dc.contributorOrjuela, Alvaro
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorMora Molano, Camilo Andres
dc.date.accessioned2021-05-03T16:38:13Z
dc.date.available2021-05-03T16:38:13Z
dc.date.created2021-05-03T16:38:13Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79463
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa tecnología de separación criogénica de aire es el método común para la producción de oxígeno, nitrógeno y argón puro a escala industrial. Sin embargo, el alto consumo de energía es el problema más importante para una operación rentable. El objetivo de este trabajo es realizar una simulación y optimización de una planta de destilación criogénica existente, ubicada en Tocancipá – Colombia, la cual presenta una alta integración térmica en su diseño, minimizando la intensidad de energía por kilogramo de productos líquidos. La comparación del consumo específico de energía entre la simulación y las condiciones industriales reales mostró errores relativos absolutos inferiores al 10.4% y respecto al manual de operación (EDM) del 9.4%, validando así el modelo simulado. Para identificar las principales variables que afectan la intensidad energética del proceso, se realizó un análisis de exergía de los principales equipos (intercambiador de múltiples etapas, compresor y columnas de destilación). La optimización empleó el método NSGA-II, utilizando de forma combinada el modelo simulado en Aspen Hysys y la optimización en Matlab. La optimización se realizó resolviendo el problema multiobjetivo de maximizar la eficiencia exergética y la relación de producción de argón, considerando una demanda variable. Finalmente se generan sugerencias basadas en criterios de seguridad, operacionales y financieras para mejorar el desempeño de la planta.
dc.description.abstractThe cryogenic air separation process is the most common technique for the production of pure oxygen, nitrogen and argon on an industrial scale. However, high energy consumption is a major problem for a profitable operation. The aim of this work is to perform a simulation and optimization from an existing air separation facility, located in Tocancipá - Colombia, with a high thermal integration in its design, that intends to minimize energy intensity per standard volume of the current processed air stream. The comparison of the specific energy consumption between simulation and real industrial conditions showed absolute relative error lower than 10.4% and regard to engineering manual (EDM) of 9.4%, thus validating the developed model. In order to identify the main variables affecting energy intensity, an exergy analysis of the main equipment (multi-stage exchanger, compressor and distillation columns). The optimization employs the NSGA-II method, carrying out a combination between the simulated model in Aspen Hysys and an optimization in MATLAB. The optimization involved solving a multi-objective problem of maximizing exergy efficiency and argon production ratio, considering a variable demand. Finally, suggestions are generated based on safety, operational and financial criteria to improve the performance of the plant.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlsultanny, Y. A., & Al-Shammari, N. N. (2014). Oxygen specific power consumption comparison for air separation units. Engineering Journal, 18(2), 67–80. https://doi.org/10.4186/ej.2014.18.2.67
dc.relationAnania, B. P. V, & Llc, L. (2006). Mergers & Acquisitions in the US Industrial Gas Business. PART II – THE MAJOR INDUSTRY SHAPERS.
dc.relationANDI. (2018). 7 Acciones Prioritarias. Cámara Sectorial de Gases Industriales y Medicinales.
dc.relationANDI. (2016). Presentación sector gases industriales y medicinales. In ANDI (Ed.), Cámara sectorial de gases industriales y medicinales.
dc.relationBanco de la República. (2017). Grupos económicos de Colombia. https://enciclopedia.banrepcultural.org/index.php/Grupos_económicos_en_Colombia
dc.relationBriones, A., & Gutiérrez, C. (2018). Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen plus. Computacion y Sistemas, 22(4), 1157–1170. https://doi.org/10.13053/CyS-22-4-3087
dc.relationBritish Petroleum. (2020). The use of energy within industry shifts towards developing economies and lower carbon energy. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-sector/industry.html
dc.relationCarlson, E. C. (1996). Don’t gamble with physical properties for simulations. Chemical Engineering Progress, October, 35–46.
dc.relationChart. (2020). Brazed Aluminum Heat Exchangers. https://www.chartindustries.com/Energy/Brazed-Aluminum-Heat-Exchangers
dc.relationCodensa. (2020). Tarifas de energía eléctrica reguladas por la CREG. https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-enero-2020.pdf
dc.relationCornelissen, R. . (1997). Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility.
dc.relationCornelissen, R. L., & Hirs, G. G. (1998). Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16–18), 1821–1826. https://doi.org/10.1016/s0196-8904(98)00062-4
dc.relationCorpoema. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia. 1(Contrato UPME C006 – 2014).
dc.relationCryogas Grupo Air Prodcuts. (2020). Historia corporativa Cryogas. https://www.cryogas.com.co/web/co/compania/historia#:~:text=Cryogas es una empresa del,15.000 trabajadores en 50 países.&text=Te invitamos a que viajes,desde el nacimiento de Cryogas.
dc.relationDANE. (2007). Encuesta anual manufacturera. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam
dc.relationDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
dc.relationDemirel, Y. (2004). Thermodynamic analysis of separation systems. Separation Science and Technology, 39(16), 3897–3942. https://doi.org/10.1081/SS-200041152
dc.relationEbrahimi, A., Meratizaman, M., Reyhani, H. A., Pourali, O., & Amidpour, M. (2015). Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy, 90, 1298–1316. https://doi.org/10.1016/j.energy.2015.06.083
dc.relationEbrahimi, A., & Ziabasharhagh, M. (2017). Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy, 126, 868–885. https://doi.org/10.1016/j.energy.2017.02.145
dc.relationEuropean Industrial Gases Association AISBL. (2005). Safe Practices Guide for Cryogenic Air Separation Plants Safe Practices Guide for Cryogenic.
dc.relationFernández, D., Pozo, C., Folgado, R., Jiménez, L., & Guillén-Gosálbez, G. (2018). Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied Energy, 212(applied energy), 1563–1577. https://doi.org/10.1016/j.apenergy.2017.12.008 Fu, Q., Zhu, L., & Chen, X. (2015). Complete Equation-Oriented Approach for Process Analysis and Optimization of a Cryogenic Air Separation Unit. Industrial and Engineering Chemistry Research, 54(48), 12096–12107. https://doi.org/10.1021/acs.iecr.5b02768
dc.relationGarside, M. (2018). Global industrial gases market share by company 2017. Statista. https://www.statista.com/statistics/933494/global-market-share-industrial-gases-by-company/
dc.relationGhosh, I., Sarangi, S. K., & Das, P. K. (2006). An alternate algorithm for the analysis of multistream plate fin heat exchangers. International Journal of Heat and Mass Transfer, 49(17–18), 2889–2902. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.022
dc.relationGrasys. (2020). Tecnología por adsorción. https://www.grasys.com/es/technologies/adsorption/
dc.relationGuo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter- current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071
dc.relationHäring, H.-W. (2008). Industrial Gas Processing. WILEY-VCH Verlag GmbH & Co. KGaA. Hill, M., & Technical, G. (1987). Group, Inc.* Group Technical 100 Mountain Avenue Murray Hill, NJ 07974. 37, 153–167.
dc.relationIndex Mundi. (2020). Consumo de electricidad mundial. https://www.indexmundi.com/map/?v=81&l=es
dc.relationJohansson, T. (2015). Integrated Scheduling and control of Air Separation Unit Subject to Time-Varying Electricity Price.
dc.relationKalavani, F., Mohammadi-Ivatloo, B., & Zare, K. (2019). Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program. Renewable Energy, 130, 268–280. https://doi.org/10.1016/j.renene.2018.06.070
dc.relationKerry, F. G. (2007). Industrial gas handbook: Gas separation and purification. In Industrial Gas Handbook: Gas Separation and Purification. https://doi.org/10.1201/9781420008265
dc.relationKhalel, Z., Rabah, A., & Barakat, T. A. M. (2014). Exergy Analysis of Cryogenic Air Separation Unit with Flash Separator. ICASTOR Journal of Engineering, 7(3), 135 – 147.
dc.relationKita, H., Tanaka, K., & Koga, T. (2008). Gas Separation Membranes. In Kobunshi (Vol. 57, Issue 11). https://doi.org/10.1295/kobunshi.57.894
dc.relationLemmon, E. W., Jacobsen, R. T., Penoncello, S. G., & Friend, D. G. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29(3), 331–362. https://doi.org/10.1063/1.1285884
dc.relationLin, S. (2011). NGPM — A NSGA-II Program in Matlab. College of Astronautics, Northwestern Polytechnical University, China. https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4
dc.relationLong, K., & Murphy, M. (2009). World Industrial Gases.
dc.relationMarshall, R., & Scales, B. (2020). Compressed Air Controls. Compressed Air Challenge. https://www.airbestpractices.com/technology/compressor-controls/compressed-air-controls
dc.relationMiller, J., Luyben, W. L., Belanger, P., Blouin, S., & Megan, L. (2008). Improving agility of cryogenic air separation plants. Industrial and Engineering Chemistry Research, 47(2), 394–404. https://doi.org/10.1021/ie070975t
dc.relationMoran, M. J., Shapiro, H. N., Boettner, S., Daisie D., B., & B., M. (2001). Fundamentals of Engineering Thermodynamics. In International Journal of Mechanical Engineering Education (Vol. 29, Issue 1). https://doi.org/10.7227/ijmee.29.1.2
dc.relationOmar, Q., Mukhtar, A., Shafiq, U., Safdar, F., & Iqbal Ch, S. (2017). Simulation Study for Energy Minimization and Performance Enhancement Using Cryogenic Plate and Packed Bed Column Networks for Air. Austin Chemical Engineering, 4(2), 1053.
dc.relationPacio, J. C., & Dorao, C. A. (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 51(7), 366–379. https://doi.org/10.1016/j.cryogenics.2011.04.005
dc.relationPeng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011
dc.relationPerry, R. H., & Green, D. W. (2008). Chemical engineer’s handbook. Journal of the Society of Chemical Industry. https://doi.org/10.1002/jctb.5000534310
dc.relationPopov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153(June 2018), 275–290. https://doi.org/10.1016/j.applthermaleng.2019.02.106
dc.relationRamírez Medina, C. (2008). Modelo y control de una columna de destilación continua. https://doi.org/10.1017/CBO9781107415324.004
dc.relationRedacción El Tiempo. (1998). Fusión en sector de gases. https://www.eltiempo.com/archivo/documento/MAM-834532
dc.relationRedacción El Tiempo. (2003). Una empresa con excelencia. https://www.eltiempo.com/archivo/documento/MAM-1017540
dc.relationResearch, G. view. (2020). Industrial Gases Market Size, Share & Trends Analysis Report By Product (Nitrogen, Oxygen), By Application (Healthcare, Manufacturing), By Distribution (Onsite, Bulk), By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/industrial-gases-market
dc.relationRobert R., S., & F. James, R. (1969). Introduction to Biostatistics (Second). Dover Publications. Inc.
dc.relationRobeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2), 165–185. https://doi.org/10.1016/0376-7388(91)80060-J
dc.relationSchmidt, W.Kovak, K. Licht, W., & Feldman, S. (2000). Managing Trace Contaminants in Cryogenic Air Separation.
dc.relationSchmidt, W. P., Winegardner, K. S., Dennehy, M., & Castle-Smith, H. (2001). Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 20(4), 269–279. https://doi.org/10.1002/prs.680200409
dc.relationShanghai T.S. Industrial Co., L. S. I. C. (2015). High flux tube and heat exchanger. http://www.lordfintube.com/productShow.asp?Id=765
dc.relationSmith, A. ., & Klosek, J. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115–134. https://doi.org/10.1016/S0378-3820(01)00131-X
dc.relationSulzer. (2020). Structured Packings Energy-efficient , innovative and profitable Sulzer Chemtech – Mass Transfer Technology. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.ashx?la=enhttps://www.sulzer.com/en/shared/products/2017/03/28/13/27/laboratory-packings
dc.relationThe Linde Group. (2017). Compelling Perspectives. 1–230.
dc.relationTheophilos, N. P. (1979). Engineering fundamentals analytical design data and cryogenic equipment applications. Union Carbide Corporation.
dc.relationVan Der Ham, L. V. (2012). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Conversion and Management, 61, 31–42. https://doi.org/10.1016/j.enconman.2012.03.004
dc.relationWeller, S., & Steiner, W. A. (1950). Separation of Gases by Fractional Permeation through Membranes. Journal of Applied Physics, 21(4), 279–283. https://doi.org/10.1063/1.1699653
dc.relationYan, L., Yu, Y., Li, Y., & Zhang, Z. (2010). Energy Saving Opportunities in an Air Separation Process. International Refrigeration and Air Conditioning Conference, 1131.
dc.relationYao, L., Tong, L., Zhang, A., Xie, Y., Shen, J., Li, H., Wang, L., & Li, S. (2015). Exergy Analysis for Air Separation Process Under Off-Design Conditions. Journal of Energy Resources Technology, 137(4). https://doi.org/10.1115/1.4029911
dc.relationZheng, J., Ye, H., Li, Y., Yang, Y., & Si, B. (2019). A Parametric Sensitivity Study and Comparison Analysis on Multiple Air Separation Processes. Industrial and Engineering Chemistry Research, 58(21), 9087–9098. https://doi.org/10.1021/acs.iecr.8b06046
dc.relationZhu, L., Chen, Z., Chen, X., Shao, Z., & Qian, J. (2009). Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method. Separation and Purification Technology, 67(3), 262–270. https://doi.org/10.1016/j.seppur.2009.03.032
dc.relationZiębik, A., & Gładysz, P. (2018). Systems approach to energy and exergy analyses. Energy, 165, 396–407. https://doi.org/10.1016/j.energy.2018.08.214
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleOptimización exergética de una planta de separación de aire en función de la demanda con integración energética
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución