dc.contributor | Ramírez Hernández, María Helena | |
dc.contributor | LIBBIQ UN | |
dc.creator | Suárez Jurado, Aravy Geohanna | |
dc.date.accessioned | 2020-08-12T21:59:35Z | |
dc.date.available | 2020-08-12T21:59:35Z | |
dc.date.created | 2020-08-12T21:59:35Z | |
dc.date.issued | 2020-04-23 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78006 | |
dc.description.abstract | Giardia duodenalis is a protozoan of medical interest since it is the causative agent of giardiasis, the gastrointestinal disease with the highest incidence worldwide, for which there is still no vaccine or efficient treatment. In order to find new pharmacological targets against this parasite, the study of enzymes of its energy metabolism such as sirtuins, adenine dinucleotide-dependent nicotinamide (NAD) have been addressed. Previously, in the Basic Research Laboratory in Biochemistry - LIBBIQ, G. duodenalis sirtuins have been studied and GdSir2.1 was identified as a NAD-dependent cytoplasmic deacetylase, in
parallel, GdSir2.2 was also identified as a dependent deacetylase of NAD, but nuclear subcellular location.
In this work, we studied another candidate for sirtuin (GdSir2.3) through the use of bioinformatics tools for the construction of structural models; and the development of experimental tools such as the recombinant protein and the production of antibodies that allowed the identification of the endogenous protein in the parasite. With the bioinformatics tools, typical characteristics of the Sirtuine family were identified in the candidate's sequence. On the other hand, with the experimental tools the recombinant protein 6xHisGdSir2.3 was obtained, which when evaluated enzymatically demonstrated NADdependent deacetylase activity; and that served as an antigen in the production of IgY-α6xHisGdSir2.3 for the identification of endogenous protein in trophozoites and cysts of G. duodenalis finding a cytoplasmic distribution in both stages. The above corresponds to what is documented in other studies where GdSir2.3 is pointed out as an important regulator of encysting due to its increased expression during this stage of the life cycle, constituting it as a promising pharmacological target for the control of this parasitemia | |
dc.description.abstract | Giardia duodenalis es un protozoario de interés médico ya que es el agente causal de la giardiasis, la enfermedad gastrointestinal de mayor incidencia a nivel mundial, para la cual no se cuenta aún con una vacuna o un tratamiento eficiente. En aras de buscar nuevos blancos farmacológicos contra este parásito se ha abordado el estudio de las enzimas de su metabolismo energético como las sirtuinas, deacetilasas dependientes del dinucleótido de adenina y nicotinamida (NAD). Previamente en el Laboratorio de Investigaciones Básicas en Bioquímica – LIBBIQ se han estudiado las sirtuinas de G. duodenalis y se
identificó a la GdSir2.1 como una deacetilasa citoplasmática dependiente de NAD, paralelamente, se identificó a GdSir2.2 también como una deacetilasa dependiente de NAD, pero de localización subcelular nuclear.
En este trabajo se estudió otro candidato a sirtuina (GdSir2.3) mediante el uso de herramientas bioinformáticas para la construcción de modelos estructurales; y el desarrollo de herramientas experimentales como la proteína recombinante y la producción de anticuerpos que permitieron identificar la proteína endógena en el parásito. Con las herramientas bioinformáticas se identificaron características típicas de la familia sirtuina en la secuencia del candidato. Por otra parte, con las herramientas experimentales se obtuvo la proteína recombinante 6xHis – GdSir2.3 que al ser evaluada enzimáticamente
demostró actividad deacetilasa dependiente de NAD; y que sirvió como antígeno en la producción de los IgY – α – 6xHisGdSir2.3 para la identificación de la proteína endógena en trofozoítos y quistes de G. duodenalis encontrando una distribución citoplasmática en ambos estadios. Lo anterior corresponde por lo documentado en otros estudios donde se señala a GdSir2.3 como un importante regulador de la enquistación debido a su aumento de expresión durante esta etapa del ciclo de vida, constituyéndola como un blanco farmacológico promisorio para el control de esta parasitemia | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Departamento de Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Ansell BRE, McConville MJ, Ma’ayeh SY, et al. Drug resistance in Giardia
duodenalis. Biotechnol Adv. 2015;33(6):888-901.
doi:10.1016/j.biotechadv.2015.04.009 | |
dc.relation | Lujan HD, Svard S. Giardia A Model Organism.; 2011.
doi:10.1017/CBO9781107415324.004 | |
dc.relation | Adam RD. Biology of Giardia lamblia . Clin Microbiol Rev . 2001;14(3):447-475.
doi:10.1128/CMR.14.3.447-475.2001 | |
dc.relation | Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia.
Microbes Infect. 2010;12(1):71-80. doi:10.1016/j.micinf.2009.09.008 | |
dc.relation | Erlandsen SL, Macechko PT, Keulen H V, Jarrol EL. Formation of the Giardia Cyst
Wall: Studies on Extracellular Assembly Using lmmunogold Labeling and High
Resolution Field Emission SEM. J Eukariotic Microbiol. 1996;43(5):416-429.
doi:10.1111/j.1550-7408.1996.tb05053.x | |
dc.relation | Instituto Nacional de Salud. Investigadores del Instituto Nacional de Salud
desarrollaron prueba diagnóstica para la detección de la giardiasis, enfermedad
intestinal que afecta principalmente a la población en edad escolar. 2017. | |
dc.relation | Feng Y, Xiao L. Zoonotic Potential and Molecular Epidemiology of Giardia Species
and Giardiasis †. 2011;24(1):110-140. doi:10.1128/CMR.00033-10 | |
dc.relation | Vázquez O, Campos T. Giardiasis. La parasitosis más frecuente a nivel mundial.
Rev del Cent Investig Univ La Salle. 2009;8(31):75-90. | |
dc.relation | Robertson LJ, Hanevik K, Escobedo AA, Mørch K, Langeland N. Giardiasis – why
do the symptoms sometimes never stop? Trends Parasitol. 2010;26(2):75-82.
doi:10.1016/J.PT.2009.11.010 | |
dc.relation | . Escobedo AA, Lalle M, Hrastnik NI, et al. Combination therapy in the management
of giardiasis: What laboratory and clinical studies tell us, so far. Acta Trop.
2016;162(616):196-205. doi:10.1016/j.actatropica.2016.06.026 | |
dc.relation | Hernández Ceruelos A, Romero-Quezada LC, Ruvalcaba Ledezma JC, López
Contreras L. Therapeutic uses of metronidazole and its side effects: An update.
Eur Rev Med Pharmacol Sci. 2019;23(1):397-401.
doi:10.26355/eurrev_201901_16788 | |
dc.relation | Nabarro LEB, Lever RA, Armstrong M, Chiodini PL. Increased incidence of
nitroimidazole-refractory giardiasis at the Hospital for Tropical Diseases, London:
2008–2013. Clin Microbiol Infect. 2015;21(8):791-796.
doi:10.1016/j.cmi.2015.04.019 | |
dc.relation | Flick F, L??scher B. Regulation of sirtuin function by posttranslational
modifications. Front Pharmacol. 2012;3 FEB(February):1-13.
doi:10.3389/fphar.2012.00029 | |
dc.relation | Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like
proteins. Biochem Biophys Res Commun. 2000;273(2):793-798.
doi:10.1006/bbrc.2000.3000 | |
dc.relation | Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: What
we know and what we don’t. Biochim Biophys Acta - Proteins Proteomics.
2010;1804(8):1604-1616. doi:10.1016/j.bbapap.2009.09.009 | |
dc.relation | Sauve AA, Wolberger C, Schramm VL, Boeke JD. The Biochemistry of Sirtuins.
Annu Rev Biochem. 2006;75(1):435-465.
doi:10.1146/annurev.biochem.74.082803.133500 | |
dc.relation | Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD
complex. Cell. 2001;105(2):269-279. doi:10.1016/S0092-8674(01)00317-8 | |
dc.relation | Sherman JM, Stone EM, Freeman-cook LL, Brachmann CB, Boeke JD, Pillus L.
The Conserved Core of a Human SIR2 Homologue Functions in Yeast Silencing.
1999;10(September):3045-3059. | |
dc.relation | Parenti Marco, Bruzzone Santina, Nencioni Alessio DRA. Selectivity hot-spots of
sirtuin catalytic cores Authors. Mol Biosyst. 2015;11(8):2263-2272.
doi:10.1039/b717819k | |
dc.relation | Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure
of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002;10(3):523-
535. doi:10.1016/S1097-2765(02)00628-7 | |
dc.relation | Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function.
PLoS One. 2008;3(12). doi:10.1371/journal.pone.0004020 | |
dc.relation | Sauve AA. Sirtuin chemical mechanisms. Biochim Biophys Acta - Proteins
Proteomics. 2010;1804(8):1591-1603. doi:10.1016/j.bbapap.2010.01.021 | |
dc.relation | Greiss S, Gartner A. Sirtuin/Sir2 phylogeny, evolutionary considerations and
structural conservation. Mol Cells. 2009;28(5):407-415. doi:10.1007/s10059-009-
0169-x | |
dc.relation | Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function.
Biochem J. 2007;404(1):1-13. doi:10.1042/BJ20070140 | |
dc.relation | Bheda P, Jing H, Wolberger C, Lin H. The Substrate Specificity of Sirtuins. 2016.
doi:10.1146/annurev-biochem-060815-014537 | |
dc.relation | Rack JGM, Morra R, Barkauskaite E, et al. Identification of a Class of Protein ADPRibosylating Sirtuins in Microbial Pathogens. Mol Cell. 2015;59(2):309-320.
doi:10.1016/j.molcel.2015.06.013 | |
dc.relation | Kowieski TM, Lee S, Denu JM. Acetylation-dependent ADP-ribosylation by
Trypanosoma brucei Sir2. J Biol Chem. 2008;283(9):5317-5326.
doi:10.1074/jbc.M707613200 | |
dc.relation | Du J, Jiang H, Lin H. Investigating the ADP-ribosyltransferase activity of sirtuins
with NAD analogues and32P-NAD. Biochemistry. 2009;48(13):2878-2890.
doi:10.1021/bi802093g | |
dc.relation | Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin nhibition by nicotinamide: Altering the NAD + cosubstrate specificity of a Sir2 enzyme. Mol Cell.
2005;17(6):855-868. doi:10.1016/j.molcel.2005.02.022 | |
dc.relation | Villalba JM, Alcaín FJ. Sirtuin activators and inhibitors. BioFactors. 2012;38(5):349-
359. doi:10.1002/biof.1032 | |
dc.relation | Ajami M, Pazoki-Toroudi H, Amani H, et al. Therapeutic role of sirtuins in
neurodegenerative disease and their modulation by polyphenols. Neurosci
Biobehav Rev. 2017;73:39-47. doi:10.1016/j.neubiorev.2016.11.022 | |
dc.relation | Dai H, Kustigian L, Carney D, et al. SIRT1 activation by small molecules:Kinetic
and biophysical evidence for direct interaction of enzyme and activator. J Biol
Chem. 2010;285(43):32695-32703. doi:10.1074/jbc.M110.133892 | |
dc.relation | Kim S, Benguria A, Lai C-Y, Jazwinski SM. Modulation of Life-span by Histone
Deacetylase Genes in Saccharomyces cerevisiae. Mol Biol Cell. 1999;10(10):3125-
3136. doi:10.1091/mbc.10.10.3125 | |
dc.relation | Berger F, Ramírez-Hernández MH, Ziegler M. The new life of a centenarian:
Signalling functions of NAD(P). Trends Biochem Sci. 2004;29(3):111-118.
doi:10.1016/j.tibs.2004.01.007 | |
dc.relation | Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins:
The «magnificent seven», function, metabolism and longevity. Ann Med.
2007;39(5):335-345. doi:10.1080/07853890701408194 | |
dc.relation | Wątroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins,
epigenetics and longevity. Ageing Res Rev. 2017;40:11-19.
doi:10.1016/j.arr.2017.08.001 | |
dc.relation | Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett.
2011;585(13):2041-2048. doi:10.1016/j.febslet.2010.11.016 | |
dc.relation | Yoshino J, Baur JA, Imai S ichiro. NAD+Intermediates: The Biology and
Therapeutic Potential of NMN and NR. Cell Metab. 2017;2(2017).
doi:10.1016/j.cmet.2017.11.002 | |
dc.relation | Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med. 2012;52(2):281-290.
doi:10.1016/j.freeradbiomed.2011.10.484 | |
dc.relation | Sablina AA, Budanov A V., Ilyinskaya G V., Agapova LS, Kravchenko JE,
Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med.
2005;11(12):1306-1313. doi:10.1038/nm1320 | |
dc.relation | Kume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1)
attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation.
Free Radic Biol Med. 2006;40(12):2175-2182.
doi:10.1016/j.freeradbiomed.2006.02.014 | |
dc.relation | Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox
stressors. Free Radic Biol Med. 2012;52(2):281-290.
doi:10.1016/j.freeradbiomed.2011.10.484 | |
dc.relation | Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage
and prevention of age-related hearing loss under Caloric Restriction. Cell.
2010;143(5):802-812. doi:10.1016/j.cell.2010.10.002 | |
dc.relation | Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces
oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662-
667. doi:10.1016/j.cmet.2010.11.015 | |
dc.relation | Imai S ichiro, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell
Biol. 2014;24(8):464-471. doi:10.1016/j.tcb.2014.04.002 | |
dc.relation | World Health Organization. World Malaria Report 2017.; 2017.
doi:http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/ | |
dc.relation | Merrick CJ, Dzikowski R, Imamura H, Chuang J, Deitsch K, Duraisingh MT. The
effect of Plasmodium falciparum Sir2a histone deacetylase on clonal and
longitudinal variation in expression of the var family of virulence genes. Int J
Parasitol. 2010;40(1):35-43. doi:10.1016/j.ijpara.2009.06.012 | |
dc.relation | Tonkin CJ, Carret CK, Duraisingh MT, et al. Sir2 paralogues cooperate to regulate
virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 2009;7(4):0771-0788. doi:10.1371/journal.pbio.1000084 | |
dc.relation | Dam S, Lohia A. Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and
regulates the number of microtubular assemblies during the cell cycle. Cell
Microbiol. 2010;12(7):1002-1014. doi:10.1111/j.1462-5822.2010.01449.x | |
dc.relation | Religa AA, Waters AP. Sirtuins of parasitic protozoa: In search of function(s). Mol
Biochem Parasitol. 2012;185(2):71-88. doi:10.1016/j.molbiopara.2012.08.003 | |
dc.relation | Alsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is
involved in both DNA repair and telomeric gene silencing but is not required for
antigenic variation. Mol Microbiol. 2007;63(3):724-736. doi:10.1111/j.1365-
2958.2006.05553.x | |
dc.relation | Carranza PG, Gargantini PR, Prucca CG, et al. Specific histone modifications play
critical roles in the control of encystation and antigenic variation in the earlybranching eukaryote Giardia lamblia. Int J Biochem Cell Biol. 2016;81:32-43.
doi:10.1016/j.biocel.2016.10.010 | |
dc.relation | Herrera E, Contreras LE, Suárez AG, Diaz GJ. GlSir2 . 1 of Giardia lamblia is a
NAD D -dependent cytoplasmic deacetylase. 2019;(February):1-17.
doi:10.1016/j.heliyon.2019.e01520 | |
dc.relation | Wang Y-H, Zheng G-X, Li Y-J. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a
nuclear-located and NAD+-dependent deacethylase. Exp Parasitol. 2016;169:28-
33. doi:10.1016/j.exppara.2016.07.002 | |
dc.relation | Forero-Baena N, S??nchez-Lancheros D, Buitrago JC, Bustos V, Ram??rezHern??ndez MH. Identification of a nicotinamide/nicotinate mononucleotide
adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61-69.
doi:10.1016/j.biopen.2015.11.001 | |
dc.relation | Wang YH, Zheng GX, Li YJ. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a
nuclear-located and NAD+-dependent deacethylase. Exp Parasitol. 2016;169:28-
33. doi:10.1016/j.exppara.2016.07.002 | |
dc.relation | Carranza P, Gargantini P, Prucca C, et al. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the earlybranching eukaryote Giardia lamblia. Int J Biochem Cell Biol. 2016;81:32-43.
doi:10.1016/j.biocel.2016.10.010 | |
dc.relation | Anderson KA, Madsen AS, Olsen CA, Hirschey MD. Metabolic control by sirtuins
and other enzymes that sense NAD+, NADH, or their ratio. Biochim Biophys Acta -
Bioenerg. 2017;1858(12):991-998. doi:10.1016/j.bbabio.2017.09.005 | |
dc.relation | Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of
proteins via subfamily domain architectures. Nucleic Acids Res.
2017;45(D1):D200-D203. doi:10.1093/nar/gkw1129 | |
dc.relation | El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in
2019. Nucleic Acids Res. 2018;47(D1):D427-D432. doi:10.1093/nar/gky995 | |
dc.relation | Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of
protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
http://dx.doi.org/10.1093/nar/gky427. | |
dc.relation | Yang J, Yan R, Roy A, Xu D, J P, Zhang Y. The I-TASSER Suite: Protein structure
and function prediction. Nat Methods. 2015;12(1):7-8. doi:10.1038/nmeth.3213 | |
dc.relation | Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the
Robetta server. Nucleic Acids Res. 2004;32(Web Server issue):W526-W531.
doi:10.1093/nar/gkh468 | |
dc.relation | Lovell SC, Davis IW, Adrendall WB, et al. Structure validation by C alpha geometry:
phi,psi and C beta deviation. Proteins-Structure Funct Genet. 2003;50(August
2002):437-450. doi:10.1002/prot.10286 | |
dc.relation | Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera - A visualization
system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-
1612. doi:10.1002/jcc.20084 | |
dc.relation | Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of
eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351-1362.
doi:10.1006/jmbi.1999.3310 | |
dc.relation | Xue Y, Liu Z, Cao J, et al. GPS 2.1: Enhanced prediction of kinase-specific
phosphorylation sites with an algorithm of motif length selection. Protein Eng Des
Sel. 2011;24(3):255-260. doi:10.1093/protein/gzq094 | |
dc.relation | QIAGEN. Blood Mini Handbook QIAGEN Sample and Assay Technologies.
2012;(June). http://www.qiagen.com/knowledge-and-support/resourcecenter/resource-download.aspx?id=67893a91-946f-49b5-8033-
394fa5d752ea&lang=en. | |
dc.relation | Gallego E, Alvarado M, Wasserman M. Identification and expression of the protein
ubiquitination system in Giardia intestinalis. Parasitol Res. 2007;101(1):1-7.
doi:10.1007/s00436-007-0458-2 | |
dc.relation | Nieto-Clavijo CA, Marín-Mogollón CY, Contreras-Rodríguez LE, RamírezHernández MH. Study of Specific Region of Plasmodium falciparum
Nicotinamide/Nicotinate Mononucleotide Adenylyl Transferase (PfNMNAT):
Characterizing a Possible Therapeutic Target. J Mol Genet Med. 2017;11(4).
doi:10.4172/1747-0862.1000311 | |
dc.relation | Invitrogen TM. User Manual ChampionTM pET Directional TOPO® Expression Kits.
Invit User Guid. 2010;(25). | |
dc.relation | Chung CT, Miller RH. [43] Preparation and storage of competent Escherichia coli
cells. Methods Enzymol. 1993;218:621-627. doi:10.1016/0076-6879(93)18045-E | |
dc.relation | AU - Froger A, AU - Hall JE. Transformation of Plasmid DNA into E. coli Using the
Heat Shock Method. JoVE. 2007;(6):e253. doi:doi:10.3791/253 | |
dc.relation | Ehrt S, Schnappinger D. Isolation of Plasmids from E. coli by Alkaline Lysis BT - E.
coli Plasmid Vectors: Methods and Applications. En: Casali N, Preston A, eds.
Totowa, NJ: Humana Press; 2003:75-78. doi:10.1385/1-59259-409-3:75 | |
dc.relation | ThermoFisher. Eco32I (EcoRV). :8-10. | |
dc.relation | Niño CH, Forero-Baena N, Contreras LE, Sánchez-Lancheros D, Figarella K,
Ramírez MH. Identification of the nicotinamide mononucleotide adenylyltransferase
of Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2015;110(7):890-897.
doi:10.1590/0074-02760150175 | |
dc.relation | Herrera E. Estudio molecular y bioquímico de un candidato a sirtuina en Giardia
duodenalis. 2017 | |
dc.relation | Brunelle JL, Green R. Chapter Twelve - One-dimensional SDS-Polyacrylamide Gel
Electrophoresis (1D SDS-PAGE). En: Lorsch JBT-M in E, ed. Laboratory Methods
in Enzymology: Protein Part C. Vol 541. Academic Press; 2014:151-159.
doi:https://doi.org/10.1016/B978-0-12-420119-4.00012-4 | |
dc.relation | Mahmood T, Yang PC. Western blot: Technique, theory, and trouble shooting. N
Am J Med Sci. 2012;4(9):429-434. doi:10.4103/1947-2714.100998 | |
dc.relation | Bornhorst JA, Falke JJ. [16] Purification of proteins using polyhistidine affinity tags.
Methods Enzymol. 2000;326:245-254. doi:10.1016/S0076-6879(00)26058 | |
dc.relation | Moreno-González, Paula A.; Diaz, Gonzalo J.; Ramírez-Hernández MH.
Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de
inclusión de una proteína recombinante central en el metabolismo del NAD+. Rev
Colomb Química. 2013;42(2):27. doi:10.1002/bdm.565 | |
dc.relation | MBL International Corporation. CycLex® SIRT2 Deacetylase Fluorometric Assay
Kit Ver.2. | |
dc.relation | Sacconnay L, Carrupt PA, Nurisso A. Human sirtuins: Structures and flexibility. J
Struct Biol. 2016;196(3):534-542. doi:10.1016/j.jsb.2016.10.008 | |
dc.relation | Avalos JL, Boeke JD, Wolberger C. Structural basis for the mechanism and
regulation of Sir2 enzymes. Mol Cell. 2004;13(5):639-648. doi:10.1016/S1097-
2765(04)00082-6 | |
dc.relation | Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes
its enzymatic activity. PLoS One. 2009;4(12). doi:10.1371/journal.pone.0008414 | |
dc.relation | North BJ, Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-
dependent phosphorylation. J Biol Chem. 2007;282(27):19546-19555.
doi:10.1074/jbc.M702990200 | |
dc.relation | Olsen J V., Vermeulen M, Santamaria A, et al. Quantitative phosphoproteomics
revealswidespread full phosphorylation site occupancy during mitosis. Sci Signal.
2010;3(104). doi:10.1126/scisignal.2000475 | |
dc.relation | Yadav GS, Ravala SK, Malhotra N, Chakraborti PK. Phosphorylation modulates
catalytic activity of mycobacterial sirtuins. Front Microbiol. 2016;7(MAY):1-13.
doi:10.3389/fmicb.2016.00677 | |
dc.relation | Chini CCS, Tarrag MG, Chini EN. NAD and the aging process: Role in life, death
and everything in between. Mol Cell Endocrinol. 2016:1-13.
doi:10.1016/j.mce.2016.11.003 | |
dc.relation | Bittencourt-Silvestre J, Lemgruber L, De Souza W. Encystation process of Giardia
lamblia: Morphological and regulatory aspects. Arch Microbiol. 2010;192(4):259-
265. doi:10.1007/s00203-010-0554-z | |
dc.relation | Abel ES, Davids BJ, Robles LD, Loflin CE, Gillin FD, Chakrabarti R. Possible Roles
of Protein Kinase A in Cell Motility and Excystation of the Early Diverging
Eukaryote Giardia lamblia. J Biol Chem. 2001;276(13):10320-10329.
doi:10.1074/jbc.M006589200 | |
dc.relation | Hashimoto A, Gao C, Mastio J, et al. Inhibition of casein kinase 2 disrupts
differentiation of myeloid cells in cancer and enhances the efficacy of
immunotherapy in mice. Cancer Res. 2018;78(19):5644-5655. doi:10.1158/0008-
5472.CAN-18-1229 | |
dc.relation | Jung SI, Rodriguez N, Irrizary J, et al. Yeast casein kinase 2 governs morphology,
biofilm formation, cell wall integrity, and host cell damage of Candida albicans.
PLoS One. 2017;12(11):1-20. doi:10.1371/journal.pone.0187721 | |
dc.relation | Sugantha priya, S., Gowri Shankar, J., Thirumalaisamy , R., Kavitha, P., Prakash,
B., Arunachalam, G., Selvamuthukumar S. Over Expression of IPTG inducible GST
protein in E . coli BL21. J Biomed Sci Res. 2010;2(1):54-59. | |
dc.relation | Joseph BC, Pichaimuthu S, Srimeenakshi S. An Overview of the Parameters for
Recombinant Protein Expression in Escherichia coli. J Cell Sci Ther. 2015;06(05).
doi:10.4172/2157-7013.1000221 | |
dc.relation | Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle , a
novel Escherichia coli protein expression strain capable of correctly folding
disulfide bonded proteins in its cytoplasm. 2012:1-16. | |
dc.relation | Gopal GJ, Kumar A. Strategies for the production of recombinant protein in
escherichia coli. Protein J. 2013;32(6):419-425. doi:10.1007/s10930-013-9502-5 | |
dc.relation | North BJ, Schwer B, Ahuja N, Marshall B, Verdin E. Preparation of enzymatically
active recombinant class III protein deacetylases. Methods. 2005;36(4):338-345.
doi:10.1016/j.ymeth.2005.03.004 | |
dc.relation | Gaberc-Porekar V, Menart V. Potential for using histidine tags in purification of
proteins at large scale. Chem Eng Technol. 2005;28(11):1306-1314.
doi:10.1002/ceat.200500167 | |
dc.relation | Birkeland SR, Preheim SP, Davids BJ, et al. Transcriptome analyses of the Giardia
lamblia life cycle. Mol Biochem Parasitol. 2010;174(1):62-65.
doi:10.1016/j.molbiopara.2010.05.010 | |
dc.relation | Sonda S, Morf L, Bottova I, et al. Epigenetic mechanisms regulate stage
differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol.
2010;76(1):48-67. doi:10.1111/j.1365-2958.2010.07062.x | |
dc.relation | Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian
SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011-1018.
doi:10.4161/cc.6.9.4219 | |
dc.relation | Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in
disease and physiology. Ageing Res Rev. 2019;55(September):100961. | |
dc.relation | Xu Y, Li F, Lv L, et al. Oxidative stress activates sirt2 to deacetylate and stimulate
phosphoglycerate mutase. Cancer Res. 2014;74(13):3630-3642.
doi:10.1158/0008-5472.CAN-13-3615 | |
dc.relation | Ritagliati C, Alonso VL, Manarin R, Cribb P, Serra EC. Overexpression of
Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma
cruzi Growth and Cell Invasion. PLoS Negl Trop Dis. 2015;9(4):1-22.
doi:10.1371/journal.pntd.0003725 | |
dc.relation | Evans-Osses I, Mojoli A, Monguió-Tortajada M, et al. Microvesicles released from
Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol.
2017;96(2):131-142. doi:10.1016/j.ejcb.2017.01.005 | |
dc.relation | Ma’ayeh SY, Liu J, Peirasmaki D, et al. Characterization of the Giardia intestinalis
secretome during interaction with human intestinal epithelial cells: The impact on
host cells. Vol 11.; 2017. doi:10.1371/journal.pntd.0006120 | |
dc.relation | Yoon YK, Ali MA, Wei AC, Shirazi AN, Parang K, Choon TS. Benzimidazoles as
new scaffold of sirtuin inhibitors: Green synthesis, in vitro studies, molecular
docking analysis and evaluation of their anti-cancer properties. Eur J Med Chem.
2014;83:448-454. doi:10.1016/j.ejmech.2014.06.060 | |
dc.relation | Sacconnay L, Smirlis D, Queiroz EF, et al. Structural insights of SIR2rp3 proteins
as promising biotargets to fight against Chagas disease and leishmaniasis. Mol
Biosyst. 2013;9(9):2223-2230. doi:10.1039/c3mb70180h | |
dc.relation | Zheng W. Sirtuins as emerging anti-parasitic targets. Eur J Med Chem.
2013;59:132-140. doi:10.1016/j.ejmech.2012.11.014 | |
dc.relation | Moniot S, Weyand M, Steegborn C. Structures, substrates, and regulators of
mammalian Sirtuins - opportunities and challenges for drug development. Front
Pharmacol. 2012;3 FEB(February):1-5. doi:10.3389/fphar.2012.00016 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Aproximación al estudio de las sirtuinas de g. Duodenalis: Evaluación y caracterización de un nuevo candidato | |
dc.type | Otro | |