dc.contributor | Cortés Ramos, Henry Octavio | |
dc.contributor | Ealo Cuello, Joao | |
dc.contributor | Gnum Grupo de Modelado y Métodos Numericos en Ingeniería | |
dc.creator | Hernández Ramírez, Carlos Arturo | |
dc.date.accessioned | 2022-08-23T17:24:45Z | |
dc.date.accessioned | 2022-09-21T14:36:28Z | |
dc.date.available | 2022-08-23T17:24:45Z | |
dc.date.available | 2022-09-21T14:36:28Z | |
dc.date.created | 2022-08-23T17:24:45Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82032 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3369621 | |
dc.description.abstract | El ensayo de vibración en tierra (Ground Vibration Test, GVT) es uno de los procedimientos de ensayo más críticos para la certificación de una aeronave. Su correcta realización permite determinar distribuciones de rigidez, frecuencias naturales, formas modales y amortiguamiento estructural, por lo que sus resultados son especialmente importantes. Este trabajo se centra en el desarrollo de una metodología para la determinación de las propiedades dinámicas del ala de una aeronave a partir de métodos analíticos y experimentales. El desarrollo inicia con una recopilación bibliográfica de metodologías empleadas para el análisis de vibraciones en tierra. Posteriormente se describen los procedimientos empleados para el desarrollo de un ensayo de GVT sobre una aeronave categoría FAR 23 empleando dos casos de carga (0 % y 100 % de combustible). Finalmente se desarrollan dos modelos numéricos basados en el método de los elementos finitos para estimar la respuesta vibratoria de la estructura del ala de aeronave ensayada experimentalmente, el primero empleando elementos simplificados tipo viga Euler-Bernoulli y el segundo empleando elementos tipo cascaron por medio del software comercial ANSYS. Los modelos numéricos presentan buenas correlaciones con los experimentales en relación a las formas modales y sus correspondientes frecuencias naturales. (Texto tomado de la fuente) | |
dc.description.abstract | The Ground Vibration Test (GVT) is one of the most critical testing procedures for an aircraft certification. The proper execution allows the determination of stiffness distribution, natural frequencies, mode shapes and structural damping, according to that the GVT results are specially important. This document is focused on the development of a methodology for the vibration analysis of the wing of an aircraft based on analytical and experimental methods. The work starts with a bibliography compilation of methodologies used on ground vibration analysis. Subsequently the procedures used in the development of a GVT in a FAR 23 aircraft are described using two load cases (0 % and 100 % of fuel). Finally, two numerical models based on the finite element method are developed to estimate the vibration response of the aircraft wing experimentally tested. The first one, using simplified Euler-Bernoulli elements and the second one using Shell finite elements with the commercial software ANSYS. The numerical model results (mode shapes and natural frequencies) have a good relationship with experiments. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.publisher | Departamento de Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | [Ameri et al., 2012]Ameri, N., Grappasonni, C., Coppotelli, G., and Ewins, D. (2012).
Ground vibration tests of a helicopter structure using oma techniques. Mechanical Systems and Signal Processing. | |
dc.relation | [Avitabile, 2001]Avitabile, P. (2001). Experimental modal analysis a simple nonmathematical
presentation. S V Sound and Vibration, 35. | |
dc.relation | [Balakrishnan, 2012]Balakrishnan, A. V. (2012). Aeroelasticity - The Continuum Theory.
Springer Science Business Media, first edition. | |
dc.relation | [Bhat, 2016]Bhat, R. B. (2016). Principles of Aeroelasticity. CRC Press, first edition. | |
dc.relation | [Chierichetti et al., 2014]Chierichetti, M., Grappasonni, C., Coppotelli, G., and McColl, C.
(2014). A modal approach for dynamic response monitoring from experimental data.
Mechanical Systems and Signal Processing, 48:199–217. | |
dc.relation | [D. L. Linero, 2019]D. L. Linero, M. Estrada, D. G. (2019). Análisis estructural mediante
el método de los elementos finitos. | |
dc.relation | [Dowell, 2015]Dowell, E. H. (2015). A Modern Course in Aeroelasticity. Springer International
Publishing Switzerland, fifth edition. | |
dc.relation | [El-Kafafy et al., 2012]El-Kafafy, M., Guillaume, P., and Peeters, B. (2012). Modal parameter
estimation by combining stochastic and deterministic frequency-domain approaches.
Mechanical Systems and Signal Processing, 35:52–68. | |
dc.relation | [Ensan and Wickramasinghe, 2014]Ensan, M. N. and Wickramasinghe, V. K. (2014).
Methodology for ground and flight vibration testing of light aircraft. Can. Aeronaut.
Space J., 60:1–8. | |
dc.relation | [Ensan and Wickramasinghe, 2014]Ensan, M. N. and Wickramasinghe, V. K. (2014).
Methodology for ground and flight vibration testing of light aircraft. Can. Aeronaut.
Space J., 60:1–8. | |
dc.relation | [FAA, 2012]FAA, F. A. A. (2012). Subchapter c - aircraft part 23 - airworthiness standards:
Normal, utility, acrobatic, and commuter category airplanes subpart d - design and
construction sec. 23.629 - 1b — flutter. Title 14 - Aeronautics and Space Chapter I - FEDERAL
AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION. | |
dc.relation | [FAA, 2017]FAA, F. A. A. (2017). Subchapter c - aircraft part 23 - airworthiness standards:
Normal, utility, acrobatic, and commuter category airplanes subpart d - design and
construction sec. 23.2245 - aeroelasticity. Title 14 - Aeronautics and Space Chapter I - FEDERAL
AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION. | |
dc.relation | [Göge, 2003]Göge, D. (2003). Automatic updating of large aircraft models using experimental
data from ground vibration testing. Aerospace Science and Technology, 7:33–45. | |
dc.relation | [Harris and Bert, 1989]Harris, C. M. and Bert, C. W. (1989). Shock and vibration handbook
(3rd ed.). Journal of Applied Mechanics, 56. | |
dc.relation | [Kurniawan, 2013]Kurniawan, R. (2013). Numerical study of flutter of a two-dimensional
aeroelastic system. ISRN Mechanical Engineering. | |
dc.relation | [Martíınez and Vergara, 1990]Martíınez , M. M. and Vergara, O. H. R. (1990). Bases para
el desarrollo de un laboratorio de vibraciones para la Universidad Nacional de Colombia.
Universidad Nacional de Colombia, first edition. | |
dc.relation | [Middleton, 1960]Middleton, D. (1960). An introduction to statistical communication
theory. International Series in Pure and Applied Physics. | |
dc.relation | [Peeters et al., 2008]Peeters, B., Climent, H., de Diego, R., de Alba, J., Ahlquist, J. R.,
Carreño, J. M., Hendricx, W., Rega, A., García, G., and and Jan Debille, J. D. (2008).
Modern solutions for ground vibration testing of large aircraft. | |
dc.relation | [Rossi, 2017]Rossi, R. E. (2017). Introducción al análisis de vibraciones con elementos
finitos. | |
dc.relation | [Salehi and Ziaei-Rad, 2007]Salehi, M. and Ziaei-Rad, S. (2007). Ground vibration test
(gvt) and correlation analysis of an aircraft structure model. Iranian Journal of Science
and Technology, 31:65–80. | |
dc.relation | [SHAO and FANG, 2009]SHAO, C. and FANG, K. (2009). Study on vibration experiment
for aircraft structure under static loads. Aircraft Strength Research Institute, AVIC. | |
dc.relation | [Simes, 2015]Simes, N. M. (2015). Design of a ground vibration test certification system
for unmanned air vehicles. | |
dc.relation | [University, 2018]University, W. S. (2018). National center for advanced materials performance.
urlhttps://www.wichita.edu/research/NIAR/Research/ncamp.php. | |
dc.relation | [Collar, 1946]Collar, A. R. (1946). The expanding domain of aeroelasticity. The Journal of
the Royal Aeronautical Society, 50. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Metodología para el análisis de vibraciones del ala de una aeronave categoría FAR 23 | |
dc.type | Tesis | |