMruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: Predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014. doi:10.1085/jgp.201311140
dc.relationSchneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005. doi:10.1093/nar/gki481
dc.relationKeister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77. doi:https://doi.org/10.1016/0035-9203(83)90120-7
dc.relationGómez Ramírez MV. EL SPLICEOSOMA COMO MECANISMO DE REMOCIÓN DE LOS INTRONES DEL EUCARIOTE PRIMITIVO Giardia intestinalis. 2015.
dc.relationAurrecoechea C, Brestelli J, Brunk BP, et al. GiardiaDB. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. doi:10.1093/nar/gkn631
dc.relationSambrook J, David R. Molecular cloning. A laboratory manual. Third edit. New York; 2001.
dc.relationAusubel F, Brent R, Kingston RE, et al. Current Protocols in Molecular Biology. John Wiley and Sons; 2003.
dc.relationSmith D. Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides. J Cell Biol. 1984;99(1):20–28. doi:10.1083/jcb.99.1.20
dc.relationAlvarado Mora ME. ESTUDIO DE LA EXPRESIÓN DE CALMODULINA Y DETECCIÓN DE POSIBLES CAMBIOS EN TRANSDUCCIÓN DE SEÑALES DURANTE LOS DOS PROCESOS DE DIFERENCIACIÓN DEL PARÁSITO Giardia intestinalis. 2009.
dc.relationQIAGEN. QIAamp ® DNA Mini Kit and QIAamp DNA Blood Mini Kit Handbook For DNA purification from Whole blood Buffy coat Body fluids Lymphocytes Cultured cells Tissue Swabs Dried blood spots February 2003.; 2003.
dc.relationHuang YC, Su LH, Lee G a., et al. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J Biol Chem. 2008;283(45):31021–31029. doi:10.1074/jbc.M805023200
dc.relationAxygen Biosciences. AxyPrep Midi and Maxi Plasmid Kits.; 2011. http://www.bio-protech.com.tw/upload/20181222115859.pdf.
dc.relationInvitrogen. Champion pET SUMO Protein Expression System. 2010. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/petsumo_man.pdf.
dc.relationPalmer I, Wingfield PT. Preparation and extraction of insoluble (Inclusion-body) proteins from Escherichia coli. Curr Protoc Protein Sci. 2012. doi:10.1002/0471140864.ps0603s70
dc.relationBradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3
dc.relationPauly D, Chacana PA, Calzado EG, Brembs B, Schade R. IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation. J Vis Exp. 2011;(51). doi:10.3791/3084
dc.relationSun C-H, Palm D, McArthur AG, Svärd SG, Gillin FD. A novel Myb-related protein involved in transcriptional activation of encystation genes in Giardia lamblia. Mol Microbiol. 2002;46(4):971–984. doi:10.1046/j.1365-2958.2002.03233.x
dc.relationJutinico L. Evaluación in vitro e in vivo de un candidato de la Quinasa del Dinucleótido de Adenina y Nicotinamida de Giardia intestinalis (GlNADK). 2015.
dc.relationPollak N, Niere M, Ziegler M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem. 2007;282(46):33562–33571. doi:10.1074/jbc.M704442200
dc.relationLove NR, Pollak N, Dölle C, et al. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A. 2015;112(5):1–6. doi:10.1073/pnas.1417290112
dc.relationTeodorovic S, Walls CD, Elmendorf HG. Bidirectional transcription is an inherent feature of Giardia lamblia promoters and contributes to an abundance of sterile antisense transcripts throughout the genome. Nucleic Acids Res. 2007;35(8):2544–2553. doi:10.1093/nar/gkm105
dc.relationKnodler LA, Svard SG, Silberman JD, Davids BJ, Gillin FD. Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 5’ mRNA processing. Mol Microbiol. 1999;34(2):327–340. doi:10.1046/j.1365-2958.1999.01602.x
dc.relationYee J, Mowat MR, Dennis PP, Nash TE. Transcriptional Analysis of the Glutamate Dehydrogenase Gene in the Primitive Eukaryote, Giardia lamblia. IDENTIFICATION OF A PRIMORDIAL GENE PROMOTER. J Biol Chem. 2000;275(15):11432–11439. doi:10.1074/jbc.275.15.11432
dc.relationElmendorf HG, Singer SM, Pierce J, Cowan J, Nash TE. Initiator and upstream elements in the α2-tubulin promoter of Giardia lamblia. Mol Biochem Parasitol. 2001;113(1):157–169. doi:10.1016/S0166-6851(01)00211-0
dc.relationYee J, Tang A, Lau W-L, et al. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression. BMC Mol Biol. 2007;8(1):26. doi:10.1186/1471-2199-8-26
dc.relationYee J, Dennis PP. The NADP-Dependent Glutamate Dehydrogenase of Giardia lamblia: A Study of Function, Gene Structure and Expression. Syst Appl Microbiol. 1993;16(4):759–767. doi:10.1016/S0723-2020(11)80350-4
dc.relationHaferkamp I, Schmitz-Esser S, Wagner M, Neigel N, Horn M, Neuhaus HE. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol Microbiol. 2006;60(6):1534–1545. doi:10.1111/j.1365-2958.2006.05193.x
dc.relationRingqvist E. Host-Pathogen Responses during Giardia infections. 2019.
dc.relationSpycher C, Herman EK, Morf L, et al. An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia. Mol Microbiol. 2013;88(4):754–771. doi:10.1111/mmi.12218
dc.relationAnsell BRE, McConville MJ, Baker L, et al. Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrob Agents Chemother. 2016;60(10):6034–6045. doi:10.1128/aac.00977-16
dc.relationHaberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19(10):621–637. doi:10.1038/s41580-018-0028-8
dc.relationHaugen SP, Ross W, Gourse RL. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol. 2008;6(7):507–519. doi:10.1038/nrmicro1912
dc.relationPan Y-J, Cho C-C, Kao Y-Y, Sun C-H. A Novel WRKY-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. J Biol Chem. 2009;284(27):17975–17988. doi:10.1074/jbc.M109.012047
dc.relationWang C-H, Su L-H, Sun C-H. A Novel ARID/Bright-like Protein Involved in Transcriptional Activation of Cyst Wall Protein 1 Gene in Giardia lamblia. J Biol Chem. 2007;282(12):8905–8914. doi:10.1074/jbc.M611170200
dc.relationWang Y-T, Pan Y-J, Cho C-C, et al. A Novel Pax-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. J Biol Chem. 2010;285(42):32213–32226. doi:10.1074/jbc.M110.156620
dc.relationSun C-H, Su L-H, Gillin FD. Novel plant-GARP-like transcription factors in Giardia lamblia. Mol Biochem Parasitol. 2006;146(1):45–57. doi:10.1016/j.molbiopara.2005.10.017
dc.relationWorgall TS, Davis-Hayman SR, Magana MM, et al. Sterol and fatty acid regulatory pathways in a Giardia lamblia -derived promoter: evidence for SREBP as an ancient transcription factor. J Lipid Res. 2004;45(5):981–988. doi:10.1194/jlr.M400024-JLR200
dc.relationSu L-H, Pan Y-J, Huang Y-C, et al. A Novel E2F-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. J Biol Chem. 2011;286(39):34101–34120. doi:10.1074/jbc.M111.280206
dc.relationWilson D, Charoensawan V, Kummerfeld SK, Teichmann SA. DBD--taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res. 2007;36(Database):D88–D92. doi:10.1093/nar/gkm964
dc.relationMichaeli S. Trans -splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol. 2011;6(4):459–474. doi:10.2217/fmb.11.20
dc.relationARAVIND L, ANANTHARAMAN V, BALAJI S, BABU M, IYER L. The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiol Rev. 2005;29(2):231–262. doi:10.1016/j.femsre.2004.12.008
dc.relationZhuang F, Nguyen M, Shuler C, Liu Y-H. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter. Biochem Biophys Res Commun. 2009;381(2):241–246. doi:https://doi.org/10.1016/j.bbrc.2009.02.016
dc.relationGenetics Home Reference. MSX1 gene. MSX1 gene msh homeobox 1. https://ghr.nlm.nih.gov/gene/MSX1#resources. Published 2019.
dc.relationYang Y, Hwang CK, Junn E, Lee G, Mouradian MM. ZIC2 and Sp3 repress Sp1-induced activation of the human D1A dopamine receptor gene. J Biol Chem. 2000;275(49):38863–38869. doi:10.1074/jbc.M007906200
dc.relationRoessler E, Lacbawan F, Dubourg C, et al. The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat. 2009;30(4). doi:10.1002/humu.20982
dc.relationBarratt KS, Arkell RM. ZIC2 in holoprosencephaly. En: Advances in Experimental Medicine and Biology. Vol 1046. ; 2018:269–299. doi:10.1007/978-981-10-7311-3_14
dc.relationAruga J, Inoue T, Hoshino J, Mikoshiba K. Zic2 Controls Cerebellar Development in Cooperation with Zic1 . J Neurosci. 2018;22(1):218–225. doi:10.1523/jneurosci.22-01-00218.2002
dc.relationNerlov C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 2007;17(7):318–324. doi:10.1016/j.tcb.2007.07.004
dc.relationJin Q, Zhang F, Yan T, et al. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Res. 2010;20(4):470–479. doi:10.1038/cr.2010.24
dc.relationTsukada J, Yoshida Y, Kominato Y, Auron PE. The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine. 2011;54(1):6–19. doi:10.1016/j.cyto.2010.12.019
dc.relationCirilli M, Bereshchenko O, Ermakova O, Nerlov C. Insights into specificity, redundancy and new cellular functions of C/EBPa and C/EBPb transcription factors through interactome network analysis. Biochim Biophys Acta - Gen Subj. 2017;1861(2):467–476. doi:10.1016/j.bbagen.2016.10.002
dc.relationAmbele MA, Pepper MS. Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med. 2017;5(3):210–222. doi:10.1002/mgg3.269
dc.relationWallis M. Evolution of the POU1F1 transcription factor in mammals: Rapid change of the alternatively-spliced β-domain. Gen Comp Endocrinol. 2018;260:100–106. doi:10.1016/j.ygcen.2018.01.005
dc.relationShimizu H, Kang M, Iitsuka Y, Ichinose M, Tokuhisa T, Hatano M. Identification of an optimal Ncx binding sequence required for transcriptional activation. FEBS Lett. 2000;475(3):170–174. doi:10.1016/S0014-5793(00)01651-3
dc.relationKaestner KH. The Hepatocyte Nuclear Factor 3 (HNF3 or FOXA) Family in Metabolism. Trends Endocrinol Metab. 2000;11(7):281–285. doi:10.1016/S1043-2760(00)00271-X
dc.relationCosta RH, Kalinichenko V V., Holterman A-XL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology. 2003;38(6):ajhep09034. doi:10.1016/j.hep.2003.09.034
dc.relationIwafuchi-Doi M, Donahue G, Kakumanu A, et al. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. Mol Cell. 2016;62(1):79–91. doi:10.1016/j.molcel.2016.03.001
dc.relationSerra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. Elife. 2014;3. doi:10.7554/eLife.02313
dc.relationShin CM, Kim N, Chang H, Kim JS, Lee DH, Jung HC. Follow-Up Study on CDX1 and CDX2 mRNA Expression in Noncancerous Gastric Mucosae After Helicobacter pylori Eradication. Dig Dis Sci. 2016;61(4):1051–1059. doi:10.1007/s10620-016-4048-y
dc.relationUniProt C. C6 transcription factor FacB. B0XRK5. https://www.uniprot.org/uniprot/B0XRK5. Published 2019.
dc.relationNapolitano T, Avolio F, Courtney M, et al. Pax4 acts as a key player in pancreas development and plasticity. Semin Cell Dev Biol. 2015;44:107–114. doi:10.1016/j.semcdb.2015.08.013
dc.relationLorenzo P, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier B. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel). 2017;8(3):101. doi:10.3390/genes8030101
dc.relationManuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00070
dc.relationMitchell RK, Nguyen-Tu M-S, Chabosseau P, et al. The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca 2+ dynamics in adult mice. J Biol Chem. 2017;292(21):8892–8906. doi:10.1074/jbc.M117.784629
dc.relationWan Y, Rogers MB, Szabo-Rogers HL. A six-gene expression toolbox for the glands, epithelium and chondrocytes in the mouse nasal cavity. Gene Expr Patterns. 2018;27:46–55. doi:10.1016/j.gep.2017.10.004
dc.relationSebastian M, Shevach EM, Rieder SA, Thornton AM, Metidji A, Lopez-Ocasio M. Helios Controls a Limited Subset of Regulatory T Cell Functions. J Immunol. 2015. doi:10.4049/jimmunol.1501704
dc.relationZhao S, Liu W, Li Y, et al. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. Song C, ed. PLoS One. 2016;11(9):e0163328. doi:10.1371/journal.pone.0163328
dc.relationAhmad SF, Nadeem A, Ansari MA, Bakheet SA, AL-Ayadhi LY, Attia SM. Downregulation in Helios transcription factor signaling is associated with immune dysfunction in blood leukocytes of autistic children. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;85:98–104. doi:10.1016/j.pnpbp.2018.04.011
dc.relationCaterina JJ, Donze D, Sun C-W, Ciavatta DJ, Townes TM. Cloning and functional characterization of LCR-F1: a bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res. 1994;22(12):2383–2391. doi:10.1093/nar/22.12.2383
dc.relationFarmer SC, Sun CW, Winnier GE, Hogan BL, Townes TM. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes Dev. 1997;11(6):786–798. doi:10.1101/gad.11.6.786
dc.relationRadhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol Cell. 2010;38(1):17–28. doi:10.1016/j.molcel.2010.02.029
dc.relationKannan MB, Solovieva V, Blank V. The small MAF transcription factors MAFF, MAFG and MAFK: Current knowledge and perspectives. Biochim Biophys Acta - Mol Cell Res. 2012;1823(10):1841–1846. doi:10.1016/j.bbamcr.2012.06.012
dc.relationFang M, Ou J, Hutchinson L, Green MR. The BRAF Oncoprotein Functions through the Transcriptional Repressor MAFG to Mediate the CpG Island Methylator Phenotype. Mol Cell. 2014;55(6):904–915. doi:10.1016/j.molcel.2014.08.010
dc.relationde Aguiar Vallim TQ, Tarling EJ, Ahn H, et al. MAFG Is a Transcriptional Repressor of Bile Acid Synthesis and Metabolism. Cell Metab. 2015;21(2):298–311. doi:10.1016/j.cmet.2015.01.007
dc.relationAmbele MA, Pepper MS. Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med. 2017;5(3):210–222. doi:10.1002/mgg3.269
dc.relationKouwenhoven WM, von Oerthel L, Smidt MP. Pitx3 and En1 determine the size and molecular programming of the dopaminergic neuronal pool. Zhou R, ed. PLoS One. 2017;12(8):e0182421. doi:10.1371/journal.pone.0182421
dc.relationKanai T, Jenks J, Nadeau KC. The STAT5b Pathway Defect and Autoimmunity. Front Immunol. 2012;3. doi:10.3389/fimmu.2012.00234
dc.relationLee J, Seong S, Kim JH, et al. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis. Sci Rep. 2016;6. doi:10.1038/srep30977
dc.relationOwen DL, Farrar MA. STAT5 and CD4+ T Cell Immunity. F1000Research. 2017;6:32. doi:10.12688/f1000research.9838.1
dc.relationEinarsson E, Svärd SG. Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. Curr Trop Med Reports. 2015;2(3):101–109. doi:10.1007/s40475-015-0048-9
dc.relationWang X, Li WY, Zhang MM, et al. Identification and Functional Analysis of the NADK Gene Family in Wheat. Plant Mol Biol Report. 2016;34(1):118–135. doi:10.1007/s11105-015-0904-8
dc.relationJin Q, Zhang F, Yan T, et al. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Res. 2010;20(4):470–479. doi:10.1038/cr.2010.24
dc.relationChuang S-F, Su L-H, Cho C-C, Pan Y-J, Sun C-H. Functional Redundancy of Two Pax-Like Proteins in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. Blader I, ed. PLoS One. 2012;7(2):e30614. doi:10.1371/journal.pone.0030614
dc.relationVerspurten J, Gevaert K, Declercq W, Vandenabeele P. SitePredicting the cleavage of proteinase substrates. Trends Biochem Sci. 2009;34(7):319–323. doi:10.1016/j.tibs.2009.04.001
dc.relationWilliams AG, Coombs GH. Multiple protease activities in Giardia intestinalis trophozoites. Int J Parasitol. 1995;25(7):771–778. doi:10.1016/0020-7519(94)00201-X
dc.relationGUIMARÃES S, SOGAYAR MIL, FRANCO MF de. Giardia duodenalis: INTER-STRAIN VARIABILITY OF PROTEINS, ANTIGENS, PROTEASES, ISOENZYMES AND NUCLEIC ACIDS. Rev Inst Med Trop Sao Paulo. 1999;41(1):45–58. doi:10.1590/S0036-46651999000100009
dc.relationDuBois KN, Abodeely M, Sajid M, Engel JC, McKerrow JH. Giardia lamblia cysteine proteases. Parasitol Res. 2006;99(4):313–316. doi:10.1007/s00436-006-0149-4
dc.relationAllain T, Fekete E, Buret AG. Giardia Cysteine Proteases: The Teeth behind the Smile. Trends Parasitol. 2019;35(8):636–648. doi:10.1016/j.pt.2019.06.003
dc.relationKawai S, Mori S, Mukai T, et al. Inorganic Polyphosphate/ATP-NAD Kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun. 2000;276(1):57–63. doi:10.1006/bbrc.2000.3433
dc.relationDarling AL, Uversky VN. Intrinsic disorder and posttranslational modifications: The darker side of the biological dark matter. Front Genet. 2018. doi:10.3389/fgene.2018.00158
dc.relationRabani R. Regulation of NAD kinases in neutrophils. 2015.
dc.relationHendus-Altenburger R, Lambrughi M, Terkelsen T, et al. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins – Lessons from the sodium proton exchanger 1 (NHE1). Cell Signal. 2017;37:40–51. doi:10.1016/j.cellsig.2017.05.015
dc.relationLi B-B, Wang X, Tai L, et al. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. Front Plant Sci. 2018;9. doi:10.3389/fpls.2018.00379
dc.relationLalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. En: ; 2019:51–103. doi:10.1016/bs.apar.2019.08.002
dc.relationShrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol. 2015. doi:10.1016/j.semcdb.2014.11.005
dc.relationRen J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures. Cell Res. 2009;19(2):271–273. doi:10.1038/cr.2009.6
dc.relationHuang KY, Lee TY, Kao HJ, et al. DbPTM in 2019: Exploring disease association and cross-Talk of post-Translational modifications. Nucleic Acids Res. 2019. doi:10.1093/nar/gky1074
dc.relationHenderson DJP, Miranda JL, Emerson BM. The β-NAD+ salvage pathway and PKC-mediated signaling influence localized PARP-1 activity and CTCF Poly(ADP)ribosylation. Oncotarget. 2017;8(39). doi:10.18632/oncotarget.19841
dc.relationNieto CA, Sánchez LM, Sánchez DM, Díaz GJ, Ramírez MH. Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages. Malar J. 2018;17(1):161. doi:10.1186/s12936-018-2307-4
dc.relationZhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins 1 1Edited by B. Honig. J Mol Biol. 1997;267(3):707–726. doi:10.1006/jmbi.1996.0859
dc.relationMa’ayeh SY, Knörr L, Svärd SG. Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol. 2015;45(14):925–938. doi:10.1016/j.ijpara.2015.07.005
dc.relationMastronicola D, Giuffrè A, Testa F, et al. Giardia intestinalis escapes oxidative stress by colonizing the small intestine: A molecular hypothesis. IUBMB Life. 2011;63(1):21–25. doi:10.1002/iub.409
dc.relationMa’ayeh SY, Knörr L, Svärd SG. Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol. 2015;45(14):925–938. doi:10.1016/j.ijpara.2015.07.005
dc.relationLindley TA, Chakraborty PR, Edlind TD. Heat shock and stress response in Giardia lamblia. Mol Biochem Parasitol. 1988. doi:10.1016/0166-6851(88)90061-8
dc.relationGrose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci. 2006;103(20):7601–7606. doi:10.1073/pnas.0602494103
dc.relationYang W, Zhang L, Lu Z, Tao W, Zhai Z. A New Method for Protein Coexpression in Escherichia coli Using Two Incompatible Plasmids. Protein Expr Purif. 2001;22(3):472–478. doi:10.1006/prep.2001.1453
dc.relationYang G, Chao D, Ming Z, Xia J. A Simple Method to Detect the Inhibition of Transcription Factor-DNA Binding Due to Protein–Protein Interactions In Vivo. Genes (Basel). 2019;10(9):684. doi:10.3390/genes10090684
dc.relationAlvarado ME, Rubiano C, Sánchez W, Díaz A, Wasserman M. Calcium-binding proteins that are type B″ regulatory subunits of phosphatase 2A in Giardia intestinalis. Parasitol Res. 2018;117(10):3205–3214. doi:10.1007/s00436-018-6019-z
dc.relationPérez-Rangel A, Hernández JM, Castillo-Romero A, et al. Albendazole and its derivative JVG9 induce encystation on Giardia intestinalis trophozoites. Parasitol Res. 2013;112(9):3251–3257. doi:10.1007/s00436-013-3521-1
dc.relationPrelich G. Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics. 2012;190(3):841–854. doi:10.1534/genetics.111.136911
dc.relationNie L, Vázquez AE, Yamoah EN. Identification of Transcription Factor–DNA Interactions Using Chromatin Immunoprecipitation Assays. En: ; 2009:311–322. doi:10.1007/978-1-59745-523-7_19
dc.relationHellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc. 2007;2(8):1849–1861. doi:10.1038/nprot.2007.249
dc.relationGeertz M, Maerkl SJ. Experimental strategies for studying transcription factor-DNA binding specificities. Brief Funct Genomics. 2010;9(5–6):362–373. doi:10.1093/bfgp/elq023
dc.relationBulyk ML. Protein Binding Microarrays for the Characterization of DNA–Protein Interactions. En: Analytics of Protein–DNA Interactions. Springer Berlin Heidelberg; 2006:65–85. doi:10.1007/10_025
dc.relationWang J, Lu J, Gu G, Liu Y. In vitro DNA-binding profile of transcription factors: methods and new insights. J Endocrinol. 2011;210(1):15–27. doi:10.1530/JOE-11-0010
dc.relationYan Y, Wang X, Wu A, Sun Y. Study on the production of human interferon alpha-2b expressed in Escherichia coli. Chin J Biotechnol. 1996;12(1):25–29. http://www.ncbi.nlm.nih.gov/pubmed/8877111.
dc.relationAmro WA, Al-Qaisi W, Al-Razem F. Production and purification of IgY antibodies from chicken egg yolk. J Genet Eng Biotechnol. 2018;16(1):99–103. doi:10.1016/j.jgeb.2017.10.003
dc.relationKoh KH, Jeong H. Electrophoretic Mobility Shift Assay (EMSA) and Supershift Assay of Cytochrome P450 2B6 in Response to Estrogen. En: Methods in Molecular Biology. ; 2016:41–51. doi:10.1007/978-1-4939-3127-9_5
dc.relationMarcet I, Laca A, Paredes B, Díaz M. IgY isolation from a watery by-product obtained from an egg yolk fractionation process. Food Bioprod Process. 2011;89(2):87–91. doi:10.1016/j.fbp.2010.04.006
dc.relationJung S, Ahn DU, Nam KC, Kim HJ, Jo C. Separation of Phosvitin from Egg Yolk without Using Organic Solvents. Asian-Australasian J Anim Sci. 2013;26(11):1622–1629. doi:10.5713/ajas.2013.13263
dc.relationSørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005. doi:10.1016/j.jbiotec.2004.08.004
dc.relationGopal GJ, Kumar A. Strategies for the Production of Recombinant Protein in Escherichia coli. Protein J. 2013;32(6):419–425. doi:10.1007/s10930-013-9502-5
dc.relationChoe W, Durgannavar T, Chung S. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. Materials (Basel). 2016;9(12):994. doi:10.3390/ma9120994
dc.relationManning G, Reiner DS, Lauwaet T, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011. doi:10.1186/gb-2011-12-7-r66
dc.relationWeber K, Schneider A, Westermann S, Müller N, Plessmann U. Posttranslational modifications of α- and β-tubulin in Giardia lamblia, an ancient eukaryote. FEBS Lett. 1997. doi:10.1016/S0014-5793(97)01436-1
dc.relationLingdan L, Pengtao G, Wenchao L, et al. Differential dissolved protein expression throughout the life cycle of Giardia lamblia. Exp Parasitol. 2012;132(4):465–469. doi:10.1016/j.exppara.2012.09.014
dc.relationCho C-C, Su L-H, Huang Y-C, Pan Y-J, Sun C-H. Regulation of a Myb Transcription Factor by Cyclin-dependent Kinase 2 in Giardia lamblia. J Biol Chem. 2012;287(6):3733–3750. doi:10.1074/jbc.M111.298893
dc.relationKim J, Lee H-Y, Lee K-H, Park S-J. Phosphorylation of Serine 148 in Giardia lamblia End-binding 1 Protein is Important for Cell Division. J Eukaryot Microbiol. 2017;64(4):464–480. doi:10.1111/jeu.12384
dc.relationLobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11(1):753. doi:10.1186/1475-2859-11-56
dc.relationGarzón Fajardo GA. Estudio de un candidato a NAD quinasa en Leishmania spp. 2018. http://bdigital.unal.edu.co/72954/1/Tesis de maestria Gustavo G.pdf.
dc.relationQuan Y, Han H, Zheng S. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater. Bioresour Technol. 2012;120:1–5. doi:10.1016/j.biortech.2012.06.019
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAproximación a la regulación de algunas enzimas involucradas en el metabolismo del NAD+ en Giardia duodenalis
dc.typeOtro


Este ítem pertenece a la siguiente institución