dc.contributor | Vargas Ramírez, Mario | |
dc.contributor | Biodiversidad y Conservación Genética | |
dc.creator | Cuadrado Rios, Sebastian Adolfo | |
dc.date.accessioned | 2020-08-14T19:55:22Z | |
dc.date.available | 2020-08-14T19:55:22Z | |
dc.date.created | 2020-08-14T19:55:22Z | |
dc.date.issued | 2020-07-22 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78044 | |
dc.description.abstract | Recognizing and understanding historical patterns and processes that have influenced the diversification of organisms on earth is one of the central goals of evolutionary biology. Within this broad area, studies within the disciplines of molecular systematics (i.e. phylogeography, phylogenetics and population genetics), allow us to address evolutionary questions from different biological, spatial and temporal scales. Phylogeography and molecular phylogenetics help us to understand aspects related to events that have given rise to patterns of genetic variation in organisms, as well as to understand the assembly of biological communities in a given area.
These types of studies provide crucial information to increase knowledge about the biodiversity of little-studied ecoregions. One such ecoregion is Colombian Guyana. This ecoregion, which is located between three putative centers of speciation; Amazonia, the Andes and Guyana, is one of the least explored areas of the country. As a result of their geological composition, the western enclaves of the Guiana Shield have been described as a "heterogeneous entity", composed of savannas, catingas, lowland forests, and even white sand forests.
Using bats as a biological study group, this paper presents two approaches focused on understanding how biogeographic events that have shaped the diversity of the continent have affected different lineages that inhabit Colombian Guiana. Bats are a group of vertebrates sensitive to biogeographic events that have shaped the diversity of the continent, which play different functional roles in the ecosystems they inhabit. High degrees of association with habitat have been described for numerous bat species, mainly in terms of foraging characteristics and diet types.
In a first project, we comparatively analyzed the phylogeographic patterns of three widely distributed bat species, with the aim of identifying the patterns of genetic divergence of the bats that inhabit the area today. Using mitochondrial DNA sequences, we revealed the existence of bat populations established in the area, which showed different degrees of gene flow with surrounding biogeographic areas, especially with the Guiana provinces of Oriente and Pantepui and the Amazon. Additionally, we identified different demographic histories for each species, which were probably influenced to different extents by climatic changes during the Pleistocene and differential ecological characteristics. Our results highlight the influence of Colombian Guiana ecosystems on the formation and spatial configuration of bat diversity and genetic structure, and the importance of these ecosystems for bat conservation.
In a second project, from a phylogenetic perspective, we evaluated the phylogenetic structure of bat communities inhabiting different eco-regions of northern South America, using mitochondrial and nuclear DNA sequences. The results of the analysis allowed us to demonstrate that the bat populations of the Western Guayana Province (which includes the Colombian portion of the Guiana Shield), are phylogenetically clustered, that is, the species that compose the communities are evolutionarily closer than expected by chance. We conclude that factors such as the high heterogeneity of habitats in the region, the high diversity of fruit bats in the sampled communities, and interspecific competition have shaped the species composition of the communities in this area.
In a final chapter, a general discussion of the results obtained from the two research projects carried out is developed. Chapters one and two of this thesis will be submitted to international indexed journals, which is why they are written in English and in scientific article format. | |
dc.description.abstract | Reconocer y entender patrones y procesos históricos que han influenciado la diversificación de los organismos sobre la tierra, es uno de los objetivos centrales de la biología evolutiva. Dentro de esta gran área, estudios enmarcados en las disciplinas de la sistemática molecular (i.e. filogeografía, filogenética y genética de poblaciones), nos permiten abordar preguntas evolutivas desde diferentes escalas biológicas, espaciales y temporales. La filogeografía y la filogenética molecular nos ayudan a entender aspectos relacionados con eventos que han dado lugar a patrones de variación genética de los organismos, así como entender el ensamblaje de comunidades biológicas en un área determinada.
Este tipo de estudios aportan información crucial para aumentar el conocimiento acerca de biodiversidad de eco regiones poco estudiadas. Una de estas eco regiones es la Guyana colombiana. Esta eco región, la cual se encuentra ubicada entre tres centros putativos de especiación; Amazonía, Andes y Guayana, es una de las zonas menos exploradas del país. Como resultado de su composición geológica, los enclaves occidentales del escudo Guayanés han sido descritos como una "entidad heterogénea", compuesta de sabanas, catingas, bosques bajos, e inclusive bosques de arena blanca.
Usando como grupo biológico de estudio los murciélagos, este trabajo de grado presentan dos aproximaciones enfocadas a entender como eventos biogeográficos que han moldeado la diversidad del continente, han afectado diferentes linajes que habitan la Guayana colombiana. Los murciélagos son un grupo de vertebrados sensibles a los eventos biogeográficos que han moldeado la diversidad del continente, el cuál cumple diferentes roles funcionales en los ecosistemas que habitan. Altos grados de asociación con el hábitat han sido descritos para numerosas especies de murciélagos, principalmente en cuanto a características de forrajeo y tipos de dieta.
En un primer proyecto, analizamos comparativamente los patrones filogeográficos de tres especies de murciélagos de amplia distribución, con el objetivo de identificar los patrones de divergencia genética de los murciélagos que habitan el área en la actualidad. Utilizando secuencias de ADN mitocondrial, revelamos la existencia de poblaciones de murciélagos establecidas en el área, las cuales mostraron diferentes grados de flujo genético con áreas biogeográficas circundantes, en especial con las provincias guayanesas del Oriente y Pantepui y el Amazonas. Adicionalmente identificamos diferentes historias demográficas para cada especie, las cuales probablemente fueron influenciadas en diferente medida por cambios climáticos durante el pleistoceno y características ecológicas diferenciales. Nuestros resultados destacan la influencia de los ecosistemas guayaneses colombianos en la formación y configuración espacial de la diversidad y estructura genética en murciélagos, y la importancia de estos ecosistemas para la conservación dicha diversidad.
En un segundo proyecto, desde una perspectiva filogenética, evaluamos la estructura filogenética de la comunidad de murciélagos de diferentes eco-regiones del norte de sur américa, usando secuencia de ADN mitocondrial. Los resultados de los análisis nos permitieron demostrar que las poblaciones de murciélagos de la Provincia Guayanesa del Occidente (la cual incluye la porción colombiana del escudo guayanés), se encuentran filogenéticamente agregadas, es decir, las especies que componen las comunidades son más cercanas evolutivamente de lo esperado por el azar. Concluimos que factores como la alta heterogeneidad de hábitats en la región, la alta diversidad de murciélagos frugívoros en las comunidades muestreadas, y la competencia interespecífica han moldeado la composición de especies de las comunidades en esta zona.
En un capítulo final, se desarrolla una discusión general de los resultados obtenidos de los dos proyectos de investigación realizados. Los capítulos uno y dos de esta tesis serán sometidos a revistas indexadas internacionales, razón por la cual están escritos en idioma inglés y en formato de artículo científico. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Biología | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Berry P, Huber O, Holst B. 1995. Floristic analysis and phytogeography. En: Steyenmark, J., Berry, P. & Holst, B. (eds). Flora of the Venezuelan Guayana 1, 161-191. The Missouri Botanical Garden, Timber press, Portland, Oregon. | |
dc.relation | Blake S, McCracken DI, Eyre MD, Garside A, Foster GN. 2003. The relationship between the classification of Scottish ground beetle assemblages (Coleoptera, Carabidae) and the National Vegetation classification of British plant communities. Ecography 26: 602-616. | |
dc.relation | Cárdenas D, Giraldo-Cañas D. 1997. Vegetación. Pp 183-228. En: Instituto Geográfico Agustín Codazzi (ed). Zonificación ambiental para el plan modelo colombo-brasilero (eje Apaporis-Tabatinga). Editorial Linotipia Bolívar & Cia. Santafé de Bogotá, D.C. | |
dc.relation | Cortés-B R, Franco-R P, Rangel-C JO. 1998. La flora vascular de la Sierra de Chiribiquete, Colombia. Caldasia 20: 103-141. | |
dc.relation | Galvis, J. 1993. Estudio geológico de la Sierra de Chiribiquete y zonas aledañas (Parque Nacional Natural Chiribiquete). Agencia Española de Cooperación Internacional. Bogotá, Colombia. | |
dc.relation | Antoine P-O, Roddaz M, Brichau S, Tejada-Lara J, Salas-Gismondi R, Altamirano A, Louterbach M, Lambs L, Otto T, Brusset S. 2013. Middle miocene vertebrates from the amazonian Madre de Dios subandean zone, Perú. Journal of South American Earth Sciences 42: 91-102. | |
dc.relation | Arbogast BS, Kenagy GJ. 2001. Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography 28: 819-825. | |
dc.relation | Arévalo R, Betancur J. 2004. Diversidad de epífitas vasculares en cuatro bosques del sector suroriental de la Serranía de Chiribiquete, Guayana Colombiana. Caldasia 26: 359-380. | |
dc.relation | Garcia-Villacorta R, Dexter K, Pennington RT. 2016. Amazonian White-Sand Forests Show Strong Floristic Links with Surrounding Oligotrophic Habitats and the Guiana Shield. Biotropica 48: https://doi.org/10.1111/btp.12302 | |
dc.relation | Gibbs A, Barron C. 1983. The Guiana shield reviewed. Episodes 2: 7-14. | |
dc.relation | Hoffmann FG, Baker RJ. 2001. Systematics of bats of the genus Glossophaga (Chiroptera: Phyllostomidae) and phylogeography in G. soricina based on the Cytochrome-b gene. Journal of Mammalogy 82: 1092-1101. | |
dc.relation | Hoorn C, Wesselingh FP, Hovikoski J, Guerrero J. 2010. The development of the Amazonian mega-wet-land (Miocene; Brazil, Colombia, Peru, Bolivia). pp. 123-142. En: Hoorn C, Wesselingh FP (eds). Amazonia: landscape and species evolution. Wiley Blackwell Publisher, Oxford, UK. | |
dc.relation | Hovikoski J, Gringas M, Räsänen M, Rebata LA, Guerrero J, Ranzi A, Melo J, Romero L, Jaimes F, López S. 2007. The nature of Miocene Amazonian epicontinental embayment: high frequency shifts of low gradient coastline. Geological Society of America Bulletin 119: 1506-1520. | |
dc.relation | Huber O. 1995. Geographical and physical features. En: Steyermark, J., Berry, P. & Holst, B. (eds). Flora of the Venezuelan Guayana 1, 1-61. The Missouri Botanical Garden, Timber Press, Portland, Oregon. | |
dc.relation | Huber O. 2006. Herbaceous ecosystems on the Guayana Shield, a regional overview. Journal of Biogeography 33: 464-475. | |
dc.relation | Lewinsohn T, Novotny V, Basset Y. 2005. Insects on plants: diversity of herbivore assemblages revisited. Annual Reviews on Ecology, Evolution and Systematics 36: 597-620. | |
dc.relation | Mantilla-Meluk H, Jiménez-Ortega AM, Baker RJ. 2009. Phyllostomid bats from Colombia: annotated checklist, distribution, and biogeography. Special Publications Occasional Papers Museum of Texas Tech University 56: 1-37. | |
dc.relation | Mantilla-Meluk H, Montenegro O. 2016. Nueva especie de Lonchorhina (Chiroptera: Phyllostomidae) de Chiribiquete, Guayana colombiana. Revista Biodiversidad Neotropical 6: 171-187. | |
dc.relation | Mantilla-Meluk H, Ramìrez-Chaves HE, Jiménez-Ortega AM, Rodríguez-Posada ME. 2014. Emballonurid bats from Colombia: annotated checklist, distribution, and biogeography. Therya 5: 229-255. | |
dc.relation | Moritz C, Faith DP. 2002. Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology 7: 419-429. | |
dc.relation | Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cacraft J. 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B 279: 681-689. | |
dc.relation | Rull V, Huber O, Vegas-Vilarrúbia T, Señaris C. 2019. Chapter 1 - Definition and characterization of the pantepui biogeographical province. pp 1-32. En: Rull V, Vegas-Vilarrúbia T, Huber O, Señaris C (eds). Biodiversity of Pantepui, the pristine "lost world" of the neotropical Guiana highlands. London: Elsevier-Academic Press. | |
dc.relation | Sastre C. 1995. Ocnáceas de las sierras de Chiribiquete y de La Macarena (Colombia): consideraciones taxonómicas y fitogeográficas. Revista de la academia colombiana de ciencias exactas, físicas y naturales 19: 499-508. | |
dc.relation | Schubert C. 1995. Origen of the Gran Sabana in southeastern Venezuela: no longer a "lost world". Scientia Guaianae (Venezuela) 5: 147-174. | |
dc.relation | Silva SM, Peterson AT, Carneiro L, Burlamaqui TCT, Ribas CC, Sousa-Neves T, Batista R, et al. 2019. A dynamic continental moisture gradient drove amazonian bird diversification. Science Advances 5: eaat5752. | |
dc.relation | Wesselingh FP, Salo JA. 2006. A miocene perspective on the evolution of the Amazonian biota. Scripta Geologica 133: 439-457. | |
dc.relation | Aleixo A, Rossetti DdF. 2007. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology 148: 443-453. | |
dc.relation | Almeida-Filho R, Miranda FP. 2007. Mega capture of the Río Negro and formation of the Anavilhanas Archipielago, Central Amazônia, Brazil: evidences in an SRTM digital elevation model. Remote Sensing of Environment 110: 387-392. | |
dc.relation | Antonelli A, Quijada-Mascareñas A, Crawford AJ, Bates JM, Velazco PM, Wüster W. 2010. Molecular studies and phylogeography of amazonian tetrapods and their relation to geological and climatic models. In: Hoorn C, Wesselingh EP (eds). Amazonia, landscape and species evolution: a look into the past. pp. 386-404. London, UK: Wiley-Blackwell. | |
dc.relation | Bensch S, Stjernman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Torres Pinheiro R. 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B 267: 1583-1589. | |
dc.relation | Borges SH, Dantas Antos MP, Moreira M, Baccaro F, Guimarães Capurucho JM, Ribas C. 2018. Dissecting bird diversity in the Pantepui area of endemism, northern South America. Journal of Ornithology 159: 1073-1086. | |
dc.relation | Bouckaert R, Heled J, Künhert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for bayesian evolutionary analyses. PLOS Computational Biology, https://doi.org/10.1371/journal.pcbi.1003537 | |
dc.relation | Brumfield RT, Capparela AP. 1996. Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution 50: 1607-1624. | |
dc.relation | Byrne H, Lynch Alfaro JW, Sampaio I, Farias I, Schneider H, Hrbek R, Boubli JP. 2018. Titi monkey biogeography: parallel pleistocene spread by Plecturocebus and Cheracebus into a post-Pebas Western Amazon. Zoologica Scripta 47: 499-517. | |
dc.relation | Carneiro L, Bravo GA, Aristizábal N, Cuervo AM, Aleixo A. 2018. Molecular systematics and biogeography of lowland antpittas (Aves, Grallariidae): the role of vicariance and dispersal in the diversification of a widespread neotropical lineage. Molecular Phylogenetics and Evolution 120: 375-389. | |
dc.relation | Carstens BC, Morales AE, Field K, Pelletier TA. 2018. A global analysis of bats using automated comparative phylogeography uncovers a surprising impact of pleistocene glaciation. Journal of Biogeography 45: 1795-1805. | |
dc.relation | Cortés-B R, Franco-R P. 1997. Análisis panbiogeográfico de la flora de Chiribiquete, Colombia. Caldasia 19: 465-478. | |
dc.relation | d'Horta FM, Cuervo AM, Ribas CC, Brumfield RT, Miyaki CY. 2013. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. Journal of Biogeography 40: 37-49. | |
dc.relation | Ditchfield AD. 2000. The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Molecular Ecology 9: 1307-1318. | |
dc.relation | Drummond AJ, Ashton B, Buxton S, Cheung M, Coorper A, Heled J, Kearse M, Moir R, Stone-Havas S, Sturrock S. 2010. Geneious v5.1. | |
dc.relation | Ferreira M, Aleixo A, Ribas CC, Santos MPD. 2016. Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. Journal of Biogeography 44: 748-759. | |
dc.relation | Ferreira WAS, Borges BN, Rodrigues-Antunes S, Andrade FAG, Aguiar GFS, Silva-Junior JDS, Marques-Aguiar SA, Harada ML. 2014. Phylogeography of the Dark Fruit-Eating bat Artibeus obscurus in the Brazilian amazon. Journal of Heredity 105: 48-59. | |
dc.relation | Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299. | |
dc.relation | Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to Conservation Genetics. Cambridge, UK, Cambridge University Press. | |
dc.relation | Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925. | |
dc.relation | Giraldo-Cañas D. 2001. Phytogeographical relationships of Sierras and the rocky sandstone outcrops of the Colombian Guayana: a preliminary analysis. Revista chilena de historia natural 74: 353-364. | |
dc.relation | Harvey MG, Brumfield RT. 2015. Genomic variation in a widespread neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Molecular Phylogenetics and Evolution 83: 305-316. | |
dc.relation | Heled J, Drummond AJ. 2008. Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology 8, 289. | |
dc.relation | Hickerson MJ, Meyer CP, Moritz C. 2006. DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology 55, 729-739. | |
dc.relation | Hoffmann FG, Owen JG, Baker RJ. 2003. mtDNA perspective of chromosomal diversification and hybridization in Peter’s tent-making bat (Uroderma bilobatum: Phyllostomidae). Molecular Ecology 12, 2981-2993. | |
dc.relation | Larsen PA, Marchán-Rivadeneira MR, Baker RJ. 2010. Natural hybridization generates mammalian lineage with species characteristics. Proceedings of the National Academy of Sciences 107: 11447-11452. | |
dc.relation | Leight JW, Bryant D. 2015. popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116. | |
dc.relation | Lemmon AR, Lemmon EM. 2008. A likelihood framework for estimating phylogeographic history on a continuous landscape. Systematic Biology 57: 544-561. | |
dc.relation | Mello MAR, Schittini GM, Selig P, Bergallo HG. 2007. Seasonal variation in the diet of the bat Carollia perspicillata (Chiroptera: Phyllostomidae) in an Atlantic forest area in southeastern Brazil. Mammalia 68: 49-55. | |
dc.relation | Monsch KA. 1998. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143: 31-50. | |
dc.relation | Moreno SA, Gelambi M, Biganzoli A, Molinari J. 2019. Small nutrient molecules in fruit fuel efficient digestion and mutualism with plants in frugivorous bats. Scientific Reports 9: 19376. doi: 10.1038/s41598-019-55915-z | |
dc.relation | Nascimiento MN, Martins GS, Cordeiro RC, Turcq B, Moreira LS, Bush MB. 2019. Vegetation response to climatic changes in western Amazonia over the last 7,600 years. Journal of Biogeography. https://doi.org/10.1111/jbi.13704 | |
dc.relation | Nei M. 1982. Evolution of human races at the gene level. Pp. 167-181. In: Bonne-Tamir B, Cohen T, Goodman RM (eds). Human genetics, part A: the unfolding genome. New York: Alan R. Liss. | |
dc.relation | Ortega J, Alarcón-D I. 2008. Anoura geoffroyi (Chiroptera: Phyllostomidae). Mammalian Species 818: 1-7. | |
dc.relation | Rambaut A, Drummond AJ. 2004. Tracer 1.3. UK: University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/tracer | |
dc.relation | Rojas D, Warsi OM, Dávalos LM. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Systematic Biology 65: 432-448. | |
dc.relation | Rossetti DdF, de Toledo PM, Góes AM. 2005. New geological framework for western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research 63: 78-89. | |
dc.relation | Rozas J, Ferrer-Mata A, Sánchez-Del Barrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution 34: 3299-3302. | |
dc.relation | Ronquist F, Teslenk M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61: 539-542. | |
dc.relation | Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning. New York: Cold spring harbor laboratory press. | |
dc.relation | Sánchez MS, Giannini NP. 2018. Trophic structure of frugivorous bats in the neotropics: emergent patterns in evolutionary history. Mammal Review 48: 90-107. | |
dc.relation | Schultz ED, Burney CW, Brumfield RT, Polo EM, Cacraft J, Ribas CC. 2017. Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): Cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation. Molecular Phylogenetics and Evolution 107: 503-515. | |
dc.relation | Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG et al. 2014. The drivers of tropical speciation. Nature 5050: 406-409. | |
dc.relation | Soley-Guardia M, Carnaval AC, Anderson RP. 2019. Sufficient versus optimal climatic stability during the late quaternary: using environmental quality to guide phylogeographic inferences in a neotropical montane system. Journal of Mammalogy 100: 1783-1807. | |
dc.relation | Tajima F. 1989. The effect of change in population size on DNA polymorphism. Genetics 123: 597-601. | |
dc.relation | Williams CF. 1986. Social organization of the bat, Carollia perspicillata (Chiroptera: Phyllostomidae). Ethology 71: 265-282. | |
dc.relation | Álvarez M, Umaña AM, Mejía GD, Cajiao J, Von Hildebrand P, Gast F. 2003. Aves del Parque Nacional Natural Serranía de Chiribiquete, Amazonia-Provincia de la Guyana, Colombia. Biota Colombiana 4: 49-63. | |
dc.relation | Arbeláez MV, Duivenvoorden JF. 2004. Patterns of plant species composition on Amazonian sandstone outcrops in Colombia. Journal of Vegetation Science 15: 181-188. | |
dc.relation | Bryant JA, Lammana C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105: 11505-11511. | |
dc.relation | Cárdenas-López D. 2007. Flora del escudo Guayanés en Inírida (Guianía, Colombia). Bogotá, Colombia: Instituto SINCHI. | |
dc.relation | Cárdenas D, González MF, Marín N, Sua S, Betancur J. 2017. Plantas y líquenes del Parque Nacional Natural Serranía de Chiribiquete, Colombia. Colombia Amazonica 10: 205-215. | |
dc.relation | Cardillo M. 2011. Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philosophical transactions of the royal society B 366: 2545-2553. | |
dc.relation | Cediel F .2019. Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. Pp 3-95. In: Cediel F, Shaw RP. Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_1 | |
dc.relation | Cuadrado-Ríos S, Mantilla-Meluk H. 2016. Timing the evolutionary history of tent-manking bats, genus Uroderma (Phyllostomidae): a biogeographic context. Mammalian Biology 81: 579-586. | |
dc.relation | Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 488: 696-699. | |
dc.relation | Edgar RC. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 1-13. | |
dc.relation | Faith DP. 1992. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 8: 361-373. | |
dc.relation | Funk V, Hollowell T, Berry P, Kelloff C, Alexander NS. 2007. Checklist of the plants of the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana). Contributions from the United States National Herbarium 55: 1-584. | |
dc.relation | Funk V, Hollowell T, Berry P, Kelloff C, Alexander NS. 2007. Checklist of the plants of the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana). Contributions from the United States National Herbarium 55: 1-584. | |
dc.relation | Grimshaw JR, Higgins CL. 2017. Environmental correlates of phylogenetic structure in Mexican bat communities. Journal of Mammalogy 98: 1657-1666. | |
dc.relation | Guevara JE, Damasco G, Baraloto C, Fine PVA, Peñuela MC, Castilho C, Vincentini A, Cárdenas D, Wittmann F, Targhetta N, Phillips O, Stropp J, Amaral I, Maas P, Monteagudo A, Jimenez EM, Thomas R, Brienen R, Duque Á, Magnusson W, Ferreira C, Honorio E, Matos FdA, Arevalo FR, Engel J, Petronelli P, Vasquez R, ter Steege H. 2016. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica 48: 34-46. | |
dc.relation | Haffer J. 1974. Avian speciation in tropical South America. Nuttall Ornithological Club Publications 14: 1.390. Cambridge MA: NuHall Ornithological Club. | |
dc.relation | Handley CO Jr. 1976. Mammals of the Smithsonian Venezuelan Poryect. Brigham Young University Science Bulletin Biological Series 20: 1-91. | |
dc.relation | Huber O, Prance GT, Kroonenberg SB, Antonelli A. 2018. The tepuis of the Guiana Highlands. Pp. 339-353. In: Hoorn C, Perrigo A, Antonelli A. (eds). Mountains, Climate and Biodiversity. New Jersey: John Wiley and Sons. | |
dc.relation | IUCN. 2018. The IUCN Red List of Threatened Species 2018. Available from http://www.iucnredlist.org. Accessed 18 October 2018. | |
dc.relation | Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30: 772-780. | |
dc.relation | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrations phylogenies and ecology. Bioinformatics 26: 1463-1464. | |
dc.relation | Lamarre GPA, Amoretti DS, Bélénuz F, Mesones I, Fine PVA. 2016. Phylogenetic overdispersion in lepidoptera communities of Amazonian white-sand forests. Biotropica 48: 101-109. | |
dc.relation | Lim BK. 2007. Divergence times and origin of neotropical sheath-tailed bats (tribe Diclidurini) in South America. Molecular Phylogenetics and Evolution 45: 777-791. | |
dc.relation | Lim BK, Engstrom MD, Bickham JW, Patton JC. 2008. Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biological Journal of the Linnean Society 93: 189-209. | |
dc.relation | López-Aguirre C, Hand SJ, Laffan SW, Archer M. 2019. Zoogeographical regions and geospatial patterns of phylogenetic diversity and endemism of New World bats. Ecography 42: 1188-1199. | |
dc.relation | Mantilla-Meluk H, Mosquera-Guerra F, Trujillo F, Pérez N, Velásquez-Valencia A, Vargas-Pérez A. 2017. Mamíferos del sector norte del Parque Nacional Natural Serranía de Chiribiquete. Revista Colombia Amazónica 10: 99-134. | |
dc.relation | Miller JT, Jolley-Rogers G, Mishler BD, Thornhill AH. 2018. Phylogenetic diversity is a better measure of biodiversity than taxon counting. Journal of Systematics and Evolution 56: 663-667. | |
dc.relation | Montenegro O, Romero-Ruiz M. 1999. Murciélagos del sector sur de la Serranía de Chiribiquete, Caquetá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 23: 641-649. | |
dc.relation | Novotny V, Basset Y, Miller SE, Drozd P, Cizek L. 2002. Host specialization of leaf-chewing insects in a New Guinean rainforest. Journal of animal ecology 71: 400-412. | |
dc.relation | Patrick LE, Stevens RD. 2016. Phylogenetic community structure of North American desert bats: influence of environment at multiple spatial and taxonomic scales. Journal of Animal Ecology 85: 1118-1130. | |
dc.relation | Pellissier L, Ndiribe C, Dubuis A, Pradervand JN, Salamin N, Guisan A, Rasmann S. 2013. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology Letters 16: 600-608. | |
dc.relation | Presley SJ, Cisneros LM, Higgins CL, Klingbeil BT, Scheiner SM, Willig MR. 2018. Phylogenetic and functional underdispersion in neotropical phyllostomid bat communities. Biotropica 50: 135-145. | |
dc.relation | Riedinger V, Müller J, Stadler J, Ulrich W, Brandl R. 2012. Assemblages of bats are phylogenetically clustered on a regional scale. Basic and Applied Ecology 14: 74-80. | |
dc.relation | Rodríguez-Herrera B, Rodríguez ME, Fernández Otálora M. 2018. Ecological networks between tent-roosting bats (Phyllostomidae: Stenodermatinae) and the plants used in a neotropical rainforest. Acta Chiropterologica 20: 139-145. | |
dc.relation | Rosauer DF, Jetz W. 2015. Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography 24: 168-179. | |
dc.relation | Rojas D, Vale Á, Ferrero V, Navarro L. 2012. The role of frugivory in the diversification of bats in the neotropics. Journal of Biogeography 39: 1948-1960. | |
dc.relation | Rojas D, Warsi OM, Dávalos LM. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Systematic Biology 65: 432-448. | |
dc.relation | Stiles FG, Beckers J. 2016. Un inventario de las aves de la región de Inírida, Guainía, Colombia. Ornitología Colombiana 15: 21-52. | |
dc.relation | Stiles FG, Naranjo LG. 2017. La avifauna del Parque Nacional Natural Chiribiquete: resultados de tres expediciones recientes a sectores previamente inexplorados. Colombia Amazonica 10: 141-160. | |
dc.relation | Souza-Neto AC, Cianciaruso MV, Collevatti RG. 2015. Habitat shifts shaping the diversity of a biodiversiy hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. Journal of Biogeography 43: 340-350. | |
dc.relation | Suárez-Mayorga AM, Lynch JD. 2017. Myth and truth on the herpetofauna of Chiribiquete: from the lost world to the last world. Colombia Amazonica 10: 177-187. | |
dc.relation | Velazco PM, Patterson BD. 2013. Diversification of the yellow-shouldered bats, Genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. Molecular Phylogenetics and Evolution 68: 683-698. | |
dc.relation | Webb CO. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 145-155. | |
dc.relation | Weir JT, Price M. 2011. Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology 20: 4550-4563. | |
dc.relation | Vargas-Arboleda AF, Cuadrado-Ríos S, Mantilla-Meluk H. 2020. Systematic considerations on two species of nectarivorous bats (Anoura caudifer and A. geoffroyi) based on barcoding sequences. Acta Biológica Colombiana 25(2): 194-201 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Los murciélagos de la Guayana Colombiana: estructura de comunidades y diversificación | |
dc.type | Otro | |