dc.contributor | Orjuela, Alvaro | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Mora Molano, Camilo Andres | |
dc.date.accessioned | 2021-05-03T16:38:13Z | |
dc.date.available | 2021-05-03T16:38:13Z | |
dc.date.created | 2021-05-03T16:38:13Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79463 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La tecnología de separación criogénica de aire es el método común para la producción de oxígeno, nitrógeno y argón puro a escala industrial. Sin embargo, el alto consumo de energía es el problema más importante para una operación rentable. El objetivo de este trabajo es realizar una simulación y optimización de una planta de destilación criogénica existente, ubicada en Tocancipá – Colombia, la cual presenta una alta integración térmica en su diseño, minimizando la intensidad de energía por kilogramo de productos líquidos. La comparación del consumo específico de energía entre la simulación y las condiciones industriales reales mostró errores relativos absolutos inferiores al 10.4% y respecto al manual de operación (EDM) del 9.4%, validando así el modelo simulado. Para identificar las principales variables que afectan la intensidad energética del proceso, se realizó un análisis de exergía de los principales equipos (intercambiador de múltiples etapas, compresor y columnas de destilación). La optimización empleó el método NSGA-II, utilizando de forma combinada el modelo simulado en Aspen Hysys y la optimización en Matlab. La optimización se realizó resolviendo el problema multiobjetivo de maximizar la eficiencia exergética y la relación de producción de argón, considerando una demanda variable. Finalmente se generan sugerencias basadas en criterios de seguridad, operacionales y financieras para mejorar el desempeño de la planta. | |
dc.description.abstract | The cryogenic air separation process is the most common technique for the production of pure oxygen, nitrogen and argon on an industrial scale. However, high energy consumption is a major problem for a profitable operation. The aim of this work is to perform a simulation and optimization from an existing air separation facility, located in Tocancipá - Colombia, with a high thermal integration in its design, that intends to minimize energy intensity per standard volume of the current processed air stream. The comparison of the specific energy consumption between simulation and real industrial conditions showed absolute relative error lower than 10.4% and regard to engineering manual (EDM) of 9.4%, thus validating the developed model. In order to identify the main variables affecting energy intensity, an exergy analysis of the main equipment (multi-stage exchanger, compressor and distillation columns). The optimization employs the NSGA-II method, carrying out a combination between the simulated model in Aspen Hysys and an optimization in MATLAB. The optimization involved solving a multi-objective problem of maximizing exergy efficiency and argon production ratio, considering a variable demand. Finally, suggestions are generated based on safety, operational and financial criteria to improve the performance of the plant. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Alsultanny, Y. A., & Al-Shammari, N. N. (2014). Oxygen specific power consumption comparison for air separation units. Engineering Journal, 18(2), 67–80. https://doi.org/10.4186/ej.2014.18.2.67 | |
dc.relation | Anania, B. P. V, & Llc, L. (2006). Mergers & Acquisitions in the US Industrial Gas Business. PART II – THE MAJOR INDUSTRY SHAPERS. | |
dc.relation | ANDI. (2018). 7 Acciones Prioritarias. Cámara Sectorial de Gases Industriales y Medicinales. | |
dc.relation | ANDI. (2016). Presentación sector gases industriales y medicinales. In ANDI (Ed.), Cámara sectorial de gases industriales y medicinales. | |
dc.relation | Banco de la República. (2017). Grupos económicos de Colombia. https://enciclopedia.banrepcultural.org/index.php/Grupos_económicos_en_Colombia | |
dc.relation | Briones, A., & Gutiérrez, C. (2018). Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen plus. Computacion y Sistemas, 22(4), 1157–1170. https://doi.org/10.13053/CyS-22-4-3087 | |
dc.relation | British Petroleum. (2020). The use of energy within industry shifts towards developing economies and lower carbon energy. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-sector/industry.html | |
dc.relation | Carlson, E. C. (1996). Don’t gamble with physical properties for simulations. Chemical Engineering Progress, October, 35–46. | |
dc.relation | Chart. (2020). Brazed Aluminum Heat Exchangers. https://www.chartindustries.com/Energy/Brazed-Aluminum-Heat-Exchangers | |
dc.relation | Codensa. (2020). Tarifas de energía eléctrica reguladas por la CREG. https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-enero-2020.pdf | |
dc.relation | Cornelissen, R. . (1997). Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility. | |
dc.relation | Cornelissen, R. L., & Hirs, G. G. (1998). Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16–18), 1821–1826. https://doi.org/10.1016/s0196-8904(98)00062-4 | |
dc.relation | Corpoema. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia. 1(Contrato UPME C006 – 2014). | |
dc.relation | Cryogas Grupo Air Prodcuts. (2020). Historia corporativa Cryogas. https://www.cryogas.com.co/web/co/compania/historia#:~:text=Cryogas es una empresa del,15.000 trabajadores en 50 países.&text=Te invitamos a que viajes,desde el nacimiento de Cryogas. | |
dc.relation | DANE. (2007). Encuesta anual manufacturera. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam | |
dc.relation | Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017 | |
dc.relation | Demirel, Y. (2004). Thermodynamic analysis of separation systems. Separation Science and Technology, 39(16), 3897–3942. https://doi.org/10.1081/SS-200041152 | |
dc.relation | Ebrahimi, A., Meratizaman, M., Reyhani, H. A., Pourali, O., & Amidpour, M. (2015). Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy, 90, 1298–1316. https://doi.org/10.1016/j.energy.2015.06.083 | |
dc.relation | Ebrahimi, A., & Ziabasharhagh, M. (2017). Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy, 126, 868–885. https://doi.org/10.1016/j.energy.2017.02.145 | |
dc.relation | European Industrial Gases Association AISBL. (2005). Safe Practices Guide for Cryogenic Air Separation Plants Safe Practices Guide for Cryogenic. | |
dc.relation | Fernández, D., Pozo, C., Folgado, R., Jiménez, L., & Guillén-Gosálbez, G. (2018). Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied Energy, 212(applied energy), 1563–1577. https://doi.org/10.1016/j.apenergy.2017.12.008 Fu, Q., Zhu, L., & Chen, X. (2015). Complete Equation-Oriented Approach for Process Analysis and Optimization of a Cryogenic Air Separation Unit. Industrial and Engineering Chemistry Research, 54(48), 12096–12107. https://doi.org/10.1021/acs.iecr.5b02768 | |
dc.relation | Garside, M. (2018). Global industrial gases market share by company 2017. Statista. https://www.statista.com/statistics/933494/global-market-share-industrial-gases-by-company/ | |
dc.relation | Ghosh, I., Sarangi, S. K., & Das, P. K. (2006). An alternate algorithm for the analysis of multistream plate fin heat exchangers. International Journal of Heat and Mass Transfer, 49(17–18), 2889–2902. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.022 | |
dc.relation | Grasys. (2020). Tecnología por adsorción. https://www.grasys.com/es/technologies/adsorption/ | |
dc.relation | Guo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter- current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071 | |
dc.relation | Häring, H.-W. (2008). Industrial Gas Processing. WILEY-VCH Verlag GmbH & Co. KGaA. Hill, M., & Technical, G. (1987). Group, Inc.* Group Technical 100 Mountain Avenue Murray Hill, NJ 07974. 37, 153–167. | |
dc.relation | Index Mundi. (2020). Consumo de electricidad mundial. https://www.indexmundi.com/map/?v=81&l=es | |
dc.relation | Johansson, T. (2015). Integrated Scheduling and control of Air Separation Unit Subject to Time-Varying Electricity Price. | |
dc.relation | Kalavani, F., Mohammadi-Ivatloo, B., & Zare, K. (2019). Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program. Renewable Energy, 130, 268–280. https://doi.org/10.1016/j.renene.2018.06.070 | |
dc.relation | Kerry, F. G. (2007). Industrial gas handbook: Gas separation and purification. In Industrial Gas Handbook: Gas Separation and Purification. https://doi.org/10.1201/9781420008265 | |
dc.relation | Khalel, Z., Rabah, A., & Barakat, T. A. M. (2014). Exergy Analysis of Cryogenic Air Separation Unit with Flash Separator. ICASTOR Journal of Engineering, 7(3), 135 – 147. | |
dc.relation | Kita, H., Tanaka, K., & Koga, T. (2008). Gas Separation Membranes. In Kobunshi (Vol. 57, Issue 11). https://doi.org/10.1295/kobunshi.57.894 | |
dc.relation | Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., & Friend, D. G. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29(3), 331–362. https://doi.org/10.1063/1.1285884 | |
dc.relation | Lin, S. (2011). NGPM — A NSGA-II Program in Matlab. College of Astronautics, Northwestern Polytechnical University, China. https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4 | |
dc.relation | Long, K., & Murphy, M. (2009). World Industrial Gases. | |
dc.relation | Marshall, R., & Scales, B. (2020). Compressed Air Controls. Compressed Air Challenge. https://www.airbestpractices.com/technology/compressor-controls/compressed-air-controls | |
dc.relation | Miller, J., Luyben, W. L., Belanger, P., Blouin, S., & Megan, L. (2008). Improving agility of cryogenic air separation plants. Industrial and Engineering Chemistry Research, 47(2), 394–404. https://doi.org/10.1021/ie070975t | |
dc.relation | Moran, M. J., Shapiro, H. N., Boettner, S., Daisie D., B., & B., M. (2001). Fundamentals of Engineering Thermodynamics. In International Journal of Mechanical Engineering Education (Vol. 29, Issue 1). https://doi.org/10.7227/ijmee.29.1.2 | |
dc.relation | Omar, Q., Mukhtar, A., Shafiq, U., Safdar, F., & Iqbal Ch, S. (2017). Simulation Study for Energy Minimization and Performance Enhancement Using Cryogenic Plate and Packed Bed Column Networks for Air. Austin Chemical Engineering, 4(2), 1053. | |
dc.relation | Pacio, J. C., & Dorao, C. A. (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 51(7), 366–379. https://doi.org/10.1016/j.cryogenics.2011.04.005 | |
dc.relation | Peng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011 | |
dc.relation | Perry, R. H., & Green, D. W. (2008). Chemical engineer’s handbook. Journal of the Society of Chemical Industry. https://doi.org/10.1002/jctb.5000534310 | |
dc.relation | Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153(June 2018), 275–290. https://doi.org/10.1016/j.applthermaleng.2019.02.106 | |
dc.relation | Ramírez Medina, C. (2008). Modelo y control de una columna de destilación continua. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Redacción El Tiempo. (1998). Fusión en sector de gases. https://www.eltiempo.com/archivo/documento/MAM-834532 | |
dc.relation | Redacción El Tiempo. (2003). Una empresa con excelencia. https://www.eltiempo.com/archivo/documento/MAM-1017540 | |
dc.relation | Research, G. view. (2020). Industrial Gases Market Size, Share & Trends Analysis Report By Product (Nitrogen, Oxygen), By Application (Healthcare, Manufacturing), By Distribution (Onsite, Bulk), By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/industrial-gases-market | |
dc.relation | Robert R., S., & F. James, R. (1969). Introduction to Biostatistics (Second). Dover Publications. Inc. | |
dc.relation | Robeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2), 165–185. https://doi.org/10.1016/0376-7388(91)80060-J | |
dc.relation | Schmidt, W.Kovak, K. Licht, W., & Feldman, S. (2000). Managing Trace Contaminants in Cryogenic Air Separation. | |
dc.relation | Schmidt, W. P., Winegardner, K. S., Dennehy, M., & Castle-Smith, H. (2001). Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 20(4), 269–279. https://doi.org/10.1002/prs.680200409 | |
dc.relation | Shanghai T.S. Industrial Co., L. S. I. C. (2015). High flux tube and heat exchanger. http://www.lordfintube.com/productShow.asp?Id=765 | |
dc.relation | Smith, A. ., & Klosek, J. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115–134. https://doi.org/10.1016/S0378-3820(01)00131-X | |
dc.relation | Sulzer. (2020). Structured Packings Energy-efficient , innovative and profitable Sulzer Chemtech – Mass Transfer Technology. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.ashx?la=enhttps://www.sulzer.com/en/shared/products/2017/03/28/13/27/laboratory-packings | |
dc.relation | The Linde Group. (2017). Compelling Perspectives. 1–230. | |
dc.relation | Theophilos, N. P. (1979). Engineering fundamentals analytical design data and cryogenic equipment applications. Union Carbide Corporation. | |
dc.relation | Van Der Ham, L. V. (2012). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Conversion and Management, 61, 31–42. https://doi.org/10.1016/j.enconman.2012.03.004 | |
dc.relation | Weller, S., & Steiner, W. A. (1950). Separation of Gases by Fractional Permeation through Membranes. Journal of Applied Physics, 21(4), 279–283. https://doi.org/10.1063/1.1699653 | |
dc.relation | Yan, L., Yu, Y., Li, Y., & Zhang, Z. (2010). Energy Saving Opportunities in an Air Separation Process. International Refrigeration and Air Conditioning Conference, 1131. | |
dc.relation | Yao, L., Tong, L., Zhang, A., Xie, Y., Shen, J., Li, H., Wang, L., & Li, S. (2015). Exergy Analysis for Air Separation Process Under Off-Design Conditions. Journal of Energy Resources Technology, 137(4). https://doi.org/10.1115/1.4029911 | |
dc.relation | Zheng, J., Ye, H., Li, Y., Yang, Y., & Si, B. (2019). A Parametric Sensitivity Study and Comparison Analysis on Multiple Air Separation Processes. Industrial and Engineering Chemistry Research, 58(21), 9087–9098. https://doi.org/10.1021/acs.iecr.8b06046 | |
dc.relation | Zhu, L., Chen, Z., Chen, X., Shao, Z., & Qian, J. (2009). Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method. Separation and Purification Technology, 67(3), 262–270. https://doi.org/10.1016/j.seppur.2009.03.032 | |
dc.relation | Ziębik, A., & Gładysz, P. (2018). Systems approach to energy and exergy analyses. Energy, 165, 396–407. https://doi.org/10.1016/j.energy.2018.08.214 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Optimización exergética de una planta de separación de aire en función de la demanda con integración energética | |
dc.type | Trabajo de grado - Maestría | |