dc.contributorUribe Vélez, Daniel
dc.contributorMicrobiología Agrícola
dc.creatorPerea Molina, Paula Andrea
dc.date.accessioned2020-08-15T02:25:39Z
dc.date.available2020-08-15T02:25:39Z
dc.date.created2020-08-15T02:25:39Z
dc.date.issued2019-07-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78052
dc.description.abstractLa cepa de Bacillus velezensis IBUN 2755 fue aislada de la rizósfera de papa criolla, la cual posee capacidad de control biológico contra Burkholderia glumae, un patógeno muy limitante en el cultivo de arroz. Semillas de arroz infectadas con B. glumae y tratadas con la cepa IBUN 2755, reducen la severidad de los síntomas generados a niveles similares a los del control sin inocular. Por otra parte, en plantas infectadas con el patógeno la presencia de B. glumae se mantiene constante durante los estadios fenológicos analizados, sin embargo, en plantas tratadas con IBUN 2755 su población se ve reducida e incluso indetectable en período de floración. Si bien estos atributos sugieren control biológico contra B. glumae, actualmente no es claro cuáles son los mecanismos llevados a cabo por la cepa IBUN 2755 para lograr el control de este patógeno. Adicionalmente, las plantas inoculadas presentan atributos de promoción de crecimiento vegetal mostrando una longitud mayor a pesar de estar en presencia del patógeno. Tanto IBUN 2755 como B. glumae tienen quimiotaxis frente a los compuestos presentes en los exudados radiculares de arroz secretados a los 7, 14, 21 y 28 días, en la variedad Fedearroz 2000, aunque IBUN 2755 tiene una mayor quimiotaxis por los exudados secretados al día 7. Por otra parte, IBUN 2755 presenta una marcada quimiotaxis por alanina y serina, baja por prolina e indetectable por leucina, en contraste con B. glumae que presenta quimiotaxis por todos los compuestos presentes en los exudados de arroz probados, sin presentar diferencias estadísticas entre estos. Ambas poblaciones mantienen un patrón similar de atracción hacia estos exudados sugiriéndose un posible solapamiento de nicho. IBUN 2755 es capaz de colonizar como endófito plantas de arroz hasta el día 28 tanto en raíz como vástago bajo un sistema controlado estéril, así mismo puede mantener su población superficialmente en la planta. Por otra parte, la cepa forma biofilm en caldo LB y LB-MG a las 24 horas y se mantiene firme hasta las 48 horas, sin embargo, B. glumae no es capaz de formar biofilm en las condiciones analizadas, sugiriendo que el efecto de la cepa IBUN 2755 en la reducción de las poblaciones de B. glumae en plantas de arroz y su estrategia de control está asociada a una mayor capacidad de colonización mediada por una mayor capacidad de formación de biopelícula y competencia por espacio que B. glumae. Palabras clave: (Quimiotaxis, Biofilm, B. velezensis, B. glumae, Arroz)
dc.description.abstractThe strain Bacillus velezensis IBUN 2755 was isolated from the rhizosphere of Criolla potato. This strain has the ability of biological control against Burkholderia glumae a limiting pathogen in rice crops. Rice seeds infected with B. glumae and treated with IBUN 2755 reduce the severity of the symptoms generated by the disease, showing the same characteristics when is compared with healthy plants. On the other hand, the presence of B. glumae remains constant during the phenological stages analyzed, however, in plants treated with IBUN 2755 its population is reduced and even undetectable during flowering. Even if those features suggest biological control against B. glumae, nowadays is not clear what are the mechanisms used by the strain IBUN 2755 to achieve the pathogen control. Moreover, the plants inoculated with IBUN 2755 showed plant growth promotion features, showing a longer length despite being in pathogen presence. Both IBUN 2755 and B. glumae have chemotaxis against compounds present in rice exudates and against rice root exudates secreted at 7, 14, 21 and 28 days, rice variety Fedearroz 2000, though IBUN 2755 has higher chemotaxis for exudates secreted at day 7. On the other hand, IBUN 2755 presents a chemotaxis towards alanine and serine, low by proline and undetectable by leucine, in contrast to B. glumae that shows chemotaxis for all the compounds present in the tested rice exudates, without presenting statistical differences between them. Both microorganism have a similar attraction patron towards exudates suggesting a possible niche overlapping. IBUN 2755 is able to colonize rice plants as an endophyte until day 28 in both root and stem under a sterile controlled system, and it can also keep its population superficially in the plant. On the other hand, the strain forms biofilm in LB and LB-MG broth 24 hours and remains firm until 48 hours, however, B. glumae is not able to form biofilm under the analysed conditions, suggesting that the effect of the strain IBUN 2755 in the reduction B. glumae population in rice plants and its control strategy are associate to a better colonization ability mediated by a biofilm formation ability and space competition than B. glumae. Keywords: (Chemotaxis, Biofilm, B. velezensis, B. glumae)
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdallah, D. B., Frikha-Gargouri, O., & Tounsi, S. (2018). Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. Plantarum strain 32a. Biological Control, 124, 61-67.
dc.relationBacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271-277
dc.relationBlanco Zapata, D. C. (2012). Evaluación de bacilos aerobios formadores de endosporas (bafes) para el control biológico de Rhizoctonia solani Kuhn en el cultivo de papa criolla (solanum tuberosum Grupo Phureja).
dc.relationChowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology, 6, 780.
dc.relationEspinosa-Urgel, M., Kolter, R., & Ramos, J.-L. (2002). Root colonization by Pseudomonas putida: Love at first sight. Microbiology, 148(2), 341-343.
dc.relationFory, P. A., Triplett, L., Ballen, C., Abello, J., Duitama, J., Aricapa, M., Prado, G., Correa, F., Hamilton, J., & Leach, J. (2014). Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology, 104(5), 436-444.
dc.relationHikichi, Y. (1993). Relationship between population dynamics of Pseudomonas glumae on rice [Oryza sativa] plants and disease severity of bacterial grain rot of rice. Journal of Pesticide Science (Japan).
dc.relationNandakumar, R., Shahjahan, A., Yuan, X., Dickstein, E., Groth, D., Clark, C., Cartwright, R., & Rush, M. (2009). Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Disease, 93(9), 896-905.
dc.relationPedraza Herrera, L. A. (2015). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de Burkholderia glumae.
dc.relationPedraza, L. A., Bautista, J., & Uribe-Vélez, D. (2018). Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage. The plant pathology journal, 34(5), 393.
dc.relationSchluter, J., Nadell, C. D., Bassler, B. L., & Foster, K. R. (2015). Adhesion as a weapon in microbial competition. The ISME journal, 9(1), 139.
dc.relationTsushima, S. (1996). Epidemiology of bacterial grain rot of rice caused by Pseudomonas glumae. JARQ, 30(2), 85-89.
dc.relationVlamakis, H., Aguilar, C., Losick, R., & Kolter, R. (2008). Control of cell fate by the formation of an architecturally complex bacterial community. Genes & development, 22(7), 945-953.
dc.relationYang, Y., M. Pollard, A., Höfler, C., Poschet, G., Wirtz, M., Hell, R., & Sourjik, V. (2015). Relation between chemotaxis and consumption of amino acids in bacteria. Molecular microbiology, 96(6), 1272-1282.
dc.relationArguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial cell factories, 8(1), 63.
dc.relationBauer, M. A., Kainz, K., Carmona-Gutierrez, D., & Madeo, F. (2018). Microbial wars: Competition in ecological niches and within the microbiome. Microbial Cell, 5(5), 215.
dc.relationBerić, T., Kojić, M., Stanković, S., Topisirović, L., Degrassi, G., Myers, M., Venturi, V., & Fira, D. (2012). Antimicrobial activity of Bacillus sp. Natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology and Biotechnology, 50(1), 25-31.
dc.relationCairns, L. S., Hobley, L., & Stanley‐Wall, N. R. (2014). Biofilm formation by B acillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular microbiology, 93(4), 587-598.
dc.relationCastilla, A., Pineda, D, Ospina, J, Echeverry, J, Perafan, R, Sierra, J, & Diaz, A. (2010). Cambio climático y producción de arroz. 58(498), 4-11.
dc.relationChet, I., Ordentlich, A., Shapira, R., & Oppenheim, A. (1990). Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and soil, 129(1), 85-92
dc.relationChowdhury, S. P., Dietel, K., Rändler, M., Schmid, M., Junge, H., Borriss, R., Hartmann, A., & Grosch, R. (2013). Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos one, 8(7), e68818
dc.relationChung, E. J., Hossain, M. T., Khan, A., Kim, K. H., Jeon, C. O., & Chung, Y. R. (2015). Bacillus oryzicola sp. Nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. The plant pathology journal, 31(2), 152.
dc.relationCouturier, E., & Rocha, E. P. (2006). Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes. Molecular microbiology, 59(5), 1506-1518.
dc.relationDANE. (2019, febrero). Encuesta Nacional de Arroz Mecanizado (ENAM). http://fedearroz.com.co/new/documentos/2019/encuesta_nacional_arroz_mecanizado.pdf
dc.relationDauner, M., Storni, T., & Sauer, U. (2001). Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. Journal of bacteriology, 183(24), 7308-7317.
dc.relationDeng, Y., Chen, H., Li, C., Xu, J., Qi, Q., Xu, Y., Zhu, Y., Zheng, J., Peng, D., & Ruan, L. (2019). Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Communications biology, 2(1), 1-12
dc.relationElshakh, A. S., Anjum, S. I., Qiu, W., Almoneafy, A. A., Li, W., Yang, Z., Cui, Z., Li, B., Sun, G., & Xie, G. (2016). Controlling and defence‐related mechanisms of Bacillus strains against bacterial leaf blight of rice. Journal of Phytopathology, 164(7-8), 534-546.
dc.relationFan, B., Chen, X. H., Budiharjo, A., Bleiss, W., Vater, J., & Borriss, R. (2011). Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology, 151(4), 303-311.
dc.relationFAO. (2018, abril). Seguimiento del Mercado del Arroz de la FAO (SMA). http://www.fao.org/3/I9243ES/i9243es.pdf
dc.relationFEDEARROZ. (2009). Añubulo bacterial de la panícula. http://www.fedearroz.com.co/documentos/2009/Aniublo_bacterial.pdf
dc.relationFEDEARROZ. (2019). Consumo de Arroz en Colombia Desde 2000 hasta 2019 Kg. http://www.fedearroz.com.co/new/consumo.php
dc.relationGhoul, M., & Mitri, S. (2016). The ecology and evolution of microbial competition. Trends in microbiology, 24(10), 833-845.
dc.relationGómez Ramírez, L. F. (2015). Desarrollo y aplicación de una estrategia de biofertilización en plantas de arroz (oryza sativa l.) Empleando microorganismos promotores de crecimiento vegetal.
dc.relationHassan, M. K., McInroy, J. A., & Kloepper, J. W. (2019). The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture, 9(7), 142.
dc.relationHibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15
dc.relationHunting, E. R., Vijver, M. G., van der Geest, H. G., Mulder, C., Kraak, M. H., Breure, A. M., & Admiraal, W. (2015). Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms. Frontiers in microbiology, 6, 105
dc.relationIdris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular plant-microbe interactions, 20(6), 619-626
dc.relationJin, Y., Zhu, H., Luo, S., Yang, W., Zhang, L., Li, S., Jin, Q., Cao, Q., Sun, S., & Xiao, M. (2019). Role of Maize Root Exudates in Promotion of Colonization of Bacillus velezensis Strain S3-1 in Rhizosphere Soil and Root Tissue. Current microbiology, 76(7), 855-862
dc.relationKawanishi, T., Shiraishi, T., Okano, Y., Sugawara, K., Hashimoto, M., Maejima, K., Komatsu, K., Kakizawa, S., Yamaji, Y., & Hamamoto, H. (2011). New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints. PLoS One, 6(1), e16512
dc.relationKim, B. K., Cho, M. S., Kim, M. H., Choi, H. J., Kang, M. J., Shim, H. S., Ahn, T.-Y., Kim, J., & Park, D. S. (2012). Rapid and specific detection of Burkholderia glumae in rice seed by real-time Bio-PCR using species-specific primers based on an rhs family gene. Plant disease, 96(4), 577-580.
dc.relationKim, J., Kim, J., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T., & Hwang, I. (2004). Quorum sensing and the LysR‐type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Molecular microbiology, 54(4), 921-934.
dc.relationKimani, V. N., Chen, L., Liu, Y., Raza, W., Zhang, N., Mungai, L. K., Shen, Q., & Zhang, R. (2016). Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber. Journal of basic microbiology, 56(11), 1183-1193.
dc.relationLasa, I., Del Pozo, J., Penadés, J. R., & Leiva, J. (2005). Biofilms bacterianos e infección. 28, 163-175.
dc.relationLi, L., Wang, L., Liu, L., Hou, Y., Li, Q., & Huang, S. (2016). Infection process of Burkholderia glumae before booting stage of rice. Journal of Phytopathology, 164(10), 825-832.
dc.relationLiu, Y., Zhang, N., Qiu, M., Feng, H., Vivanco, J. M., Shen, Q., & Zhang, R. (2014). Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS microbiology letters, 353(1), 49-56.
dc.relationLloyd, D. P., & Allen, R. J. (2015). Competition for space during bacterial colonization of a surface. Journal of The Royal Society Interface, 12(110), 20150608.
dc.relationMangalea, M. R., Plumley, B. A., & Borlee, B. R. (2017). Nitrate Sensing and Metabolism Inhibit Biofilm Formation in the Opportunistic Pathogen Burkholderia pseudomallei by Reducing the Intracellular Concentration of c-di-GMP. Frontiers in Microbiology, 8, 1353. https://doi.org/10.3389/fmicb.2017.01353
dc.relationMurphy, M. P., & Caraher, E. (2015). Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathogens and disease, 73(8).
dc.relationNaher, U., Radziah, O., Halimi, M., Shamsuddin, Z., & Razi, I. (2008). Specific growth rate and carbon sugar consumption of diazotrophs isolated from rice rhizosphere. Journal of Biological Sciences, 8(6), 1008-1014.
dc.relationNazar, C. (2007). Biofilms bacterianos:[revisión]. Rev. Otorrinolaringol. Cir. Cabeza Cuello, 67(1), 61-72.
dc.relationNiehus, R., Picot, A., Oliveira, N. M., Mitri, S., & Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. Evolution, 71(6), 1443-1455
dc.relationNihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain B acillus amyloliquefaciens S499. FEMS Microbiology Ecology, 79(1), 176-191.
dc.relationPedraza Herrera, L. A. (In preparation). In preparation.
dc.relationPedraza Herrera, L. A. (2015). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de Burkholderia glumae.
dc.relationPérez, C., & Saavedra, E. (2011). Avances en el manejo integrado de la bacteria Burkholderia glumae en el cultivo de arroz en el Caribe colombiano. Revista Colombiana de Ciencia Animal-RECIA, 3(1), 111-124.
dc.relationRafique, M., Hayat, K., Mukhtar, T., Khan, A., Afridi, M., Hussain, T., Sultan, T., Munis, M., Imran, M., & Chaudhary, H. (2015). Bacterial biofilm formation and its role against agricultural pathogens. The battle against microbial pathogens: basic science, technological advances and educational programs. Formatex Research Centre, Spain, 373-382.
dc.relationSalvatierra‐Martinez, R., Arancibia, W., Araya, M., Aguilera, S., Olalde, V., Bravo, J., & Stoll, A. (2018). Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. Journal of Phytopathology, 166(9), 601-612.
dc.relationSchluter, J., Nadell, C. D., Bassler, B. L., & Foster, K. R. (2015). Adhesion as a weapon in microbial competition. The ISME journal, 9(1), 139
dc.relationShemesh, M., & Chai, Y. (2013). A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. Journal of bacteriology, 195(12), 2747-2754.
dc.relationShew, A. M., Durand-Morat, A., Nalley, L. L., Zhou, X.-G., Rojas, C., & Thoma, G. (2019). Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production. PloS one, 14(7).
dc.relationShrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N., & Ham, J. H. (2016). Biological control activities of rice-associated Bacillus sp. Strains against sheath blight and bacterial panicle blight of rice. PloS one, 11(1), e0146764
dc.relationSIC. (2012). Diagnóstico del mercado del arroz en Colombia (2000-2012). Super Intendencia de Industria y Comercio. http://www.sic.gov.co/recursos_user/documentos/publicaciones/pdf/Arroz2012.pdf
dc.relationStubbendieck, R. M., & Straight, P. D. (2016). Multifaceted interfaces of bacterial competition. Journal of bacteriology, 198(16), 2145-2155.
dc.relationTeam, Rs. (2015). RStudio: Integrated development for R. RStudio, Inc., Boston, MA URL http://www. rstudio. com, 42, 14.
dc.relationTian, Y., Fan, Y., Liu, J., Zhao, X., & Chen, W. (2016). Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electronic Journal of Biotechnology, 19, 41-49
dc.relationTsushima, S. (1996). Epidemiology of bacterial grain rot of rice caused by Pseudomonas glumae. JARQ, 30(2), 85-89.
dc.relationUematsu, T., Yoshimura, D., Nishiyama, K., Ibaraki, T., & Fuji, H. (1976). Occurrence of bacterial seedling rot in nursery flat, caused by grain rot bacterium Pseudomonas glumae. Japanese Journal of Phytopathology, 42(3), 310-312.
dc.relationWendisch, V. F., de Graaf, A. A., Sahm, H., & Eikmanns, B. J. (2000). Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses withCorynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology, 182(11), 3088-3096
dc.relationWu, B., Wang, X., Yang, L., Yang, H., Zeng, H., Qiu, Y., Wang, C., Yu, J., Li, J., & Xu, D. (2016). Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Applied soil ecology, 103, 1-12.
dc.relationXu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., & Zhang, R. (2019). Bacillus velezensis Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization. Applied and Environmental Microbiology, 85(5), e02116-18. https://doi.org/10.1128/AEM.02116-18
dc.relationYang, Y., M. Pollard, A., Höfler, C., Poschet, G., Wirtz, M., Hell, R., & Sourjik, V. (2015). Relation between chemotaxis and consumption of amino acids in bacteria. Molecular microbiology, 96(6), 1272-1282
dc.relationYaryura, P., León, M., Correa, O., Kerber, N., Pucheu, N., & García, A. (2008). Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Current microbiology, 56(6), 625-632.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEfecto de la cepa biocontroladora IBUN 2755 sobre la población de Burkholderia glumae en plantas de arroz (Oryza sativa L.)
dc.typeOtro


Este ítem pertenece a la siguiente institución