dc.contributorVinck Posada, Herbert
dc.contributorGrupo de Óptica e Información Cuántica
dc.creatorRamírez Muñoz, Jhon Edinson
dc.date.accessioned2021-02-12T18:21:54Z
dc.date.available2021-02-12T18:21:54Z
dc.date.created2021-02-12T18:21:54Z
dc.date.issued2020-08-01
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79224
dc.description.abstractThe insertion of motion into the quantum realm, on one hand, has opened the door to study fundamental non-classical physics with macroscopic objects, and, on the other hand, brings promising applications for the emerging field of quantum technologies. The two main paradigms to accomplish such intriguing properties in mechanical resonators are their coupling with light confined in cavities and with artificial atoms working as quantum bits (qubits). Both are framed within the quantum acoustics field. Accordingly, implementation of many proof-of-principle studies brought from the quantum optics led to outstanding achievements in the field during the last decade, not to mention that quantum acoustics has only just started to be catapulted as a preferred scenario to realise highly performant quantum networks by being integrated with already existing architectures. A step further, the combination of qubits, cavities and mechanical resonators in a single platform, brings so many unprecedented opportunities that nowadays it has become a very active research field known as hybrid optomechanics. In this thesis, several setups involving atoms, light and motion are studied from the theoretical point of view. The main goal of the thesis is to obtain widely desired attributes of quantum networks using mechanical resonators. Firstly, this thesis demonstrates that mechanical resonators, working as mediators between qubits and cavities, allow the emission of on-demand single photons. Secondly, the research proposes that mechanical resonators can work as resources for entangling separated light-matter or cQED (from cavity Quantum Electrodynamics) nodes in a quantum network. Finally, along with experiments carried out by researchers from the Quantum Nanomechanics group at Aalto University, this thesis presents a scheme to interface multiple modes of a microwave mechanical resonator by the use of a superconducting qubit. Particularly, the external modulation on the qubit frequency is proposed as a mechanism to switch on and off the qubit-mechanics interaction, which is accompanied by a protocol for quantum storage.
dc.description.abstractLa introducción de movimiento en el dominio cuántico, por un lado, ha abierto la puerta al estudio de física no-clásica fundamental con objetos macroscópicos, y por otro lado, trae aplicaciones prometedoras para el campo emergente de tecnologías cuánticas. Los dos principales paradigmas para lograr tales propiedades interesantes en resonadores mecánicos son su acople con luz confinada en cavidades y átomos artificiales funcionando como bits cuánticos (qubits). Ambos están enmarcados en la acústica cuántica. Por consiguiente, implementaciones de pruebas de concepto traídas de la óptica cuántica llevó a logros extraordinarios en el área durante la última década, sin mencionar que la acústica cuántica apenas ha empezado a catapultarse como un escenario predilecto para realizar redes cuánticas muy eficientes al ser integrada con las arquitecturas ya existentes. Un paso más allá, la combinación de qubits, cavidades y resonadores mecánicos en una sola plataforma, trae tantas oportunidades sin precedentes que actualmente ha llegado a ser un campo de investigación muy activo conocido como optomecánica híbrida. En esta tesis, varias configuraciones involucrando átomos, luz y movimiento son estudiadas desde el punto de vista teórico. El principal objetivo de la tesis es obtener atributos muy deseados en redes cuánticas usando resonadores mecánicos. En primer lugar, este tesis demuestra que los resonadores mecánicos, funcionando como mediadores entre qubits y cavidades, permiten la emisión de fotones individuales bajo demanda. En segundo lugar, la investigación aquí propone que los resonadores mecánicos pueden funcionar como recursos para entrelazar nodos luz-materia o cQED (del inglés cavity Quantum Electrodynamics) en una red cuántica. Finalmente, junto con experimentos llevados a cabo por investigadores del grupo Quantum Nanomechanics en la Universidad de Aalto, esta tesis presenta un esquema para interactuar multiples modos de un resonador mecánico de microondas mediante el uso de un qubit superconductor. En particular, la modulación externa de la frecuencia del qubit es propuesta como un mecanismo para prender y apagar la interacción entre el qubit y el resonador mecánico, lo cual está acompañado por un protocolo de almacenamiento cuántico.
dc.languageeng
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationG. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems”, Proceedings of the National Academy of Sciences 112, 3866 (2015), https://doi.org/10.1073/pnas.1419326112
dc.relationM. Weiß, and H. J. Krenner, “Interfacing quantum emitters with propagating surface acoustic waves”, Journal of Physics D: Applied Physics 51 (2018) 10.1088/1361-6463/aace3c, https://doi.org/ 10.1088/1361-6463/aace3c
dc.relationJ.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. a. Sillanpää, “Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator”, Nature 494, 211 (2013), https://doi.org/10.1038/nature11821
dc.relationS Kapfinger, T Reichert, J. J. Finley, A Wixforth, M Kaniber, and H. J. Krenner, “Surface acoustic wave regulated single photon emission from a coupled quantum dot– nanocavity system”, Applied Physics Letters 109, 1 (2016), http://dx.doi.org/10.1063/1.4959079
dc.relationB. Villa, A. J. Bennett, D. J. Ellis, J. P. Lee, J. Skiba-Szymanska, T. A. Mitchell, J. P. Griffiths, I. Farrer, D. A. Ritchie, C. J. Ford, and A. J. Shields, “Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity”, Applied Physics Letters 111, 1 (2017), http://dx.doi.org/10.1063/1.4990966
dc.relationJ.-M. Pirkkalainen, S. U. Cho, F Massel, J Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system”, Nature communications 6 (2015) 10.1038/ncomms7981, https:/ /doi.org/10.1038/ncomms7981
dc.relationA. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura, “Hybrid quantum systems with circuit quantum electrodynamics”, Nature Physics 16, 257 (2020), https://doi.org/10.1038/s41567-020-0797-9
dc.relationZ.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics 85, 623(31) (2013), https://doi.org/10.1103/RevModPhys.85.623
dc.relationY. Chu, and S. Gr¨oblacher, “A perspective on hybrid quantum opto- and electromechanical systems”, arXiv:2007.03360 (2020), http://arxiv.org/abs/2007.03360
dc.relationC. Dong, Y. Wang, and H. Wang, “Optomechanical interfaces for hybrid quantum networks”, National Science Review 2, 510 (2015), https://doi.org/10.1093/nsr/nwv048
dc.relationK. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom”, Physical Review Letters 103, 1 (2009), https://doi.org/10.1103/PhysRevLett.103.063005
dc.relationJ. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics”, Physical Review Letters 112, 1 (2014), https://doi.org/10.1103/PhysRevLett.112.013601
dc.relationB.-y. Zhou, and G.-x. Li, “Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum dot–cavity system”, Physical Review A 94, 1 (2016), https://doi.org/10.1103/PhysRevA.94.033809
dc.relationO. Kyriienko, T. C. H. Liew, and I. A. Shelykh, “Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability”, Physical Review Letters 112, 1 (2014), https://doi.org/10.1103/PhysRevLett.112.076402
dc.relationH. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas”, Physical Review A 78, 1 (2008), https://doi.org/10.1103/PhysRevA.78.013824
dc.relationT. Holz, R. Betzholz, and M. Bienert, “Suppression of Rabi oscillations in hybrid optomechanical systems”, Physical Review A 92, 1 (2015), https://doi.org/10.1103/PhysRevA.92.043822
dc.relationY. Han, J. Cheng, and L. Zhou, “Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium”, Journal of Physics B: Atomic, Molecular and Optical 44, 165505 (2011), https://doi.org/10.1088/0953- 4075/44/16/165505
dc.relationC. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system”, Scientific Reports 6, 1 (2016), http://dx.doi.org/10.1038/srep33404
dc.relationT. T. Heikkilä, F Massel, J Tuorila, R Khan, and M. A. Sillanpää, “Enhancing Optomechanical Coupling via the Josephson Effect”, Physical Review Letters 112, 1 (2014), https://doi.org/10 .1103/PhysRevLett.112.203603
dc.relationL. Neumeier, T. E. Northup, and D. E. Chang, “Reaching the optomechanical strong-coupling regime with a single atom in a cavity”, Physical Review A 97, 1 (2018), https://doi.org/10.1103/PhysRevA.97.063857
dc.relationX. Wang, W. Qin, A. Miranowicz, S. Savasta, and F. Nori, “Unconventional Cavity Optomechanics: Nonlinear Control of Phonons in the Acoustic Quantum Vacuum”, Physical Review A 100 (2019) 10.1103/PhysRevA.100.063827
dc.relationJ. E. Ramírez-Muñoz, J. P. Restrepo Cuartas, and H. Vinck-Posada, “Indirect strong coupling regime between a quantum emitter and a cavity mediated by a mechanical resonator”, Physics Letters A 382, 3109 (2018)
dc.relationK. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication”, Physical Review Letters 105, 1 (2010)
dc.relationC. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system”, Physical Review A 96, 1 (2017)
dc.relationH. Wang, X. Gu, Y.-x. Liu, A. Miranowicz, and F. Nori, “Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system”, Physical Review A 92, 1(2015)
dc.relationM. Cotrufo, A. Fiore, and E. Verhagen, “Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems”, Physical Review Letters 118, 1 (2017)
dc.relationM. Abdi, M. Pernpeintner, R. Gross, H. Huebl, and M. J. Hartmann, “Quantum state engineering with circuit electromechanical three-body interactions”, Physical Review Letters 114, 1 (2015)
dc.relationJ. Restrepo, I. Favero, and C. Ciuti, “Fully coupled hybrid cavity optomechanics: Quantum interferences and correlations”, Physical Review A 95, 1 (2017)
dc.relationM. Wang, X.-Y. L¨u, A. Miranowicz, T.-S. Yin, Y. Wu, and F. Nori, “Unconventional phonon blockade via atom photon-phonon interaction in hybrid optomechanical systems”, arXiv:1806.03754, 1 (2018)
dc.relationS. N. Huai, Y. L. Liu, Y. Zhang, and Y. X. Liu, “Mechanically modulated emission spectra and blockade of polaritons in a hybrid semiconductor-optomechanical system”, Physical Review A 98, 1 (2018),
dc.relationR. Blattmann, H. J. Krenner, S. Kohler, and P. H¨anggi, “Entanglement creation in a quantum-dot-nanocavity system by Fouriersynthesized acoustic pulses”, Physical Review A 89, 1 (2014)
dc.relationE. Afsaneh, M. B. Harouni, and M. Jafari, “Entanglement between distant atoms mediated by a hybrid quantum system consisting of superconducting flux qubit and resonators”, Journal of Physics B: Atomic, Molecular and Optical Physics 51 (2018)
dc.relationJ. E. Ramírez-Muñoz, J. P. R. Cuartas, and H. Vinck-Posada, “Quantum correlations between two cavity QED systems coupled by a mechanical resonator”, European Physical Journal B 91 (2018)
dc.relationM. Kervinen, J. E. Ramírez-Muñoz, A. Välimaa, and M. A. Sillanpää, “Landau-Zener-Stückelberg interference in a multimode electromechanical system in the quantum regime”, Physical Review Letters 123 (2019)
dc.relationM. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)
dc.relationD. Walls, and G. J. Milburn, Quantum Optics (Springer, Berlin, 2007)
dc.relationC. Gerry, and P. Knight, Introductory quantum optics (Cambridge University Press, New York, 2005)
dc.relationJ.-M. Gérard, and B. Gayral, “Semiconductor microcavities, quantum boxes and the Purcell effect”, in Confined photon systems, Vol. 531 (Springer, 2007)
dc.relationE. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Physical Review 69, 681 (1946)
dc.relationF. P. Laussy, and E. del Valle, “Regimes of strong light-matter coupling under incoherent excitation”, Physical Review A 84, 1 (2011), https://doi.org/10.1103/PhysRevA.84.043816
dc.relationD. I. Schuster, A. A. Houck, J. A. Schreier, A Wallraff, J. M. Gambetta, A Blais, L Frunzio, J Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Resolving photon number states in a superconducting circuit”, Nature 445, 515 (2007)
dc.relationS. Haroche, and D. Kleppner, “Cavity quantum electrodynamics”, Physics Today 42, 24 (1989)
dc.relationS. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary”, Reviews of Modern Physics 85, 1083 (2013)
dc.relationY. Arakawa, J. Finley, R. Gross, F. Laussy, E. Solano, and J. Vuckovic, “Focus on cavity and circuit quantum electrodynamics in solids”, New Journal of Physics 17, 1 (2015)
dc.relationJ. P. Reithmaier, G Sek, A Löffler, C Hofmann, S Kuhn, S Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system.”, Nature 432, 197 (2004)
dc.relationT Yoshie, A Scherer, J Hendrickson, G. Khitrova, H. M. Gibbs, G Rupper, C Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity”, Nature 432, 200 (2004)
dc.relationP. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures”, Reviews of Modern Physics 87 (2015)
dc.relationG. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A Scherer, “Vacuum Rabi splitting in semiconductors”, Nature Physics 2, 81 (2006)
dc.relationE. del Valle Reboul, “Quantum Electrodynamics with Quantum Dots in Microcavities”, PhD thesis (Universidad Autónoma de Madrid, 2009)
dc.relationA. Kavokin, J. J. Baumberg, F. P. Laussy, and G. Malpuech, Microcavities, Second (Oxford University Press, 2017)
dc.relationA. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation”, Physical Review A 69, 1 (2004)
dc.relationA Wallraff, D. I. Schuster, A Blais, L Frunzio, R.-S. Huang, J Majer, S Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162 (2004)
dc.relationX. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits”, Physics Reports 718-719, 1 (2017)
dc.relationJ. Q. You, and F. Nori, “Atomic physics and quantum optics using superconducting circuits”, Nature 474, 589 (2011)
dc.relationJ. Q. You, and F. Nori, “Superconducting Circuits and Quantum Information”, Physics Today 58, 42 (2005)
dc.relationM. H. Devoret, and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook”, Science 339, 1169 (2013)
dc.relationJ. Clarke, and F. K. Wilhelm, “Superconducting quantum bits”, Nature 453, 1031 (2008)
dc.relationA. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter”, Nature Reviews Physics 1 (2019)
dc.relationR. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)
dc.relationP. Alsing, D. S. Guo, and H. J. Carmichael, “Dynamic Stark effect for the Jaynes-Cummings system”, Physical Review A 45, 5135 (1992)
dc.relationL. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, “Nonlinear response of the vacuum Rabi resonance”, Nature Physics 5, 105 (2009)
dc.relationJ. M. Fink, M. G¨oppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the Jaynes-Cummings ladder and observing its n nonlinearity in a cavity QED system”, Nature 454, 315 (2008)
dc.relationJ Kasprzak, S Reitzenstein, E. a. Muljarov, C Kistner, C Schneider, M Strauss, S H¨ofling, A Forchel, and W Langbein, “Up on the JaynesCummings ladder of a quantum-dot/microcavity system”, Nature materials 9, 304 (2010)
dc.relationM. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)
dc.relationC. Monroe, “Quantum information processing with atoms and photons”, Nature 416, 238 (2002)
dc.relationH. J. Kimble, “The quantum internet”, Nature 453, 1023 (2008)
dc.relationF Petruccione, and H. Breuer, The Theory of Open Quantum Systems (Oxford University Press, 2002)
dc.relationC. Gardiner, Quantum Noise (Springer-Verlag Berlin Heidelberg, 1991)
dc.relationN. Ishida, T. Byrnes, F. Nori, and Y. Yamamoto, “Photoluminescence of a microcavity quantum dot system in the quantum strong coupling regime”, Scientific reports 3 (2013)
dc.relationJ. I. Perea, D. Porras, and C. Tejedor, “Dynamics of the excitations of a quantum dot in a microcavity”, Physical Review B 70, 1 (2004)
dc.relationR. J. Glauber, “Nobel lecture: One hundred years of light quanta”, Reviews of Modern Physics 78, 1267 (2006)
dc.relationE. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy, and E. del Valle, “Conventional and Unconventional Photon Statistics”, Laser and Photonics Reviews 14 (2020)
dc.relationM. A. Lemonde, N. Didier, and A. A. Clerk, “Antibunching and unconventional photon blockade with Gaussian squeezed states”, Physical Review A 90, 1 (2014),
dc.relationK. M. Birnbaum, A. Boca, R. Miller, a. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom”, Nature 436, 87 (2005)
dc.relationA. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade”, Nature Physics 4, 859 (2008)
dc.relationA. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Treci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit”, Physical Review Letters 107, 1 (2011)
dc.relationC. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, a. a. Abdumalikov, M. Baur, S. Filipp, M. P. Da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements”, Physical Review Letters 106, 1 (2011)
dc.relationH. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. Van Exter, D. Bouwmeester, and W. Löffler, “Observation of the Unconventional Photon Blockade”, Physical Review Letters 121, 1 (2018)
dc.relationJ. Tang, W. Geng, and X. Xu, “Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot Cavity System”, Scientific Reports 5 (2015)
dc.relationC. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the Unconventional Photon Blockade in the Microwave Domain”, Physical Review Letters 121, 1 (2018)
dc.relationT. C. H. Liew, and V. Savona, “Single photons from coupled quantum modes”, Physical Review Letters 104, 1 (2010)
dc.relationM. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules”, Physical Review A 83, 1 (2011)
dc.relationB. Lounis, and M. Orrit, “Single-photon sources”, Reports on Progress in Physics 68, 1129 (2005)
dc.relationM. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors”, Review of Scientific Instruments 82 (2011)
dc.relationR. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement”, Reviews of Modern Physics 81 (2009)
dc.relationJ. M. Raimond, M. Brune, and S. Haroche, “Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity”, Reviews of Modern Physics 73, 565 (2001)
dc.relationB. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, “Deterministic creation of entangled atom-light Schrödinger cat states”, Nature Photonics 13, 110 (2019)
dc.relationA. Peres, “Separability criterion for density matrices”, Physical Review Letters 77, 1413 (1996)
dc.relationD. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez, and D. Ballarini, “Entanglement properties of quantum polaritons”, Physical Review B 93, 1 (2016)
dc.relationC. A. Vera, N. Quesada, H. Vinck-Posada, and B. A. Rodríguez, “Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system”, Journal of Physics: Condensed Matter 21 (2009)
dc.relationK. C. Schwab, and M. L. Roukes, “Putting mechanics into quantum mechanics”, Physics Today 58, 36 (2005)
dc.relationM. Poot, and H. S.J.V. D. Zant, “Mechanical systems in the quantum regime”, Physics Reports 511, 273 (2012)
dc.relationW. Bowen, and G. Milburn, Quantum Optomechanics (CRC Press, 2016)
dc.relationM. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics”, Physics Today 65, 29 (2012)
dc.relationM Aspelmeyer, T. J. Kippenberg, and F Marquard, “Cavity optomechanics”, Reviews of Modern Physics 86, 1391(62) (2014)
dc.relationI. Favero, and K. Karrai, “Optomechanics of deformable optical cavities”, Nature Photonics 3, 201 (2009)
dc.relationC. A. Regal, and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics”, Journal of Physics: Conference Series 264 (2011)
dc.relationY. L. Liu, C. Wang, J. Zhang, and Y. X. Liu, “Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling”, Chinese Physics B 27, 1 (2018)
dc.relationC. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation”, Physical Review A 51, 2537 (1995)
dc.relationM. Aspelmeyer, J. Chan, T. P. M. Alegre, A. H. Safavi-naeini, J. T. Hill, A. Krause, and S. Gro, “Laser cooling of a nanomechanical oscillator into its quantum ground state”, Nature 478, 89 (2011)
dc.relationT. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator”, Nature 495, 210 (2013)
dc.relationL. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator”, Physical Review Letters 105, 1 (2010)
dc.relationE Verhagen, S Del´eglise, S Weis, A Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode”, Nature 482, 63 (2012)
dc.relationA Fainstein, B Jusserand, and B Perrin, “Strong Optical-Mechanical Coupling in a Vertical GaAs/AlAs Microcavity for Subterahertz Phonons and Near-Infrared Light”, Physical Review Letters 110, 1 (2013)
dc.relationE Gavartin, R Braive, I Sagnes, O Arcizet, A Beveratos, T. J. Kippenberg, and I Robert-Philip, “Optomechanical Coupling in a TwoDimensional Photonic Crystal Defect Cavity”, Physical Review Letters 106, 1 (2011)
dc.relationM. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals”, Nature 462, 78 (2009)
dc.relationY. Pennec, V. Laude, N. Papanikolaou, B. Djafari-rouhani, M. Oudich, S. E. Jallal, J. C. Beugnot, and J. M. Escalante, “Modeling light-sound interaction in nanoscale cavities and waveguides”, Nanophotonics 3, 413 (2014)
dc.relationD. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons”, Nature Photonics 5, 605 (2011)
dc.relationS. Kapfinger, T. Reichert, S. Lichtmannecker, K. Mu, J. J. Finley, A. Wixforth, M. Kaniber, and H. J. Krenner, “Dynamic acousto-optic control of a strongly coupled photonic molecule”, Nature communications 6 (2015)
dc.relationS. Gr¨oblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field”, Nature 460, 724 (2009)
dc.relationJ. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime”, Nature 471, 204 (2011)
dc.relationJ. D. Thompson, B. M. Zwickl, a. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.”, Nature 452, 72 (2008)
dc.relationJ.-Q. Liao, and F. Nori, “Photon blockade in quadratically coupled optomechanical systems”, Physical Review A 88, 1 (2013)
dc.relationK. Sala, and T. Tufarelli, “Exploring corrections to the Optomechanical Hamiltonian”, Scientific Reports 8, 1 (2018)
dc.relationV. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, “Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings”, Physical Review X 8 (2018)
dc.relationE. Jansen, J. D. Machado, and Y. M. Blanter, “Realization of a degenerate parametric oscillator in electromechanical systems”, Physical Review B 99, 1 (2019)
dc.relationM. Sanz, W. Wieczorek, S. Gr¨oblacher, and E. Solano, “Electromechanical Casimir effect”, Quantum 2, 91 (2018)
dc.relationA. B. Shkarin, A. D. Kashkanova, C. D. Brown, S. Garcia, K. Ott, J. Reichel, and J. G. E. Harris, “Quantum optomechanics in a liquid”, Physical Review Letters 122 (2019)
dc.relationP. Kharel, G. I. Harris, E. A. Kittlaus, W. H. Renninger, N. T. Otterstrom, J. G. E. Harris, and P. T. Rakich, “High frequency cavity optomechanics using bulk acoustic phonons”, Science Advances 5, 1 (2019)
dc.relationP. Kharel, Y. Chu, E. A. Kittlaus, N. T. Otterstrom, S. Gertler, and P. T. Rakich, “Multimode strong coupling in cavity optomechanics”, arXiv:1812.06202v2 (2019)
dc.relationX. Han, C. L. Zou, and H. X. Tang, “Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics”, Physical Review Letters 117, 1 (2016)
dc.relationC. L. Zou, X. Han, L. Jiang, and H. X. Tang, “Cavity piezo-mechanical strong coupling and frequency conversion on an aluminum nitride chip”, Physical Review A 94, 1 (2016)
dc.relationL. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems”, Nature Nanotechnology 13, 11 (2018)
dc.relationC. Zhong, Z. Wang, C. Zou, M. Zhang, X. Han, W. Fu, M. Xu, S. Shankar, M. H. Devoret, H. X. Tang, and L. Jiang, “Proposal for Heralded Generation and Detection of Entangled Microwave–OpticalPhoton Pairs”, Physical Review Letters 124 (2020)
dc.relationJ. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons”, Nature Physics 9, 712 (2013)
dc.relationC. Ockeloen-Korppi, E. Damsk¨agg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F Massel, M. J. Woolley, and M. A. Sillanp¨a¨a, “Stabilized entanglement of massive mechanical oscillators”, Nature 556, 478 (2018)
dc.relationI. Marinkovic, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical Bell test”, Physical Review Letters 121, 1 (2018)
dc.relationG. Luo, Z.-z. Zhang, G.-w. Deng, H.-O. Li, G. Cao, M. Xiao, G.- C. Guo, L. Tian, and G.-P. Guo, “Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity”, Nature Communications 9 (2018)
dc.relationO. Di Stefano, V. Macr`ı, A. Ridolfo, R. Stassi, A. F. Kockum, S. Savasta, and F. Nori, “Interaction of Mechanical Oscillators Mediated by the Exchange of Virtual Photon Pairs”, Physical Review Letters 122, 1 (2019)
dc.relationP. Rabl, “Photon blockade effect in optomechanical systems”, Physical Review Letters 107, 1 (2011)
dc.relationA. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics”, Physical Review Letters 107, 1 (2011)
dc.relationM. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification”, Nature Communications 7 (2016)
dc.relationV. Savona, “Unconventional photon blockade in coupled optomechanical systems”, arXiv:1302.5937v2 (2013)
dc.relationV. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator”, Physical Review Letters 107, 1 (2011)
dc.relationJ. Li, W. Bin, and K. D. Zhu, “All-Optically controlled quantum memory for light with a cavity-optomechanical system”, Entropy 15, 434 (2013)
dc.relationA. D. O’Connell, M Hofheinz, M Ansmann, R. C. Bialczak, M Lenander, E. Lucero, M Neeley, D Sank, H Wang, M Weides, J Wenner, J. M. Martinis, and a. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator”, Nature 464, 697
dc.relationY. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Quantum acoustics with superconducting qubits”, Science 358, 199 (2017)
dc.relationJ. J. Viennot, X Ma, and K. W. Lehnert, “Phonon-Number-Sensitive Electromechanics”, Physical Review Letters 121, 1 (2018)
dc.relationR. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, “Circuit quantum acoustodynamics with surface acoustic waves”, Nature Communications 8, 1 (2017)
dc.relationI Yeo, P.-L. de Assis, A Gloppe, E Dupont-Ferrier, P Verlot, N. S. Malik, E Dupuy, J Claudon, J.-M. Gérard, A Auffèves, G Nogues, S Seidelin, J.-p. Poizat, O Arcizet, and M Richard, “Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system”, Nature Nanotechnology 9, 106 (2014)
dc.relationJ. C. Chen, Y. Sato, R. Kosaka, M. Hashisaka, K. Muraki, and T. Fujisawa, “Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity”, Scientific Reports 5, 1 (2015)
dc.relationA. N. Cleland, and M. R. Geller, “Superconducting Qubit Storage and Entanglement with Nanomechanical Resonators”, Physical Review Letters 93, 1 (2004)
dc.relationY. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator”, Nature 563, 660 (2018)
dc.relationM. Kervinen, A. Välimaa, J. E. Ramírez-Muñoz, and M. A. Sillanpää, “Sideband control of a multimode quantum bulk acoustic system”, arXiv:2006.05446, 1 (2020)
dc.relationM. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom - supplementary materials”, Science 346, 207 (2014)
dc.relationB. A. Moores, L. R. Sletten, J. J. Viennot, and K. W. Lehnert, “Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime”, Physical Review Letters 120, 1 (2018)
dc.relationL. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit”, Physical Review X 9 (2019)
dc.relationP. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator”, Nature 571, 537 (2019)
dc.relationJ.-M. Pirkkalainen, “Mechanical Resonators Coupled to Superconducting Circuits”, PhD thesis (Aalto University, 2014)
dc.relationI Wilson-Rae, P Zoller, and A Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state”, Physical review letters 92, 1 (2004)
dc.relationM. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, and J. Lawall, “Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves”, Physical Review Letters 105, 1 (2010)
dc.relationN. Nauman, “Solid-state-based analog of optomechanics”, Journal of the Optical Society of America B 33, 1492 (2016)
dc.relationJ.-j. Li, and K.-d. Zhu, “Nanometer optomechanical transistor based on nanometer cavity optomechanics with a single quantum dot”, Journal of Applied Physics 110 (2011)
dc.relationP. Rabl, P. Cappellaro, M. V. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, “Strong magnetic coupling between an electronic spin qubit and a mechanical resonator”, Physical Review B 79, 1 (2009)
dc.relationS. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. Harris, and M. D. Lukin, “Coherent sensing of a mechanical resonator with a single-spin qubit”, Science 335, 1603 (2012)
dc.relationK. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze, and A. C. Bleszynski Jayich, “Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond”, Physical Review Applied 6, 1 (2016)
dc.relationC. Sánchez Muñoz, A. Lara, J. Puebla, and F. Nori, “Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions”, Physical Review Letters 121, 1 (2018)
dc.relationO Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon”, Physical Review Letters 107, 1 (2011)
dc.relationM. J. Schuetz, E. M. Kessler, G. Giedke, L. M. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves”, Physical Review X 5, 1 (2015)
dc.relationM. Pechal, P. Arrangoiz-arriola, and A. H. Safavi-naeini, “Superconducting circuit quantum computing with nanomechanical resonators as storage”, Quantum Science and Technology 4 (2019)
dc.relationA. Bienfait, K. J. Satzinger, Y. P. Zhong, H. S. Chang, M. H. Chou, C. R. Conner, E. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, and A. N. Cleland, “Phonon-mediated quantum state transfer and remote qubit entanglement”, Science 364, 368 (2019)
dc.relationC. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode”, Science 338, 1609 (2013)
dc.relationJ. Li, M. P. Silveri, K. S. Kumar, J. M. Pirkkalainen, A. Vepsäläinen, W. C. Chien, J. Tuorila, M. A. Sillanpää, P. J. Hakonen, E. V. Thuneberg, and G. S. Paraoanu, “Motional Averaging in a Superconducting Qubit”, Nature Communications 4, 1 (2013)
dc.relationS. N. Shevchenko, S. Ashhab, and F. Nori, “Landau-Zener-St¨uckelberg interferometry”, Physics Reports 492, 1 (2010)
dc.relationM. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, “Continuous-time monitoring of Landau-Zener interference in a cooper-pair box”, Physical Review Letters 96, 1 (2006)
dc.relationW. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, “Mach-Zehnder interferometry in a strongly driven superconducting qubit”, Science 310, 1653 (2005)
dc.relationS. N. Shevchenko, A. S. Kiyko, A. N. Omelyanchouk, and W Krech, “Dynamic behavior of Josephson-junction qubits : crossover between Rabi oscillations and Landau – Zener transitions”, Low Temperature Physics 31 (2005)
dc.relationM. P. Silveri, K. S. Kumar, J. Tuorila, J. Li, A. Vepsäläinen, E. V. Thuneberg, and G. S. Paraoanu, “St¨uckelberg interference in a superconducting qubit under periodic latching modulation”, New Journal of Physics 17, 2 (2015)
dc.relationR. K. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. C. McKay, J. Koch, and D. I. Schuster, “Random access quantum information processors using multimode circuit quantum electrodynamics”, Nature Communications 8, 1 (2017)
dc.relationC. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M. Girvin, and L. Jiang, “Hardware-Efficient Quantum Random Access Memory with hybrid Quantum Acoustic Systems”, Physical Review Letters 123, 1 (2019)
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleHybrid Optomechanics: an interface for qubits, cavities, and mechanical resonators
dc.typeOtro


Este ítem pertenece a la siguiente institución