dc.contributor | Arenas Salazar, José Robel | |
dc.creator | Pulido González, Walter Alexis | |
dc.date.accessioned | 2022-08-23T19:56:31Z | |
dc.date.available | 2022-08-23T19:56:31Z | |
dc.date.created | 2022-08-23T19:56:31Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82039 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Se estudia el colapso de un cascarón de polvo delgado desde dos enfoques diferentes: clásico y semiclásico. En el enfoque clásico se identifican superficies críticas cuyas coordenadas de tiempo y espacio intercambian sus papeles, las cuales se asocian con la presencia de horizontes cuasi-locales, sobre los que se realiza un estudio de las propiedades gravitacionales y termodinámicas. A continuación, para el enfoque semiclásico se incorpora un campo escalar, para el cascarón en colapso, con el que se calculan la densidad de energía y entropía asociadas al observador relativista FREFOS, en contraste con el observador FIDO. Con lo anterior se discute e interpretan los resultados a luz de la existencia de una densidad de energía negativa ante la presencia de un campo gravitacional fuerte. (Texto tomado de la fuente) | |
dc.description.abstract | The collapse of a thin dust shell is studied from two different approaches: classical and semiclassical. In the classical approach, critical surfaces are identified whose coordinates of time and space exchange their roles, which are associated with the presence of quasi-local horizons, on which a study of the gravitational and thermodynamic properties is carried out. Next, for the semiclassical approach, a scalar field is incorporated, for the collapsing shell, with which the energy density and entropy associated with the relativistic observer FREFOS are calculated , in contrast to the FIDO observer. With the above, the results are discussed and interpreted in light of the existence of a negative energy density in the presence of a strong gravitational field. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias - Física | |
dc.publisher | Departamento de Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | M. Alcubierre, Introduction to 3+1 numerical relativity. Oxford University Press, Oxford, UK. (2006). | |
dc.relation | J.R. Oppenheimer, H. Snyder, On continued gravitational contraction. Phys.Rev. 56, (1939) 455. | |
dc.relation | D.V Fursaev, Can One Understand Black Hole Entropy without Knowing Much about Quantum Gravity?, Phys. Part. Nucl.36, (2005) 81. | |
dc.relation | J. Cano, W. Pulido, La paradoja de la pérdida de información de los agujeros negros, Revista Momento. Número 58, (2019) 59-88. | |
dc.relation | X. Calmet, (Ed.), Quantum Aspects of Black Holes, Fundamental Theories of Physics. Vol 178. | |
dc.relation | Y. Takahashi, H. Umezawa, Collective Phenomena 2, (1975) 55. | |
dc.relation | H. Umezawa. Advanced Field Theory. Micro, Macro and Thermal Physics. American Institute of Physics, 1980. | |
dc.relation | W. Pulido, H. Quevedo, Black shells and naked shells, International Journal Of Geometric Methods in Modern Physics. (2021). | |
dc.relation | W. Israel, Thermo- eld dynamics of black holes, Phys. Lett.A57, (1976) 107. | |
dc.relation | S. Mukohyama, W. Israel, Black holes, brick walls, and the Boulware state, Phys. Rev.D58, (1998) 104005. | |
dc.relation | W. Israel, Black hole thermodynamics, in current trends in relativistic astrophysics. Ed. L. Fernández, L.M. González. Springer Lectures notes in Physics LNP 617, (2003) 15. | |
dc.relation | W. Israel. A massless rewall, (2014). | |
dc.relation | J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cimento. 4, (1972) 737. | |
dc.relation | J.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D7, (1973) 2333. | |
dc.relation | J.D. Bekenstein, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D9, (1974) 3292. | |
dc.relation | J.D. Bekenstein, Statistical black-hole thermodynamics, Phys. Rev. D12, (1975) 3077. | |
dc.relation | J.M. Bardeen, B. Carter, S. Hawking, The four laws of black hole mechanics, Comm. Math. Phys. 31, (1973) 161. | |
dc.relation | S.W. Hawking, Particle creation by black holes, Commun. Math, Phys. 43, (1975) 199. | |
dc.relation | J.R Arenas, W. Pulido, Agujeros negros cuánticos y el efecto Hawking, Revista Momento. Número 59E, (2019) 1-13. | |
dc.relation | B. Carter, General relativity, an Einstein Centenary Survey. Ed. by. S.W. Hawking and W. Israel. (Cambridge University Press, 1979) Cap 6. | |
dc.relation | S.D. Sorkin, Black holes and relativistic stars. (The university of Chicago Press, 1998) Cap.9. | |
dc.relation | G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D15, (1977) 2752. | |
dc.relation | G. t'Hooft, On the quantum structure of a black hole, Nucl.Phys B256, (1985) 727. | |
dc.relation | A. Strominger, C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B379 (1996) 99. | |
dc.relation | J.M. Maldacena, A. Strominger, Statistical Entropy of Four-Dimensional Extremal Black Holes, Phys. Rev. Lett. 77 (1996) 428. | |
dc.relation | C.G. Callan, J.M. Maldacena, D-brane Approach to Black Hole Quantum Mechanics, Nucl. Phys. B472 (1996) 591. | |
dc.relation | E.T. Akhmedov, Black Hole Thermodynamics from the Point of View of Superstring Theory, Int. J. Mod. Phys. A15 (2000) 1. | |
dc.relation | A. Corichi, Black holes and entropy in loop quantum gravity: An overview. (2009). | |
dc.relation | S. Mukohyama, The origin of black hole entropy, PhD. Thesis, Kyoto University, (1998). | |
dc.relation | L. Bombelli, R.K. Koul, J. Lee, and R.D, Sorkin, Quantum source of entropy for black holes, Phys. Rev. D34, (1986) 373. | |
dc.relation | M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, (1993) 666. | |
dc.relation | J.R. Arenas, J.M. Tejeiro, Black Hole Entanglement Entropy. XXVIII Spanish Relativity Meeting. ERE (2005) 385. | |
dc.relation | J. M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity Adv. Theor. Math. Phys. 2, (1998) 231. | |
dc.relation | J. M. Maldacena, Int. J. Theor. Phys. 38, (1999) 1113. | |
dc.relation | L. Susskind, J. Lindesay, An introduction to black holes, information and the string theory revolution, (World Scienti c Publishing Co. 2005) Cap. 12. | |
dc.relation | Papantonopoulos, E., (Ed.), Physics of Black Holes: A Guided Tour, Lect. Notes Phys. 769 (Springer, Berlin Heidelberg 2009). | |
dc.relation | J.M. Maldacena, Eternal Black Holes in AdS JHEP 04, (2003) 021. | |
dc.relation | A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black Holes: Complementarity or Firewalls?, J High Energy Phys 2013, 62 (2013). | |
dc.relation | J. Preskill, Do Black Holes Destroy Information?, (1992). | |
dc.relation | G. Horowitz, D. Marolf, Where is the Information Stored in Black Holes?, Phys, Rev. D55, (1997) 3654. | |
dc.relation | G. Horowitz, Quantum States of Black Holes, (1997). | |
dc.relation | V. Mashkevich, Conservative Model of Black Hole and Lifting of the Information Loss Paradox, (1997). | |
dc.relation | G. Horowitz, J. Maldacena, The black hole nal state, JHEP 02 (2004) 008. | |
dc.relation | P.Kraus, F. Wilczek, Self-Interaction Correction to Black Hole Radiance,Nucl. Phys. B433 (1995) 403. | |
dc.relation | P.Kraus, F. Wilczek, Effect of Self-Interaction on Charged Black Hole Radiance, Nucl. Phys. B437 (1995) 231. | |
dc.relation | M. Parikh, F. Wilczek, Hawking Radiation as Tunneling, Phys. Rev. Lett. 85 (2000) 5042. | |
dc.relation | B. Zhang, Q. Cai, M. Zhan, L. You, Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss, Phys. Lett. B675 (2009) 98. | |
dc.relation | W. Israel, Z. Yun, Band-aid for information loss from black holes, Phys. Rev. D 82, 124036. | |
dc.relation | L. Susskind, Black holes and the information paradox. Scienti c American, Volume 276, April 1997, p. 40-45. | |
dc.relation | J. D. Bekenstein, Information in the Holographic Universe. Scienti c American, Volume 289, Number 2, August 2003, p. 61. | |
dc.relation | I. Klebanov, J. Maldacena, Solving quantum eld theories via curved spacetimes. Physics Today, Volume 62, January 2009. p.28. | |
dc.relation | L. Susskind, L. Thorlacius, J. Uglum, The Stretched Horizon and Black Hole Complementarity, Phys, Rev. D48 (1993) 3743. | |
dc.relation | S.W. Hawking, Information Loss in Black Holes, Phys.Rev. D72 (2005) 084013. | |
dc.relation | Z. Merali, Fire in the hole. Nature, Volume 496, April 2013, p. 21-23. | |
dc.relation | S.W. Hawking, Information preservation and weather forecasting for black holes, (2014). | |
dc.relation | S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time. (Cambridge University Press, 1973). | |
dc.relation | L. Ryder, Introduction to general relativity (Cambridge University Press, 2009). | |
dc.relation | R. Penrose, The Question of Cosmic Censorship, Chapter 5 in Black Holes and Relativistic Stars, Robert Wald (editor), (1994). | |
dc.relation | R. Penrose, Singularities and time-asymmetry, Chapter 12 in General Relativity: An Einstein Centenary Survey (Hawking and Israel, editors), (1979). | |
dc.relation | N.D. Birrel, P.C. Davies, Quantum elds in curved space. (Cambridge University Press, 1984). | |
dc.relation | S.W. Hawking, Black holes and thermodynamics, Phys. Rev. D13, (1976) 191. | |
dc.relation | A. Das, Finite temperature eld theory. (World Scienti c Publishing Co. 1997) Cap 1. | |
dc.relation | J. Tejeiro, Principios de relatividad general. (Facultad de Ciencias. Notas de Clase, 2005) Cáp. 8. | |
dc.relation | D. Page, black hole information, (1993). | |
dc.relation | E. Poisson, A relativist's toolkit. The mathematics of black-hole mechanics. (Cambridge University Press, 2004). | |
dc.relation | G. Darmois, Memorial des sciences mathematiques XXV, Fascicule XXV ch V (Gauthier-Villars, Paris, france, 1927). | |
dc.relation | W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo cimiento 44B, 1 (1966); and corrections in ibid. 48B, 463 (1966). | |
dc.relation | K. Lanczos, Flachenhafte verteiliung der materie in der Einsteinschen gravitationstheorie, Ann.Phys. (Leipzig) 74, 518 (1924). | |
dc.relation | C.S. Helrich, Modern Thermodynamics with Statistical Mechanics. Springer-Verlag Heidelberg, (2009). | |
dc.relation | Israel W, Gravitational Collapse and Causality. Phys.Rev. 153 (1967) 1388-1393. | |
dc.relation | J. S. Hoye, I. Linnerud, K. Olaussen and R. Sollie, Evolution of Spherical Shells in General Relativity. Physica Scripta. Vol. 31, 97-102, (1985). | |
dc.relation | E. Bittencourt, V. Freitas, J. Salim, G. Santos, Radiating spherical collapse for an inhomogeneous interior solution, (2018). | |
dc.relation | D. Nu~nez, H. Quevedo and M. Salgado, Phys. Rev. D58 (1998) 083506. | |
dc.relation | R. Penrose, Phys. Rev. Lett. 14. (1965) 57. | |
dc.relation | E. Schnetter, B. Krishnan and F. Beyer, Introduction to dynamical horizons in numerical relativity, Phys. Rev. D 74 (2006) 024028. | |
dc.relation | S. Hayward, General laws of black hole dynamics, Phys. Rev. D 49 (1994) 6467-6474. | |
dc.relation | F. Melia, The Apparent (gravitational) horizon in cosmology, Amer. J. Phys. 86 (2018) 585-593. | |
dc.relation | E. A, Martínez, Fundamental thermodynamical equation of a self-gravitating system, Phys. Rev. D53 (1996) 7062. | |
dc.relation | J.P.S, Lemos and O.B. Zaslavskii, Entropy of quasiblack holes, Phys. Rev. D81, (2010) 064012. | |
dc.relation | J. R. Arenas, J. M. Tejeiro, Entanglement Entropy of Black Shells. Nuovo Cim. B125 (2010):1223-1248. | |
dc.relation | W. Israel, Gedanken Experiments in Black Hole Thermodynamics. Black Holes: Theory and Observation, (2003) 339-363. | |
dc.relation | W.G. Unruh, Notes on black-hole evaporation, Phys. Rev. D14, (1976) 870. | |
dc.relation | S. S. Seahra, Naked shell singularities on the brane, Phys. Rev. D 71 (2005) 084020. | |
dc.relation | A. Carrasco F, Trapped surfaces in spacetimes with symmetries and applications to uniqueness theorems. (2012). | |
dc.relation | D.G. Boulware, Quantum eld theory in Schwarzschild and Rindler spaces, Phys. Rev, D11, 1404 (1975). | |
dc.relation | S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-time. Cambridge University Press. (1989). | |
dc.relation | J.R. Arenas, Agujeros Negros Cuánticos. Notas de Clase. (2016). | |
dc.relation | R.M. Wald, General Relativity. the University chicago Press. (1984). | |
dc.relation | O. Keller Quantum Theory of Near-Field Electrodynamics. Springer-Verlag Berlin Heidelberg. (2011). | |
dc.relation | J. Mathews, Matemáticas para Físicos, Editorial Reverté, (1979). | |
dc.relation | H. Terashima, Entanglement entropy of the black hole horizon, Phys. Rev. D61, 104016 (2000). | |
dc.relation | S. Liberati, Vacuum E ects in Gravitational Fields: Theory and Detectability S. Liberati, (2000). | |
dc.relation | V. P. Frolov, D. V. Fursaev, Thermal Fields, Entropy, and Black Holes, Class. Quantum Grav. 15,
(1998) 2041. | |
dc.relation | J. L. Alvarez, H. Quevedo, and A. S anchez, Uni ed geometric description of black hole thermodynamics, Phys. Rev. D 77, 084004 (2008). | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Observadores relativistas y termodinámica del colapso gravitacional de cascarones negros | |
dc.type | Trabajo de grado - Doctorado | |