dc.contributorVarón Durán, Gloria Margarita
dc.contributorRissons, Angélique
dc.contributorDestic, Fabien
dc.contributorInstitut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO
dc.contributorGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)
dc.creatorMuñoz Arcos, Christian Daniel
dc.date.accessioned2020-07-15T15:01:18Z
dc.date.available2020-07-15T15:01:18Z
dc.date.created2020-07-15T15:01:18Z
dc.date.issued2020-06-26
dc.identifierC.D. Munoz, Optical Microwave Signal Generation for Data Transmission in Optical Networks. PhD thesis, Universidad Nacional de Colombia and Institut Superieur de l’Aeronautique et de l’Espace ISAE-SUPAERO, 2020.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77771
dc.description.abstractThe massive growth of telecommunication services and the increasing global data traffic boost the development, implementation, and integration of different networks for data transmission. An example of this development is the optical fiber networks, responsible today for the inter-continental connection through long-distance links and high transfer rates. The optical networks, as well as the networks supported by other transmission media, use electrical signals at specific frequencies for the synchronization of the network elements. The quality of these signals is usually determined in terms of phase noise. Due to the major impact of the phase noise over the system performance, its value should be minimized. The research work presented in this document describes the design and implementation of an optoelectronic system for the microwave signal generation using a vertical-cavity surface-emitting laser (VCSEL) and its integration into an optical data transmission system. Considering that the proposed system incorporates a directly modulated VCSEL, a theoretical and experimental characterization was developed based on the laser rate equations, dynamic and static measurements, and an equivalent electrical model of the active region. This procedure made possible the extraction of some VCSEL intrinsic parameters, as well as the validation and simulation of the VCSEL performance under specific modulation conditions. The VCSEL emits in C-band, this wavelength was selected because it is used in long-haul links. The proposed system is a self-initiated oscillation system caused by internal noise sources, which includes a VCSEL modulated in large signal to generate optical pulses (gain switching). The optical pulses, and the optical frequency comb associated, generate in electrical domain simultaneously a fundamental frequency (determined by a band-pass filter) and several harmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8 dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture. Both the jitter and optical pulse width were determined when different resonant cavities and polarization currents were employed. The lowest pulse duration was 85 ps and was achieved when the fundamental frequency was 2.5 GHz. As for the optical frequency comb, it was demonstrated that its flatness depends on the electrical modulation conditions. The flattest profiles are obtained when the fundamental frequency is higher than the VCSEL relaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter. The electrical signal provides the synchronization of the data generating equipment, whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52 Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated that the fundamental frequency and harmonics could be extracted from the optical data signal transmitted by a band-pass filter. It was also experimentally proved that the pulsed return-to-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than $10^{-9}$ when the optical power at the receiver is higher than -33 dBm.
dc.description.abstractLa masificación de los servicios de telecomunicaciones y el creciente tráfico global de datos han impulsado el desarrollo, despliegue e integración de diferentes redes para la transmisión de datos. Un ejemplo de este despliegue son las redes de fibra óptica, responsables en la actualidad de la interconexión de los continentes a través de enlaces de grandes longitudes y altas tasas de transferencia. Las redes ópticas, al igual que las redes soportadas por otros medios de transmisión, utilizan señales eléctricas a frecuencias específicas para la sincronización de los elementos de red. La calidad de estas señales es determinante en el desempeño general del sistema, razón por la que su ruido de fase debe ser lo más pequeño posible. El trabajo de investigación presentado en este documento describe el diseño e implementación de un sistema optoelectrónico para la generación de señales microondas utilizando diodos láser de cavidad vertical (VCSEL) y su integración en un sistema de transmisión de datos óptico. Teniendo en cuenta que el sistema propuesto incorpora un láser VCSEL modulado directamente, se desarrolló una caracterización teórico-experimental basada en las ecuaciones de evolución del láser, mediciones dinámicas y estáticas, y un modelo eléctrico equivalente de la región activa. Este procedimiento posibilitó la extracción de algunos parámetros intrínsecos del VCSEL, al igual que la validación y simulación de su desempeño bajo diferentes condiciones de modulación. El VCSEL utilizado emite en banda C y fue seleccionado considerando que esta banda es comúnmente utilizada en enlaces de largo alcance. El sistema propuesto consiste en un lazo cerrado que inicia la oscilación gracias a las fuentes de ruido de los componentes y modula el VCSEL en gran señal para generar pulsos ópticos (conmutación de ganancia). Estos pulsos ópticos, que en el dominio de la frecuencia corresponden a un peine de frecuencia óptico, son detectados para generar simultáneamente una frecuencia fundamental (determinada por un filtro pasa banda) y varios armónicos. El ruido de fase medido a 10 kHz de la portadora a 1.25 GHz fue -127.8 dBc/Hz, y es el valor más bajo reportado en la literatura para esta frecuencia y arquitectura. Tanto la fluctuación de fase (jitter) y el ancho de los pulsos ópticos fueron determinados cuando diferentes cavidades resonantes y corrientes de polarización fueron empleadas. La duración de pulso más baja fue 85 ps y se obtuvo cuando la frecuencia fundamental del sistema era 2.5 GHz. En cuanto al peine de frecuencia óptico, se demostró que su planitud (flatness) depende de las condiciones eléctricas de modulación y que los perfiles más planos se obtienen cuando la frecuencia fundamental es superior a la frecuencia de relajación del VCSEL. Tanto la salida eléctrica como la salida óptica del sistema fueron integradas en un transmisor óptico. La señal eléctrica permite la sincronización de los equipos encargados de generar los datos, mientras que los pulsos ópticos son utilizados como portadora óptica. La transmisión de datos a 155.52 Mb/s, 622.08 Mb/s y 1.25 Gb/s fue validada experimentalmente. Se demostró que la frecuencia fundamental y los armónicos pueden ser extraídos de la señal óptica de datos transmitida mediante un filtro pasa banda. También se comprobó experimentalmente que el transmisor de datos pulsados con retorno a cero (RZ) a 1.25 Gb/s, logra tasas de error de bit (BER) menores a 10-9 cuando la potencia óptica en el receptor es mayor a -33 dBm.
dc.languageeng
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationR. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid Integrated Optical Phase-Lock Loops for Photonic Terahertz Sources,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 210– 217, jan 2011.
dc.relationE. Rubiola, Phase Noise and Frequency Stability in Oscillators. The Cambridge RF and Microwave Engineering Series, Cambridge: Cambridge University Press, 2008.
dc.relationN. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise: A Circuits and Systems Perspective. Cambridge: Cambridge University Press, 2018.
dc.relationY. Teng, Y. Chen, B. Zhang, J. Li, L. Lu, Y. Zhu, and P. Zhang, “Generation of Low Phase-Noise Frequency-Sextupled Signals Based on Multimode Optoelectronic Oscillator and Cascaded Mach-Zehnder Modulators,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–8, 2016.
dc.relationM. Park, O. Kwon, W. Han, K. Lee, S. Park, and B. Yoo, “All-epitaxial InAlGaAs- InP VCSELs in the 1.3-1.6-μm wavelength range for CWDM band applications,” IEEE Photonics Technology Letters, vol. 18, no. 16, pp. 1717–1719, 2006.
dc.relationH. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-Based LiFi Transmission with Two-Stage Injection-Locked Technique,” IEEE Photonics Journal, vol. 9, no. 1, pp. 1–8, 2017.
dc.relationR. S. Tucker and D. J. Pope, “Microwave Circuit Models of Semiconductor Injection Lasers,” IEEE Transactions on Microwave Theory and Techniques, vol. 31, pp. 289– 294, mar 1983.
dc.relationA. Bacou, Caractérisation et modélisation optoélectronique de VCSELs `a grande longueur d’onde pour sous-ensembles optiques intégrés. PhD thesis, Université de Toulouse, 2008.
dc.relationD. Derickson, Fiber Optic Test and Measurement. Hewlett-Packard professional books, Prentice Hall PTR, 1998.
dc.relationK. Gheen, “Phase Noise Measurements Methods and Techniques,” Tech. Rep. Application Note, Agilent Technologies, 2012.
dc.relation“3GPP TS 38.101-2: NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone.”
dc.relationT. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi- Fi [Invited Paper],” IEEE Communications Magazine, vol. 52, no. 12, pp. 132–141, 2014.
dc.relationD. J¨ager, “Traveling-wave optoelectronic devices for microwave and optical applications,” in Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), p. 327, 1991.
dc.relationA. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Optics Communications, vol. 37, no. 3, pp. 169–174, 1981.
dc.relationM. Var´on Dur´an, A. Le Kernec, and J.-C. Mollier, “Opto-microwave source using a harmonic frequency generator driven by a VCSEL-based ring oscillator,” in Proceedings of the European Microwave Association, vol. 3, pp. 248–253, EUMA European Microwave Association, 2007.
dc.relationA. Hayat, M. Var´on, A. Bacou, A. Rissons, and J. C. Mollier, “2.49 GHz low phasenoise optoelectronic oscillator using 1.55μm VCSEL for avionics and aerospace applications,” in 2008 IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, (Gold Coast, Qld, Australia), pp. 98–101, 2008.
dc.relationK. Y. Lau, “Gain switching of semiconductor injection lasers,” Applied Physics Letters, vol. 52, no. 4, pp. 257–259, 1988.
dc.relationC. H. Lee, Microwave Photonics, Second Edition. Taylor & Francis, 2013.
dc.relationA. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol., vol. 24, no. 12, pp. 4628–4641, 2006.
dc.relationJ. Yao, “A Tutorial on Microwave Photonics,” Photonics Society Newsletter, vol. 26, no. 3, pp. 4–12, 2012.
dc.relationJ. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, vol. 1, no. 6, pp. 319–330, 2007.
dc.relationS. Iezekiel, Microwave Photonics: Devices and Applications. Wiley - IEEE, John Wiley & Sons, 2009.
dc.relationA. Wootten and A. R. Thompson, “The Atacama Large Millimeter/Submillimeter Array,” Proceedings of the IEEE, vol. 97, no. 8, pp. 1463–1471, 2009.
dc.relationP. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, “The Square Kilometre Array,” Proceedings of the IEEE, vol. 97, no. 8, pp. 1482–1496, 2009.
dc.relationK. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. Shaw, “Optical fiber delay-line signal processing,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-33, no. 3, pp. 193–210, 1985.
dc.relationX. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, “Optoelectronic oscillators (OEOs) to sensing, measurement, and detection,” IEEE Journal of Quantum Electronics, vol. 52, no. 1, pp. 1–16, 2016.
dc.relationU. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional Fiber- Optic Microwave Links Based on Remote Heterodyne Detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 5, pp. 458–468, 1998.
dc.relationG. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. B´elisle, “Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator,” J. Lightwave Technol., vol. 23, no. 9, pp. 2687–2695, 2005.
dc.relationS. Pan and J. Yao, “Tunable Subterahertz Wave Generation Based on Photonic Frequency Sextupling Using a Polarization Modulator and a Wavelength-Fixed Notch Filter,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1967–1975, 2010.
dc.relationH. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High Extinction Ratio Mach Zehnder Modulator Applied to a Highly Stable Optical Signal Generator,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1964–1972, 2007.
dc.relationL. R. Hofer, D. B. Schaeffer, C. G. Constantin, and C. Niemann, “Bias Voltage Control in Pulsed Applications for Mach Zehnder Electrooptic Intensity Modulators,” IEEE Transactions on Control Systems Technology, vol. 25, no. 5, pp. 1890–1895, 2017.
dc.relationJ. Snoddy, Y. Li, F. Ravet, and X. Bao, “Stabilization of electro-optic modulator bias voltage drift using a lock-in amplifier and a proportional-integral-derivative controller in a distributed Brillouin sensor system,” Appl. Opt., vol. 46, pp. 1482–1485, mar 2007.
dc.relationK. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically Integrated Optical Phase Lock Loop for Microwave Photonics,” Journal of Lightwave Technology, vol. 32, pp. 3893–3900, oct 2014.
dc.relationL. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave Signal Generation with Injection-Locked Laser-Diodes,” Electronics Letters, vol. 19, no. 13, pp. 491– 493, 1983.
dc.relationL. A. Johansson and A. J. Seeds, “Generation and Transmission of Millimeter-Wave Data-Modulated Optical Signals Using an Optical Injection Phase-Lock Loop,” J. Lightwave Technol., vol. 21, no. 2, p. 511, 2003.
dc.relationC. Mu˜noz, J. Coronel, J. Chamorro, A. Rissons, and M. Var´on, “Microwave signal generation with optical injection locking,” in Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016.
dc.relationR. Zhou, T. Shao, M. D. Gutierrez Pascual, F. Smyth, and L. P. Barry, “Injection Locked Wavelength De-Multiplexer for Optical Comb-Based Nyquist WDM System,” IEEE Photonics Technology Letters, vol. 27, no. 24, pp. 2595–2598, 2015.
dc.relationC.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, H.-Y. Chen, M. Xu, G.-K. Chang, and G.-R. Lin, “Millimeter-Wave Carrier Embedded Dual-Color Laser Diode for 5G MMW oF Link,” J. Lightwave Technol., vol. 35, no. 12, pp. 2409–2420, 2017.
dc.relationX. Li, Body Matched Antennas for Microwave Medical Applications. PhD thesis, Karlsruher Institut f¨ur Technologie KIT, 2013.
dc.relationC. Li, M. R. Tofighi, D. Schreurs, and T.-S. J. Horng, Principles and Applications of RF/Microwave in Healthcare and Biosensing. Elsevier Science, 2016.
dc.relationY. Liu, C. Hu, Y. Dong, B. Xu, W. Zhan, and C. Sun, “Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms,” Remote Sensing of Environment, vol. 222, pp. 244–266, 2019.
dc.relationJ. A. Nanzer, Microwave and Millimeter-wave Remote Sensing for Security Applications. Artech House, 2012.
dc.relationT. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-Wave and Terahertz-Wave Applications Enabled by Photonics,” IEEE Journal of Quantum Electronics, vol. 52, pp. 1–12, jan 2016.
dc.relationJ. Yao, “Microwave photonics for 5G,” in Broadband Access Communication Technologies XIII, vol. 10945, pp. 8–16, 2019.
dc.relationT. Berceli and P. R. Herczfeld, “Microwave Photonics - A Historical Perspective,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, pp. 2992–3000, nov 2010.
dc.relationX. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” Photon. Res., vol. 6, no. 5, pp. B30–B36, 2018.
dc.relationP. Zheng, C. Wang, X. Xu, J. Li, D. Lin, G. Hu, R. Zhang, B. Yun, and Y. Cui, “A Seven Bit Silicon Optical True Time Delay Line for Ka-Band Phased Array Antenna,” IEEE Photonics Journal, vol. 11, no. 4, pp. 1–9, 2019.
dc.relationZ. Tang, F. Zhang, and S. Pan, “60-GHz RoF System for Dispersion-Free Transmission of HD and Multi-Band 16QAM,” IEEE Photonics Technology Letters, vol. 30, no. 14, pp. 1305–1308, 2018.
dc.relationY. Tian, K. Lee, C. Lim, and A. Nirmalathas, “60 GHz Analog Radio-Over-Fiber Fronthaul Investigations,” Journal of Lightwave Technology, vol. 35, pp. 4304–4310, oct 2017.
dc.relationY.-H. Hung, J.-H. Yan, K.-M. Feng, and S.-K. Hwang, “Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection,” Opt. Lett., vol. 42, no. 12, pp. 2402–2405, 2017.
dc.relationY. Tong, C. Chow, G. Chen, C. Peng, C. Yeh, and H. K. Tsang, “Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems,” IEEE Photonics Journal, vol. 11, no. 2, pp. 1–8, 2019.
dc.relationY.-C. Chi and G.-R. Lin, “Optoelectronic Oscillators,” in Wiley Encyclopedia of Electrical and Electronics Engineering (J. Webster, ed.), pp. 1–12, 2016.
dc.relationP. Devgan, “A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,” ISRN Electronics, vol. 2013, pp. 1–16, 2013.
dc.relationT. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. K¨uppers, “Optical clock recovery methods: Review (Invited),” Optical Fiber Technology, vol. 15, no. 4, pp. 363–372, 2009.
dc.relationH. Tsuchida, “Simultaneous Prescaled Clock Recovery and Serial-to-Parallel Conversion of Data Signals Using a Polarization Modulator-Based Optoelectronic Oscillator,” Journal of Lightwave Technology, vol. 27, no. 17, pp. 3777–3782, 2009.
dc.relationH. Tsuchida, “Subharmonic Optoelectronic Oscillator,” IEEE Photonics Technology Letters, vol. 20, no. 17, pp. 1509–1511, 2008.
dc.relationS. Pan and J. Yao, “Optical Clock Recovery Using a Polarization-Modulator-Based Frequency-Doubling Optoelectronic Oscillator,” Journal of Lightwave Technology, vol. 27, no. 16, pp. 3531–3539, 2009.
dc.relationQ. Wang, L. Huo, Y. Xing, D. Wang, X. Chen, C. Lou, and B. Zhou, “Gaussian-like dual-wavelength prescaled clock recovery with simultaneous frequency-doubled clock recovery using an optoelectronic oscillator,” Optics Express, vol. 22, no. 3, pp. 2798– 2806, 2014.
dc.relationL. Huo, Q. Wang, and C. Lou, “Multifunctional Optoelectronic Oscillator Based on Cascaded Modulators,” IEEE Photonics Technology Letters, vol. 28, no. 4, pp. 520– 523, 2016.
dc.relationJ. Lasri, P. Devgan, Renyong Tang, and P. Kumar, “Ultra-low timing jitter 40 Gb/s clock recovery using a novel electroabsorption-modulator-based self-starting optoelectronic oscillator,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003., vol. 1, pp. 390–391, oct 2003.
dc.relationJ. Lasri, P. Devgan, Renyong Tang, and P. Kumar, “Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator,” IEEE Photonics Technology Letters, vol. 16, pp. 263–265, jan 2004.
dc.relationP. Wu and J. Ma, “BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator,” Optics Communications, vol. 374, pp. 69–74, 2016.
dc.relationY. Chi and G. Lin, “A Q-Factor Enhanced Optoelectronic Oscillator for 40-Gbit/s Pulsed RZ-OOK Transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3216–3223, 2014.
dc.relationJ. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress,” Proceedings of the IEEE, vol. 66, no. 9, pp. 1048–1075, 1978.
dc.relation“IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities,” IEEE Std 1139-2008, pp. c1–35, feb 2009.
dc.relationJ. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of Frequency Stability,” IEEE Transactions on Instrumentation and Measurement, vol. IM-20, no. 2, pp. 105–120, 1971.
dc.relationD. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, 1966.
dc.relationE. Rubiola and V. Giordano, “On the 1/f frequency noise in ultra-stable quartz oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 1, pp. 15–22, 2007.
dc.relationJ. Rutman, “Instabilite de frequence des oscillateurs (Frequency instability of oscillators),” L’Onde Electrique, vol. 52, no. 11, pp. 480–487, 1972.
dc.relationD. W. Allan, “Statistics of atomic frequency standards,” Proceedings of the IEEE, vol. 54, no. 2, pp. 221–230, 1966.
dc.relationW. Riley and D. A. Howe, Handbook of Frequency Stability Analysis. National Institute of Standards and Technology (NIST), U.S. Department of Commerce, NIST Special Publication 1065, 2008.
dc.relationD. W. Allan and J. A. Barnes, “A Modified ”Allan Variance” with Increased Oscillator Characterization Ability,” in Proceedings of the 35th Annual Frequency Control Symposium, pp. 470–475, 1981.
dc.relationS. Bregni, Synchronization of Digital Telecommunications Networks. JohnWiley & Sons, 2002.
dc.relation“IEEE Draft Standard for Jitter and Phase Noise,” IEEE P2414, p. 40, apr 2019. [75] International Telecommunication Union (ITU), “ITU-T Recommendation G.810 (08/96), Definitions and Terminology for Synchronization Networks,” 1996.
dc.relationTektronix, “Understanding and Characterizing Timing Jitter: Primer,” October 2003.
dc.relationJEDEC Solid State Technology Association, “Standard JESD65B, Definition of Skew Specifications for Standard Logic Devices,” 2003.
dc.relationA. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Applied Physics Letters, vol. 40, no. 1, pp. 6–8, 1982.
dc.relationX. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electronics Letters, vol. 30, no. 18, pp. 1525–1526, 1994.
dc.relationX. S. Yao and L. Maleki, “A novel photonic oscillator,” in The Telecommunications and Data Acquisition Report, pp. 32–43, 1995.
dc.relationX. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, vol. 13, no. 8, pp. 1725–1735, 1996.
dc.relationX. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE Journal of Quantum Electronics, vol. 32, no. 7, pp. 1141–1149, 1996.
dc.relationH. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic Oscillators Using Direct-Modulated Semiconductor Lasers Under Strong Optical Injection,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 572–577, 2009.
dc.relationL. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, P. P. Shum, and D. Liu, “Widely tunable optoelectronic oscillator using phase modulation to intensity modulation conversion and a heterogeneous multicore fiber,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), pp. 1–3, 2017.
dc.relationY. Shao, X. Han, Q. Ye, B. Zhu, Y. Dai, C.Wang, and M. Zhao, “Low Power RF Signal Detection Using a High Gain Tunable OEO based on Equivalent Phase Modulation,” Journal of Lightwave Technology, p. 1, 2019.
dc.relationT. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Optics letters, vol. 31, pp. 811–813, mar 2006.
dc.relationZ. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. Yao, “Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG,” IEEE Photonics Technology Letters, vol. 24, no. 17, pp. 1487–1489, 2012.
dc.relationT. Wu, C. Zhang, H. Huang, J. Li, S. Fu, and K. Qiu, “Triangular waveform generation based on polarization modulated optoelectronic oscillator,” in 2017 International Topical Meeting on Microwave Photonics (MWP), pp. 1–4, oct 2017.
dc.relationA. Liu, J. Liu, J. Dai, Y. Dai, F. Yin, J. Li, Y. Zhou, and K. Xu, “High-rate and lowjitter optical pulse generation based on an optoelectronic oscillator using a cascaded polarization modulator and phase modulator,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2017.
dc.relationC. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave Optoelectronic Oscillator with Optical Gain,” in 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, pp. 1014–1019, 2007.
dc.relationP. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the Phase Noise of a 10 GHz Optoelectronic Oscillator Using All-Photonic Gain,” Journal of Lightwave Technology, vol. 27, no. 15, pp. 3189–3193, 2009.
dc.relationP. S. Devgan, V. J. Urick, J. D. McKinney, and K. J. Williams, “A Low-Jitter Master- Slave Optoelectronic Oscillator Employing All-Photonic Gain,” in 2007 Interntional Topical Meeting on Microwave Photonics, pp. 70–73, oct 2007.
dc.relationW. Loh, S. Yegnanarayanan, J. Klamkin, S. M. Duff, J. J. Plant, F. J. O’Donnell, and P. W. Juodawlkis, “Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems,” Optics Express, vol. 20, no. 17, pp. 19589–19598, 2012.
dc.relationW. Zhou, O. Okusaga, C. Nelson, D. Howe, and G. Carter, “10 GHz dual loop optoelectronic oscillator without RF-amplifiers,” in Optoelectronic Integrated Circuits X, vol. 6897, pp. 199–204, International Society for Optics and Photonics, SPIE, 2008.
dc.relationJ. Cho, H. Kim, and H. Sung, “Reduction of Spurious Tones and Phase Noise in Dual-Loop OEO by Loop-Gain Control,” IEEE Photonics Technology Letters, vol. 27, no. 13, pp. 1391–1393, 2015.
dc.relationJ. Cho and H. Sung, “Simple Optoelectronic Oscillators Using Direct Modulation of Dual-Section Distributed-Feedback Lasers,” IEEE Photonics Technology Letters, vol. 24, no. 23, pp. 2172–2174, 2012.
dc.relationM. Liao, J. Xiao, Y. Huang, H. Weng, J. Han, Z. Xiao, and Y. Yang, “Tunable Optoelectronic Oscillator Using a Directly Modulated Microsquare Laser,” IEEE Photonics Technology Letters, vol. 30, no. 13, pp. 1242–1245, 2018.
dc.relationM.-L. Liao, Y.-Z. Huang, H.-Z. Weng, J.-Y. Han, Z.-X. Xiao, J.-L. Xiao, and Y.-D. Yang, “Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser,” Optics letters, vol. 42, pp. 4251–4254, nov 2017.
dc.relationB. Pan, D. Lu, L. Zhang, and L. Zhao, “A Widely Tunable Optoelectronic Oscillator Based on Directly Modulated Dual-Mode Laser,” IEEE Photonics Journal, vol. 7,no. 6, pp. 1–7, 2015.
dc.relationH. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photonics Technology Letters, vol. 19, no. 19, pp. 1451–1453, 2007.
dc.relationW. Li and J. Yao, “A Wideband Frequency Tunable Optoelectronic Oscillator Incorporating a Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity- Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1735–1742, 2012.
dc.relationB. Yang, X. Jin, X. Zhang, S. Zheng, H. Chi, and Y. Wang, “A Wideband Frequency- Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBG and Wavelength Tuning of Laser,” IEEE Photonics Technology Letters, vol. 24, pp. 73–75, jan 2012.
dc.relationH. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express, vol. 25, no. 9, pp. 10287–10305, 2017.
dc.relationS. E. Hosseini, A. Banai, and F. X. K¨artner, “Tunable Low-Jitter Low-Drift Spurious- Free Transposed-Frequency Optoelectronic Oscillator,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2625–2635, 2017.
dc.relationZ. Fan, Q. Qiu, J. Su, and T. Zhang, “Tunable low-drift spurious-free optoelectronic oscillator based on injection locking and time delay compensation,” Opt. Lett., vol. 44, no. 3, pp. 534–537, 2019.
dc.relationC. Chang, M. J. Wishon, D. Choi, J. Dong, K. Merghem, A. Ramdane, F. Lelarge, A. Martinez, A. Locquet, and D. S. Citrin, “Tunable X-Band Optoelectronic Oscillators Based on External-Cavity Semiconductor Lasers,” IEEE Journal of Quantum Electronics, vol. 53, no. 3, pp. 1–6, 2017.
dc.relationR. Pantell, “The laser oscillator with an external signal,” Proceedings of the IEEE, vol. 53, no. 5, pp. 474–477, 1965.
dc.relationA. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long Wavelength VCSEL-by-VCSEL Optical Injection Locking,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1850–1858, 2009.
dc.relationJ. Coronel, Injection Locked VCSEL Based Oscillator - ILVBO. PhD thesis, Universidad Nacional de Colombia and Institut Superieur de l’Aeronautique et de l’Espace, 2016.
dc.relationJ. F. Coronel, M. Varon, and A. Rissons, “Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator,” Optical Engineering, vol. 55, no. 9, pp. 1 – 4, 2016.
dc.relationM. Shi, L. Yi, and W. Hu, “High-Resolution Brillouin Optoelectronic Oscillator Using High-Order Sideband Injection-Locking,” IEEE Photonics Technology Letters, vol. 31, no. 7, pp. 513–516, 2019.
dc.relationY. Zhang, Y. Xia, J. Zou, Z. Zhang, S. Zhang, J. Yuan, and Y. Liu, “Modulatorfree optoelectronic oscillator based on an optically injected semiconductor laser,” in Semiconductor Lasers and Applications VIII (N. H. Zhu and W. H. Hofmann, eds.), vol. 10812, pp. 39–44, International Society for Optics and Photonics, SPIE, 2018.
dc.relationWeimin Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, pp. 929–933, 2005.
dc.relationO. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. Carter, and C. Menyuk, “Experimental and simulation study of dual injection-locked OEOs,” in 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum, pp. 875–879, 2009.
dc.relationO. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express, vol. 19, pp. 5839–5854, mar 2011.
dc.relationD. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photonics Reviews, vol. 7, no. 4, pp. 506– 538, 2013.
dc.relationR. Maram, S. Kaushal, J. Aza˜na, and L. R. Chen, “Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics,” Photonics, vol. 6, no. 1, pp. 1–40, 2019.
dc.relationD. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photonics, vol. 13, pp. 80–90, 2019.
dc.relationJ. Tang, T. Hao, W. Li, D. Domenech, R. Ba˜nos, P. Mu˜noz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Optics Express, vol. 26, no. 9, pp. 12257– 12265, 2018.
dc.relationX. S. Yao, L. Maleki, Yu Ji, G. Lutes, and Meirong Tu, “Dual-loop opto-electronic oscillator,” in Proceedings of the 1998 IEEE International Frequency Control Symposium, pp. 545–549, 1998.
dc.relationX. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE Journal of Quantum Electronics, vol. 36, pp. 79–84, jan 2000.
dc.relationD. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop optoelectronic oscillators,” in IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, pp. 405–410, 2003.
dc.relationK. Mikitchuk, A. Chizh, and S. Malyshev, “Double-Loop All-Optical Gain Optoelectronic Oscillator with Low Phase Noise and Spurs Level,” in 2018 International Topical Meeting on Microwave Photonics (MWP), pp. 1–4, oct 2018.
dc.relationF. Fan, J. Hu, W. Zhu, Y. Gu, X. Han, and M. Zhao, “Dual-loop optoelectronic oscillator based on a compact balanced detection scheme,” Optical Engineering, vol. 56, no. 2, pp. 1–6, 2017.
dc.relationL. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and Compact Dual-Loop Optoelectronic Oscillator Using Self-Polarization-Stabilization Technique and Multicore Fiber,” Journal of Lightwave Technology, vol. 36, pp. 5196–5202, nov 2018.
dc.relationS. Garc´ıa and I. Gasulla, “Experimental demonstration of multi-cavity optoelectronic oscillation over a multicore fiber,” Optics Express, vol. 25, pp. 23663–23668, oct 2017.
dc.relationY. Shao, X. Han, Y. Bing, M. Li, Y. Gu, and M. Zhao, “Polarization multiplexed dual-loop OEO based on a phase-shifted fiber bragg grating,” in 2017 International Topical Meeting on Microwave Photonics (MWP), pp. 1–4, oct 2017.
dc.relationP. H. Merrer, H. Brahimi, and O. Llopis, “Optical techniques for microwave frequency stabilization : Resonant versus delay line approaches and related modelling problems,” in 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, pp. 146–149, 2008.
dc.relationK. Saleh, High spectral purity microwave sources based on optical resonators. PhD thesis, Universit´e de Toulouse, 2012.
dc.relationZ. Abdallah, Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology. PhD thesis, Universit´e Toulouse 3 Paul Sabatier, 2016.
dc.relationR. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Applied Physics B, vol. 31, no. 2, pp. 97–105, 1983.
dc.relationL. Wang, N. Zhu, W. Li, and J. Liu, “A Frequency-Doubling Optoelectronic Oscillator Based on a Dual-Parallel Mach-Zehnder Modulator and a Chirped Fiber Bragg Grating,” IEEE Photonics Technology Letters, vol. 23, pp. 1688–1690, nov 2011.
dc.relationX. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-Doubling Optoelectronic Oscillator Using DSB-SC Modulation and Carrier Recovery Based on Stimulated Brillouin Scattering,” IEEE Photonics Journal, vol. 5, no. 2, 2013.
dc.relationD. Zhu, S. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling Optoelectronic Oscillator for Multichannel Upconversion,” IEEE Photonics Technology Letters, vol. 25, no. 5, pp. 426–429, 2013.
dc.relationD. Zhu, S. Pan, and D. Ben, “Tunable Frequency-Quadrupling Dual-Loop Optoelectronic Oscillator,” IEEE Photonics Technology Letters, vol. 24, no. 3, pp. 194–196, 2012.
dc.relationA. Chiba, Y. Akamatsu, and K. Takada, “RF Frequency Sextupling Utilizing a Single Mach-Zehnder Optical Modulator possessing external-load RF terminals,” in Conference on Lasers and Electro-Optics, p. SF1G.8, Optical Society of America, 2016.
dc.relationY. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeterwave signal generation based on a dual-parallel Mach-Zehnder modulator,” in 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, pp. 1–4, 2012.
dc.relationM. Hasan and T. J. Hall, “A photonic frequency octo-tupler with reduced RF drive power and extended spurious sideband suppression,” Optics & Laser Technology, vol. 81, pp. 115–121, 2016.
dc.relationY. Fu, X. Zhang, B. Hraimel, T. Liu, and D. Shen, “Mach-Zehnder: A Review of Bias Control Techniques for Mach-Zehnder Modulators in Photonic Analog Links,” IEEE Microwave Magazine, vol. 14, pp. 102–107, nov 2013.
dc.relationY. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave Generation With Photonic Frequency Sextupling Based on Cascaded Modulators,” IEEE Photonics Technology Letters, vol. 26, no. 12, pp. 1199–1202, 2014.
dc.relationX. Li, J. Yu, Z. Zhang, J. Xiao, and G.-K. Chang, “Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM,” Optics Communications, vol. 349, pp. 6–10, 2015.
dc.relationZ. Zhu, S. Zhao, X. Li, K. Qu, and T. Lin, “Photonic generation of versatile frequencydoubled microwave waveforms via a dual-polarization modulator,” Optics Communications, vol. 384, pp. 1–6, 2017.
dc.relationX. Chen, L. Xia, and D. Huang, “Generalized study of microwave frequency multiplication based on two cascaded MZMs,” Optik, vol. 127, no. 8, pp. 4061–4067, 2016.
dc.relationH. Zhou, Z. Zheng, and Q. Wan, “Radio over fiber system carrying OFDM signal based on optical octuple frequency technique,” Optics Communications, vol. 349, pp. 54–59, 2015.
dc.relationY. Gao, A.Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic Microwave Generation With Frequency Octupling Based on a DP-QPSK Modulator,” IEEE Photonics Technology Letters, vol. 27, pp. 2260–2263, nov 2015.
dc.relationP. O. Hedekvist, B. . Olsson, and A. Wiberg, “Microwave harmonic frequency generation utilizing the properties of an optical phase Modulator,” Journal of Lightwave Technology, vol. 22, no. 3, pp. 882–886, 2004.
dc.relationD. Eliyahu, D. Seidel, and L. Maleki, “RF Amplitude and Phase-Noise Reduction of an Optical Link and an Opto-Electronic Oscillator,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 2, pp. 449–456, 2008.
dc.relationO. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, W. Zhou, and G. M. Carter, “Suppression of Rayleigh-scattering-induced noise in OEOs,” Optics Express, vol. 21, pp. 22255–22262, sep 2013.
dc.relationK. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,” Journal of Lightwave Technology, vol. 28, no. 18, pp. 2730–2735, 2010.
dc.relationM.-E. Belkin, L. Belkin, A. Loparev, A.-S. Sigov, and V. Iakovlev, “Long Wavelength VCSELs and VCSEL-Based Processing of Microwave Signals,” in Optoelectronics - Materials and Devices, ch. 6, Rijeka: IntechOpen, 2015.
dc.relationK. Koizumi, M. Yoshida, and M. Nakazawa, “A 10-GHz Optoelectronic Oscillator at 1.1 μm Using a Single-Mode VCSEL and a Photonic Crystal Fiber,” IEEE Photonics Technology Letters, vol. 22, no. 5, pp. 293–295, 2010.
dc.relationJ. Coronel, C. D. Mu˜noz, M. Var´on, F. Destic, A. Rissons, V. Rodrigues, and K. Bougueroua, “X-band and Ku-band VCSEL-based optoelectronic oscillators using on-chip laser,” Optical Engineering, vol. 58, no. 7, pp. 1–4, 2019.
dc.relationY. Shao, X. Han, M. Li, Q. Liu, and M. Zhao, “Microwave Downconversion by a Tunable Optoelectronic Oscillator Based on PS-FBG and Polarization-Multiplexed Dual loop,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 2095–2102, 2019.
dc.relationG. Charalambous, G. K. M. Hasanuzzaman, A. Perentos, and S. Iezekiel, “High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,” Optics Communications, vol. 387, pp. 361–365, 2017.
dc.relationK. Saleh, O. Llopis, and G. Cibiel, “Optical Scattering Induced Noise in Fiber Ring Resonators and Optoelectronic Oscillators,” Journal of Lightwave Technology, vol. 31, no. 9, pp. 1433–1446, 2013.
dc.relationP.-H. Merrer, K. Saleh, O. Llopis, S. Berneschi, F. Cosi, and G. N. Conti, “Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators,” Applied Optics, vol. 51, no. 20, pp. 4742– 4748, 2012.
dc.relationE. N. Ivanov and M. E. Tobar, “Low phase-noise sapphire crystal microwave oscillators: current status,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 2, pp. 263–269, 2009.
dc.relationM. Regis, O. Llopis, B. Van Haaren, R. Plana, A. Gruhle, J. Rayssac, and J. Graffeuil, “Ultra low phase noise C and X band bipolar transistors dielectric resonator oscillators,” in Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165), pp. 507–511, 1998.
dc.relationM. Feng, C. Wu, and N. Holonyak, “Oxide-Confined VCSELs for High-Speed Optical Interconnects,” IEEE Journal of Quantum Electronics, vol. 54, no. 3, pp. 1–15, 2018. [160] International Telecommunication Union, Optical Fibres, Cables and Systems. Handbooks on Standardization, 2010.
dc.relationI. Melngailis, “Longitudinal Injection-Plasma laser of InSb,” Applied Physics Letters, vol. 6, no. 3, pp. 59–60, 1965.
dc.relationH. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP Surface Emitting Injection Lasers,” Japanese Journal of Applied Physics, vol. 18, no. 12, pp. 2329–2330, 1979.
dc.relationY. Motegi, H. Soda, and K. Iga, “Surface-emitting GaInAsP/InP injection laser with short cavity length,” Electronics Letters, vol. 18, no. 11, pp. 461–463, 1982.
dc.relationH. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE Journal of Quantum Electronics, vol. 19, no. 6, pp. 1035– 1041, 1983.
dc.relationY. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electronics Letters, vol. 25, no. 20, pp. 1377–1378, 1989.
dc.relationF. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Applied Physics Letters, vol. 55, no. 3, pp. 221–222, 1989.
dc.relationJ. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electronics Letters, vol. 25, no. 17, pp. 1123–1124, 1989.
dc.relationT. Numai, Fundamentals of Semiconductor Lasers. Springer Series in Optical Sciences, Springer Japan, 2014.
dc.relationP. Moser, Energy-Efficient VCSELs for Optical Interconnects. Springer Theses, Springer International Publishing, 2015.
dc.relationC. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE Journal of Quantum Electronics, vol. 27, no. 6, pp. 1402–1409, 1991.
dc.relationP. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL Arrays for Multicore Fiber Interconnects With an Aggregate Capacity of 240 Gb/s,” IEEE Photonics Technology Letters, vol. 27, no. 3, pp. 296–299, 2015.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleOptical Microwave Signal Generation for Data Transmission in Optical Networks
dc.typeOtro


Este ítem pertenece a la siguiente institución