dc.contributorGonzález Duque, Carlos Mario
dc.contributorAristizábal Zuluaga, Beatriz Helena
dc.contributorGrupo de Trabajo Académico en Ingeniería Hidráulica y Ambiental
dc.creatorCifuentes Castaño, Felipe
dc.date.accessioned2022-03-04T18:09:22Z
dc.date.accessioned2022-09-21T14:34:05Z
dc.date.available2022-03-04T18:09:22Z
dc.date.available2022-09-21T14:34:05Z
dc.date.created2022-03-04T18:09:22Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81132
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3368907
dc.description.abstractThe ability of the Weather Research and Forecasting model couple with chemistry (WRF-Chem) to accurately represent the atmospheric processes depends on the accuracy of the input information and the adequate model configuration for the intended application. In this study, WRF-Chem was used to test the sensitivity of CO and O3 predictions to (I) lateral chemical boundary conditions (LCBC), (II) domain configurations, (III) nesting techniques, (IV) chemical mechanisms, (V) local anthropogenic emission inventories and (VI) biogenic emission inventories. For that purpose, a total of eight simulations were conducted over the city of Manizales, characterized by its complex topography. The model outputs were intercompared with each other and against ground measurements, in order to identify the effect of the proposed options in the prediction of CO and O3, and ultimately define an optimal model configuration that could reduce the prediction errors. The results show that CO predictions were not sensitive to LCBC, domain configurations, or chemical mechanisms, but exhibited a strong dependency on the anthropogenic emission inventory and the nesting technique. This is caused because CO is a primary pollutant, and its variations are mainly associated with the local emission patterns, whereas the impact of CO transport from other areas, and the production/consumption of this pollutant in the atmosphere are neglectable for the city of Manizales. Indeed, the main contribution towards improving CO accuracy was the implementation of the anthropogenic emission inventory with IVE emission factors, instead of COPERT, due to a more representative activity factors approach of IVE for the particular conditions in Manizales, characterized by road slopes that exceed inclinations of 22%. On the other hand, using a two-way nesting approach provided the worst performance for CO predictions, due to inaccurate predictions of nighttime CO concentrations. O3 predictions exhibited a strong sensitivity to LCBC. The use of CAM-Chem LCBC reduced considerably the overestimation (MB: 3.1 vs 11.5 ppbv) of O3 predictions with the default static LCBC (NALROM). Likewise, the use of a 3-nested domain with a 1:5 nesting ratio enhanced O3 predictions and reduced the computational time needed to run the simulations compared to using 4-nested domains with a 1:3 nesting ratio. Similar to CO, the prediction of O3 were disbenefit by using a two-way nesting approach, in this case, due to higher overestimations during the daytime compared to using a one-way nesting approach. The CBMZ chemical mechanism enhanced the representation of O3 dynamics due to more efficient O3–NOX titration reactions, in comparison with the RADM2 mechanism. O3 predictions were also sensitive to the anthropogenic emission inventory, with the IVE emission factors leading to the most accurate results. Finally, despite the significant difference in biogenic emission fluxes with the biogenic emission models implemented (MEGAN and BIGA), O3 predictions were almost identical with both options. In summary, the best model performance was obtained by using CAM-Chem LCBC, 3-nested domains with a 1:5 nesting ratio, a one-way nesting approach, the CBMZ chemical mechanism, the anthropogenic emission inventory with IVE emission factors, and BIGA biogenic model. These results can guide WRF-Chem setup for future air quality simulations in the city of Manizales, and other cities with similar topographic conditions.
dc.description.abstractLa habilidad del modelo Weather Research and Forecasting coupled with chemistry (WRF-Chem) pare representar de forma precisa los procesos atmosféricos está ligada a la precisión de la información de entrada al igual que a la configuración del modelo en sí mismo. En este estudio, se utilizó el modelo WRF-Chem para estudiar la sensibilidad de las predicciones de O3 y CO a (I) condiciones de borde laterales químicas (LCBC), (II) configuración de dominios, (III) opciones de anidamiento, (IV) mecanismos químicos, (V) inventarios de emisiones antropogénicos locales e (VI) inventarios de emisiones biogénicas. Por lo tanto, se realizaron un total de ocho simulaciones para la ciudad de Manizales, la cual se caracteriza por su topografía compleja. Los datos modelados fueron comparados entre sí y contra medidas en superficie, con el objetivo de verificar el impacto que tienen los cambios propuestos en la predicción del CO y O3, y en última medida, definir la configuración óptima, que permita reducir los errores de predicción del modelo. Los resultados muestran que el CO no fue sensible a LCBC, configuración de dominios ni mecanismos químicos, pero presentó una fuerte dependencia a los inventarios de emisiones antropogénicos y a la técnica de anidamiento empleada. Esto se debe a que el CO es un contaminante primario, y sus variaciones están asociadas a los patrones de emisiones locales, mientras que el transporte de CO de otras regiones, y el consumo/producción de este en la atmósfera no son representativos para la ciudad de Manizales. De hecho, el mejor desempeño en la predicción de CO fue obtenido al usar el inventario de emisión antropogénico con factores de emisión de la metodología IVE en lugar de COPERT, debido a que esta aproximación tiene factores de actividad más representativos para Manizales, ciudad que se caracteriza por tener carreteras con pendientes pronunciadas que exceden el 22% de inclinación. Por el contrario, el peor desempeño para predecir CO fue obtenido al utilizar una técnica de anidamiento two-way, la cual causa imprecisiones en la predicción de los perfiles nocturnos de CO. Las predicciones de O3 exhibieron una fuerte sensibilidad a las LCBC. Usar CAM-Chem para suplir las LCBC redujo considerablemente la sobreestimación (MB: 3.1 vs 11.5) de O3 en comparación con el LCBC estático que posee WRF-Chem por defecto (NALROM). Asi mismo, la aplicación de tres dominios anidados con una relación de anidamiento de 1:5 mejoro las predicciones de O3, al igual que redujo el tiempo computacional requerido para las simulaciones, en comparación con usar 4 dominios anidados con una relación de anidamiento de 1:3. Como paso con el CO, las predicciones de O3 se vieron afectadas al utilizar una técnica de anidamiento two-way, debido a que se incrementó la sobreestimación durante el periodo diurno. El mecanismo químico CBMZ represento de forma más precisa las dinámicas de la concentración de O3, debido a que este mecanismo estima reacciones de titulación O3-NOX más eficientes, en comparación con el mecanismo RADM2. Las predicciones de O3 también fueron sensibles a los inventarios de emisión antropogénicos, siendo el inventario desarrollado con factores de emisión IVE el que ofreció los resultados más precisos. Finalmente, a pesar de que hay una diferencia significativa en el flujo de emisiones biogénicas con los dos modelos empleados (MEGAN y BIGA), las predicciones de O3 fueron casi idénticas al emplear ambos modelos. En conclusión, la configuración del modelo que maximizo el desempeño incluye LCBC derivadas de CAM-Chem, tres dominios anidados con una relación de anidamiento de 1:5, una técnica de anidamiento one-way, el mecanismo químico CBMZ, la utilización de un inventario de emisiones con factores de emisión IVE, y el modelo biogénico BIGA. Estos resultados pueden guiar la configuración de WRF-Chem para ejercicios futuros de simulación atmosférica en la ciudad de Manizales, o en otras regiones con características topográficas similares.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationACOM. (n.d.). WRF-Chem. Retrieved February 18, 2020, from https://www2.acom.ucar.edu/wrf-chem
dc.relationAhmadov, R. (2012). Chemical mechanisms and KPP. Retrieved March 17, 2020, from https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2012/wrfchem_tutorial_gaschem.pdf
dc.relationAmanatidis, D. G., Myriokefalitakis, S., Fanourgakis, G., Daskalakis, N., & Kanakidou, M. (2020). Sensitivity of Atmospheric Composition Mesoscale Simulations in the Mediterranean to the Meteorological Data and Chemical Boundary Conditions. Springer Proceedings in Complexity. https://doi.org/10.1007/978-3-030-22055-6_53
dc.relationAntic, S., Laprise, R., Denis, B., & de Elía, R. (2004). Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Climate Dynamics, 26, 305–325. https://doi.org/10.1007/s00382-004-0438-5
dc.relationAppel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., … Young, J. O. (2017). Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development, 10, 1703–1732. https://doi.org/10.5194/gmd-10-1703-2017
dc.relationArcher-Nicholls, S., Lowe, D., Schultz, D. M., & McFiggans, G. (2016). Aerosol-radiation-cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution. Atmospheric Chemistry and Physics, 16, 5573–5594. https://doi.org/10.5194/acp-16-5573-2016
dc.relationBaklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Zhang, Y. (2014). Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmospheric Chemistry and Physics, 14(1), 317–398. https://doi.org/10.5194/acp-14-317-2014
dc.relationBalzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., Hirtl, M., San José, R., Tuccella, P., & Grell, G. A. (2015). WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties. Atmospheric Environment, 115, 604–619. https://doi.org/10.1016/j.atmosenv.2014.12.033
dc.relationBash, J. O., Baker, K. R., & Beaver, M. R. (2016). Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California. Geoscientific Model Development, 9(6), 2191–2207. https://doi.org/10.5194/GMD-9-2191-2016
dc.relationBela, M. M., Longo, K. M., Freitas, S. R., Moreira, D. S., Beck, V., Wofsy, S. C., Gerbig, C., Wiedemann, K., Andreae, M. O., & Artaxo, P. (2015). Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons. Atmospheric Chemistry and Physics, 15, 757–782. https://doi.org/10.5194/acp-15-757-2015
dc.relationBorge, R., de Miguel, I., de la Paz, D., Lumbreras, J., Pérez, J., & Rodríguez, E. (2012). Comparison of road traffic emission models in Madrid (Spain). Atmospheric Environment, 62, 461–471. https://doi.org/10.1016/J.ATMOSENV.2012.08.073
dc.relationCarmona Aparicio, L. G., Rincón Pérez, M. A., Castillo Robles, A. M., Galvis Remolina, B. R., Sáenz Pulido, H. E., Manrique Forero, R. A., & Pachón Quinche, J. E. (2016). Conciliación de inventarios top-down y bottom-up de emisiones de fuentes móviles en Bogotá, Colombia. Revista Tecnura, 20(49), 59. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a04
dc.relationChatani, S., Matsunaga, S. N., & Nakatsuka, S. (2015). Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmospheric Environment, 120, 38–50. https://doi.org/10.1016/J.ATMOSENV.2015.08.086
dc.relationChatani, S., Okumura, M., Shimadera, H., Yamaji, K., Kitayama, K., & Matsunaga, S. N. (2018). Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere, 9(5), 179. https://doi.org/10.3390/ATMOS9050179
dc.relationChurkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., & Butler, T. M. (2017). Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environmental Science and Technology, 51(11), 6120–6130. https://doi.org/10.1021/acs.est.6b06514
dc.relationCifuentes, F., González, C. M., & Aristizábal, B. H. (2021). Insights to WRF-Chem sensitivity in a zone of complex terrain in the tropical Andes: Effect of boundary conditions, chemical mechanisms, nesting, and domain configuration. Atmospheric Pollution Research, 12(6), 101093. https://doi.org/10.1016/j.apr.2021.101093
dc.relationCorpocaldas, & Universidad Nacional de Colombia. (2020). Aplicación de herramientas de simulación atmosférica en el estudio de la calidad del aire en Manizales.
dc.relationCuchiara, G. C., Rappenglück, B., Rubio, M. A., Lissi, E., Gramsch, E., & Garreaud, R. D. (2017). Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile. Atmospheric Environment, 166, 79–91. https://doi.org/10.1016/j.atmosenv.2017.07.002
dc.relationCuesta-Mosquera, A. P., Wahl, M., Acosta-López, J. G., García-Reynoso, J. A., & Aristizábal-Zuluaga, B. H. (2020). Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustainable Cities and Society, 52, 101852. https://doi.org/10.1016/j.scs.2019.101852
dc.relationCurci, G. (2012). On the Impact of Time-Resolved Boundary Conditions on the Simulation of Surface Ozone and PM10. In Air Pollution - Monitoring, Modelling, Health and Control. InTech. https://doi.org/10.5772/33703
dc.relationDenis, B., Laprise, R., & Caya, D. (2003). Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Climate Dynamics, 20(2–3), 107–126. https://doi.org/10.1007/s00382-002-0264-6
dc.relationDepartamento Nacional de Planeacion (DNP). (2018). Documento CONPES 3943. In Política para el mejoramiento de la calidad del aire. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3943.pdf
dc.relationEuropean Environment Agency (EEA). (2011). Using models for air quality assessment and planning: a guide. Retrieved February 18, 2020, from https://www.eea.europa.eu/highlights/using-models-for-air-quality
dc.relationEmission Inventory Improvement Program (EIIP). (1996). VOLUME V BIOGENIC SOURCES PREFERRED METHODS Final Report.
dc.relationEmmerson, K. M., Cope, M. E., Galbally, I. E., Lee, S., & Nelson, P. F. (2018). Isoprene and monoterpene emissions in south-east Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmospheric Chemistry and Physics, 18(10), 7539–7556. https://doi.org/10.5194/ACP-18-7539-2018
dc.relationEmmerson, K. M., Galbally, I. E., Guenther, A. B., Paton-Walsh, C., Guerette, E. A., Cope, M. E., Keywood, M. D., Lawson, S. J., Molloy, S. B., Dunne, E., Thatcher, M., Karl, T., & Maleknia, S. D. (2016). Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmospheric Chemistry and Physics, 16(11), 6997–7011. https://doi.org/10.5194/ACP-16-6997-2016
dc.relationEmmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., & Kloster, S. (2010). Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43–67. https://doi.org/10.5194/gmd-3-43-2010
dc.relationEnvironmental Protection Agency (EPA). (n.d.-a). Air Quality Models. Retrieved March 6, 2020, from https://www.epa.gov/scram/air-quality-models
dc.relationEnvironmental Protection Agency (EPA). (n.d.-b). Managing Air Quality - Emissions Inventories. Retrieved March 6, 2020, from https://www.epa.gov/air-quality-management-process/managing-air-quality-emissions-inventories
dc.relationEsteves-Booth, A., Muneer, T., Kubie, J., & Kirby, H. (2002). A review of vehicular emission models and driving cycles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(8), 777–797. https://doi.org/10.1243/09544060260171429
dc.relationFast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., & Peckham, S. E. (2006). Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. Journal of Geophysical Research Atmospheres, 111, D21305. https://doi.org/10.1029/2005JD006721
dc.relationFinlayson-Pitts, B. J., & Pitts, J. N. (2000). Chemistry of the Upper and Lower Atmosphere. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-257060-5.X5000-X
dc.relationForkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak, L., Lorenz, C., Im, U., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., & Žabkar, R. (2015). Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmospheric Environment, 115, 630–645. https://doi.org/10.1016/j.atmosenv.2014.10.056
dc.relationFranco, J.F., Gidhagen, L., Morales, R., Behrentz, E., 2019. Towards a better understanding of urban air quality management capabilities in Latin America. Environ. Sci. Policy 102, 43–53. https://doi.org/10.1016/J.ENVSCI.2019.09.011
dc.relationFries, A., Rollenbeck, R., Göttlicher, D., Nauss, T., Homeier, J., Peters, T., & Bendix, J. (2009). Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Erdkunde, 63(4), 321–336. https://doi.org/10.3112/erdkunde.2009.04.03
dc.relationGálvez, A., González, C.M., Franco, J.F., Morales, R., Rincon, J.M., Aristizábal, B.H., 2020. Monitoring of Fine Particulate Matter and Black Carbon, in Micro-Environments of Manizales Andean City: Pilot Study. Rev. Ing. Univ. Medellín 20, 129–146
dc.relationGarreaud, R. D. (2009). The Andes climate and weather. Advances in Geosciences, 22, 3–11. https://doi.org/10.5194/adgeo-22-3-2009
dc.relationGavidia-Calderón, M., Vara-Vela, A., Crespo, N. M., & Andrade, M. F. (2018). Impact of time-dependent chemical boundary conditions on tropospheric ozone simulation with WRF-Chem: An experiment over the Metropolitan Area of São Paulo. Atmospheric Environment, 195, 112–124. https://doi.org/10.1016/j.atmosenv.2018.09.026
dc.relationGeorgiou, G. K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., & Lelieveld, J. (2018). Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: Chemistry and aerosol mechanism intercomparison. Atmospheric Chemistry and Physics, 18(3), 1555–1571. https://doi.org/10.5194/acp-18-1555-2018
dc.relationGonzález, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM 10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003
dc.relationGonzález, Carlos M., Gómez, C. D., & Aristizábal, B. H. (2020). DROVE: An Algorithm for Spatial and Temporal Disaggregation of On-road Vehicle Emission Inventories. Aerosol and Air Quality Research, 20(12), 2765–2779. https://doi.org/10.4209/aaqr.2020.04.0184
dc.relationGonzález, Carlos Mario. (2017). Dynamic and impact of anthropogenic and natural atmospheric emissions in an andean city using an on-line eularian chemistry transport model. Case study: Manizales, Colombia. Universidad Nacional de Colombia.
dc.relationGreenberg, J. P., Guenther, A. B., Pétron, G., Wiedinmyer, C., Vega, O., Gatti, L. V., Tota, J., & Fisch, G. (2004). Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biology, 10(5), 651–662. https://doi.org/10.1111/j.1365-2486.2004.00758.x
dc.relationGrell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
dc.relationGuenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012
dc.relationGuenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., & Fall, R. (1993). Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. Journal of Geophysical Research, 98(D7), 12609–12617. https://doi.org/10.1029/93jd00527
dc.relationGuenther, A., Hewitt, C., & Erickson, D. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100(94), 8873–8892. https://doi.org/https://doi.org/10.1029/94JD02950
dc.relationGupta, M., & Mohan, M. (2015). Validation of WRF/Chem model and sensitivity of chemical mechanisms to ozone simulation over megacity Delhi. Atmospheric Environment, 122, 220–229. https://doi.org/10.1016/j.atmosenv.2015.09.039
dc.relationHarris, L. M., & Durran, D. R. (2010). An Idealized Comparison of One-Way and Two-Way Grid Nesting. Monthly Weather Review, 138(6), 2174–2187. https://doi.org/10.1175/2010MWR3080.1
dc.relationHodnebrog, Solberg, S., Stordal, F., Svendby, T. M., Simpson, D., Gauss, M., Hilboll, A., Pfister, G. G., Turquety, S., Richter, A., Burrows, J. P., & Denier Van Der Gon, H. A. C. (2012). Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 12(18), 8727–8750. https://doi.org/10.5194/acp-12-8727-2012
dc.relationHoshyaripour, G., Brasseur, G., Andrade, M. F., Gavidia-Calderón, M., Bouarar, I., & Ynoue, R. Y. (2016). Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2016.09.061
dc.relationIbarra-Espinosa, S., Ynoue, R., O’sullivan, S., Pebesma, E., De Fátima Andrade, M., & Osses, M. (2018). VEIN v0.2.2: an R package for bottom-up vehicular emissions inventories. Geoscientific Model Development, 11(6), 2209–2229. https://doi.org/10.5194/gmd-11-2209-2018
dc.relationInstitute for Health Metrics and Evaluation (IHME). (2018). Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2017 (GBD 2017) Results. In Seattle, United States: Institute for Health Metrics and Evaluation (IHME).
dc.relationJaffe, L. S. (1968). Ambient Carbon Monoxide And Its Fate in the Atmosphere. Journal of the Air Pollution Control Association, 18(8), 534–540. https://doi.org/10.1080/00022470.1968.10469168
dc.relationJang, Y., Eo, Y., Jang, M., Woo, J.-H., Kim, Y., Lee, J.-B., & Lim, J.-H. (2020). Impact of Land Cover and Leaf Area Index on BVOC Emissions over the Korean Peninsula. Atmosphere, 11(8), 806. https://doi.org/10.3390/ATMOS11080806
dc.relationJiang, J., Aksoyoglu, S., Ciarelli, G., Oikonomakis, E., El-Haddad, I., Canonaco, F., O’dowd, C., Ovadnevaite, J., Minguillón, M. C., Baltensperger, U., & Cruz, M. (2019). Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmospheric Chemistry and Physics, 19(6), 3747–3768. https://doi.org/10.5194/acp-19-3747-2019
dc.relationJiménez, P., Parra, R., & Baldasano, J. M. (2007). Influence of initial and boundary conditions for ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula. Environmental Modelling and Software, 22(9), 1294–1306. https://doi.org/10.1016/j.envsoft.2006.08.004
dc.relationKarlik, J. F., Chung, Y. J., & Winer, A. M. (2003). Biogenic emission inventory development: Field assessment of the GAP vegetation database in California. Physics and Chemistry of the Earth, 28(8), 315–325. https://doi.org/10.1016/S1474-7065(03)00051-2
dc.relationKhan, A. W., & Kumar, P. (2019). Impact of chemical initial and lateral boundary conditions on air quality prediction. Advances in Space Research, 64(6), 1331–1342. https://doi.org/10.1016/j.asr.2019.06.028
dc.relationKim, S., Guenther, A., & Apel, E. (2013). Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products. Environmental Sciences: Processes and Impacts, 15(7), 1301–1314. https://doi.org/10.1039/c3em00040k
dc.relationKnote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., Baró, R., Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J. L., San José, R., Giordano, L., Brunner, D., Yahya, K., & Zhang, Y. (2015). Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison. Atmospheric Environment, 115, 553–568. https://doi.org/10.1016/j.atmosenv.2014.11.066
dc.relationKovács, A., Leelőssy, Á., Mészáros, R., & Lagzi, I. (2019). Online coupled modeling of weather and air quality of Budapest using the WRF-Chem modelNo Title. Quarterly Journal of the Hungarian Meteorological Service, 123(2), 203–215. https://doi.org/10.28974/idojaras.2019.2.5
dc.relationKumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem model to simulate PM10 concentration over Bogota. Aerosol and Air Quality Research, 16(5), 1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318
dc.relationLamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., & Tyndall, G. K. (2012). CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development, 5(2), 369–411. https://doi.org/10.5194/gmd-5-369-2012
dc.relationLents, J., Walsh, M., He, K., Davis, N., Osses, M., Tolvett, S., & Liu, H. (n.d.). Air Quality Modeling. Handbook of Air Quality Management. Retrieved February 18, 2020, from http://aqbook.org/
dc.relationLi-Ramírez, J. A. (2017). Estimation of a biogenic volatile organic compounds emissions inventory generated for the Caldas department [Universidad Nacional]. https://repositorio.unal.edu.co/handle/unal/77421?show=full
dc.relationLi-Ramírez, J. A., Zambrano Nájera, J. del C., & Aristizábal Zuluaga, B. H. (2020). BVOCs emissions along the eastern and western slopes of the Andes central range - with strong altitudinal gradient over a wide range of Andean ecosystems: model estimation/disaggregation with BIGA. Environmental Modeling & Assessment, 25, 761–773.
dc.relationLindwall, F., Svendsen, S. S., Nielsen, C. S., Michelsen, A., & Rinnan, R. (2016). Warming increases isoprene emissions from an arctic fen. Science of the Total Environment, 553, 297–304. https://doi.org/10.1016/j.scitotenv.2016.02.111
dc.relationLongo, K. M., Freitas, S. R., Pirre, M., Marécal, V., Rodrigues, L. F., Panetta, J., Alonso, M. F., Rosário, N. E., Moreira, D. S., Gácita, M. S., Arteta, J., Fonseca, R., Stockler, R., Katsurayama, D. M., Fazenda, A., & Bela, M. (2013). The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): A regional atmospheric model system for integrated air quality and weather forecasting and research. Geoscientific Model Development, 6(5), 1389–1405. https://doi.org/10.5194/gmd-6-1389-2013
dc.relationMangones, S., Jaramillo, P., Fischbeck, P., & Rojas, N. (2019). Development of a high-resolution traffic emission model: Lessons and key insights from the case of Bogotá, Colombia. Environmental Pollution (Barking, Essex : 1987), 253, 552–559. https://doi.org/10.1016/J.ENVPOL.2019.07.008
dc.relationMar, K. A., Ojha, N., Pozzer, A., & Butler, T. M. (2016). Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: Model evaluation and chemical mechanism comparison. Geoscientific Model Development, 9(10), 3699–3728. https://doi.org/10.5194/gmd-9-3699-2016
dc.relationMinisterio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT). (2010). Manual de diseño de sistemas de vigilancia de la calidad del aire. In Protocolo para el monitoreo y seguimiento de la calidad del aire. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/contaminacion_atmosferica/Protocolo_Calidad_del_Aire_-_Manual_Diseño.pdf
dc.relationMcdonald, K. (2012). Air pollution in the urban atmosphere: Sources and consequences. In Metropolitan Sustainability: Understanding and Improving the Urban Environment (pp. 231–259). Elsevier Ltd. https://doi.org/10.1533/9780857096463.3.231
dc.relationMcKenna, D. S., Konopka, P., Grooß, J.-U., Günther, G., Rolf, M., Spang, R., Offermann, D., & Orsolini, Y. (2002). A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1. Formulation of advection and mixing. Journal of Geophysical Research, 107(D16), ACH 15-1-ACH 15-15. https://doi.org/10.1029/2000jd000114
dc.relationMena-Carrasco, M., Oliva, E., Saide, P., Spak, S. N., de la Maza, C., Osses, M., Tolvett, S., Campbell, J. E., Tsao, T. es C. C., & Molina, L. T. (2012). Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile. Science of the Total Environment, 429, 257–265. https://doi.org/10.1016/j.scitotenv.2012.04.037
dc.relationMena-Carrasco, M., Saide, P., Delgado, R., Hernandez, P., Spak, S., Molina, L., Carmichael, G., & Jiang, X. (2014). Regional climate feedbacks in Central Chile and their effect on air quality episodes and meteorology. Urban Climate, 10(5), 771–781. https://doi.org/10.1016/j.uclim.2014.06.006
dc.relationMoya Álvarez, A. S., Arredondo, R. E., & Yuli Posadas, R. Á. (2017). Determination of the presence of particles (PM10) in Peru produced by biomass burning using numerical models. Revista Internacional de Contaminacion Ambiental, 33(1), 99–108. https://doi.org/10.20937/RICA.2017.33.01.09
dc.relationMulena, G. C., Puliafito, S. E., & Lakkis, S. G. (2019). Application of Tropospheric Sulfate Aerosol Emissions to Mitigate Meteorological Phenomena with Extremely High Daily Temperatures. Environmental and Climate Technologies, 23(1), 14–40. https://doi.org/10.2478/rtuect-2019-0002
dc.relationNavarro-Barboza, H., Moya-Álvarez, A., Luna, A., & Fashé-Raymundo, O. (2020). Influence evaluation of PM10 produced by the burning of biomass in Peru on AOD, using the WRF-Chem. Atmósfera, 33(1), 71–86. https://doi.org/10.20937/atm.52711
dc.relationNichol, J., & Wong, M. S. (2011). Estimation of ambient BVOC emissions using remote sensing techniques. Atmospheric Environment, 45(17), 2937–2943. https://doi.org/10.1016/j.atmosenv.2011.01.028
dc.relationOderbolz, D. C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher, R., Skjøth, C. A., Plaß-Dülmer, C., & Prévôt, A. S. H. (2013). A comprehensive emission inventory of biogenic volatile organic compounds in Europe: Improved seasonality and land-cover. Atmospheric Chemistry and Physics, 13(4), 1689–1712. https://doi.org/10.5194/acp-13-1689-2013
dc.relationParra, R. (2018). Performance studies of planetary boundary layer schemes in WRF-Chem for the Andean region of Southern Ecuador. Atmospheric Pollution Research, 9(3), 411–428. https://doi.org/10.1016/j.apr.2017.11.011
dc.relationPeckham, S. E., Grell, G. A., McKeen, S. A., Ahmadov, R., Marrapu, P., Barth, M. C., Pfister, G., Wiedinmyer, C., Fast, J. D., Gustafson, W. I., Ghan, S. J., Zaveri, R. A., Easter, R. C., Bernard, J., Chapman, E., Hewson, M., Schmitz, R., Salzmann, M., Beck, V., & Freitas, S. R. (2015). WRF-Chem version 3.7 user’s guide. http://purl.fdlp.gov/GPO/gpo67735
dc.relationPellegatti Franco, D. M., Andrade, M. de F., Ynoue, R. Y., & Ching, J. (2019). Effect of Local Climate Zone (LCZ) classification on ozone chemical transport model simulations in Sao Paulo, Brazil. Urban Climate, 27, 293–313. https://doi.org/10.1016/j.uclim.2018.12.007
dc.relationPeñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144. https://doi.org/10.1016/J.TPLANTS.2009.12.005
dc.relationPfister, G. G., Parrish, D. D., Worden, H., Emmons, L. K., Edwards, D. P., Wiedinmyer, C., Diskin, G. S., Huey, G., Oltmans, S. J., Thouret, V., Weinheimer, A., & Wisthaler, A. (2011). Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast. Atmospheric Chemistry and Physics, 11(4), 1769–1790. https://doi.org/10.5194/acp-11-1769-2011
dc.relationPhoenix, D. B., Homeyer, C. R., & Barth, M. C. (2017). Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization. Earth and Space Science, 4(8), 454–471. https://doi.org/10.1002/2017EA000287
dc.relationPisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 12(12), 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019
dc.relationRafee, S. A. A., Martins, L. D., Kawashima, A. B., Almeida, D. S., Morais, M. V. B., Souza, R. V. A., Oliveira, M. B. L., Souza, R. A. F., Medeiros, A. S. S., Urbina, V., Freitas, E. D., Martin, S. T., & Martins, J. A. (2017). Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: A numerical study with the WRF-Chem model. Atmospheric Chemistry and Physics, 17(12), 7977–7995. https://doi.org/10.5194/acp-17-7977-2017
dc.relationRitter, M., Müller, M. D., Jorba, O., Parlow, E., & Liu, L. J. S. (2013). Impact of chemical and meteorological boundary and initial conditions on air quality modeling: WRF-Chem sensitivity evaluation for a European domain. Meteorology and Atmospheric Physics, 119, 59–70. https://doi.org/10.1007/s00703-012-0222-8
dc.relationSan José, R., Baklanov, A., Sokhi, R. S., Karatzas, K., & Pérez, J. L. (2008). Air Quality Modeling. In Encyclopedia of Ecology (pp. 111–123). https://doi.org/10.1016/B978-008045405-4.00201-9
dc.relationSeinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics. In Atmospheric Chemistry and Physics. Wiley. https://doi.org/10.5194/acp-5-139-2005
dc.relationSharma, A., Ojha, N., Pozzer, A., Mar, K. A., Beig, G., Lelieveld, J., & Gunthe, S. S. (2017). WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: Effects of emission inventories and chemical mechanisms. Atmospheric Chemistry and Physics, 17(23), 14393–14413. https://doi.org/10.5194/acp-17-14393-2017
dc.relationSivertsen, B., & Bartonova, A. (2012). Air quality management planning (AQMP). Chemical Industry and Chemical Engineering Quarterly, 18(4), 667−674. https://doi.org/10.2298/ciceq120110111s
dc.relationSoriano, C., Jorba, O., & Baldasano, J. M. (2005). One-Way Nesting Versus Two-Way Nesting: Does It Really Make a Difference? In Air Pollution Modeling and Its Application XV (pp. 177–185). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47813-7_18
dc.relationSrivastava, A., & Mazumdar, D. (2011). Monitoring and Reporting VOCs in Ambient Air. In Air Quality Monitoring, Assessment and Management. InTech. https://doi.org/10.5772/16774
dc.relationStockwell, W. R., Middleton, P., Chang, J. S., & Xiaoyan Tang. (1990). The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research, 95(D10), 16343–16367. https://doi.org/10.1029/jd095id10p16343
dc.relationStockwell, William R., Kirchner, F., Kuhn, M., & Seefeld, S. (1997). A new mechanism for regional atmospheric chemistry modeling. Journal of Geophysical Research Atmospheres, 102(D22), 25847–25879. https://doi.org/10.1029/97jd00849
dc.relationTalgo, K., Bowden, J., Adelman, Z., Morris, R. (2015). Western Air Quality Study (WAQS) Weather Research Forecast (WRF) Meteorological Model Final Modeling Protocol 2014 Modeling Year.
dc.relationTang, Y., Carmichael, G. R., Thongboonchoo, N., Chai, T., Horowitz, L. W., Pierce, R. B., Al-Saadi, J. A., Pfister, G., Vukovich, J. M., Avery, M. A., Sachse, G. W., Ryerson, T. B., Holloway, J. S., Atlas, E. L., Flocke, F. M., Weber, R. J., Huey, L. G., Dibb, J. E., Streets, D. G., & Brune, W. H. (2007). Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. Journal of Geophysical Research Atmospheres, 122(D10). https://doi.org/10.1029/2006JD007515
dc.relationVallero, D. (2014). Chapter 29 - Air Pollutant Emissions. In Fundamentals of Air Pollution (Fifth Edition) (pp. 787–827). Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-401733-7.00029-3
dc.relationvan Aals, R., Edwards, L., Pulles, T., De Saeger, E., Tombrou, M., & Tønnesen, D. (1998). Human activity and emission inventories. In Technical report No 11. Guidance report on preliminary assessment under EC air quality directives. https://www.eea.europa.eu/publications/TEC11a
dc.relationVara-Vela, A., Andrade, M. F., Kumar, P., Ynoue, R. Y., & Muñoz, A. G. (2016). Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: A numerical study with the WRF-Chem model. Atmospheric Chemistry and Physics, 16(2), 777–797. https://doi.org/10.5194/acp-16-777-2016
dc.relationVara-Vela, A., Muñoz, A., Lomas, A., S., González, C. M., Calderon, M. G., & Andrade, M. D. F. (2017). The Another Assimilation System for WRF-Chem (AAS4WRF): a new mass-conserving emissions preprocessor for WRF-Chem regional modelling. 2017 AGU Fall Meeting.
dc.relationWang, A. (2021). Extending Boundaries of Emission and Dispersion Modelling with Uncertainty Analysis and Data-Driven Models [University of toronto]. https://tspace.library.utoronto.ca/handle/1807/104940
dc.relationWang, Haikun, & Fu, L. (2010). Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1-modeling fuel consumption and emissions based on speed and vehicle-specific power. Journal of the Air and Waste Management Association, 60(12), 1463–1470. https://doi.org/10.3155/1047-3289.60.12.1463
dc.relationWang, Haikun, Fu, L., Lin, X., Zhou, Y., & Chen, J. (2009). A bottom-up methodology to estimate vehicle emissions for the Beijing urban area. Science of the Total Environment, 407(6), 1947–1953. https://doi.org/10.1016/j.scitotenv.2008.11.008
dc.relationWang, Hui, Wu, Q., Liu, H., Wang, Y., Cheng, H., Wang, R., Wang, L., Xiao, H., & Yang, X. (2018). Sensitivity of biogenic volatile organic compound emissions to leaf area index and land cover in Beijing. Atmospheric Chemistry and Physics, 18(13), 9583–9596. https://doi.org/10.5194/ACP-18-9583-2018
dc.relationWeber, E., 1982. Uses and Needs for Air Quality Modeling. Air Pollut. 63–100. https://doi.org/10.1007/978-1-4757-9131-0_3
dc.relationYahya, K., He, J., & Zhang, Y. (2015). Multiyear applications of WRF/Chem over continental U.S.: Model evaluation, variation trend, and impacts of boundary conditions. Journal of Geophysical Research, 120(24), 12748–12777. https://doi.org/10.1002/2015JD023819
dc.relationZannetti, P. (1990). Air Pollution Modeling. Theories, Computational Methods and Available Software (WIT PRESS).
dc.relationZaveri, R. A. (1999). A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research Atmospheres, 104(D23), 30387–30415. https://doi.org/10.1029/1999JD900876
dc.relationZhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., & Gu, D. (2021). Sensitivity of different BVOC emission schemes in WRF-Chem(v3.6) 1 to vegetation distributions and its impacts over East China 2. Geoscientific Model Development, Preprint. https://doi.org/10.5194/gmd-2021-29
dc.relationZhang, Y., Chen, Y., Sarwar, G., & Schere, K. (2012). Impact of gas-phase mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions: Mechanism implementation and comparative evaluation. Journal of Geophysical Research Atmospheres, 117, D01301. https://doi.org/10.1029/2011JD015775
dc.relationZhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D., Shrivastava, M., Liu, Y., Walters, S., Pfister, G., Jin, J., Shilling, J. E., & Warneke, C. (2016). Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 9(5), 1959–1976. https://doi.org/10.5194/gmd-9-1959-2016
dc.relationZhu, S., Kinnon, M. Mac, Shaffer, B. P., Samuelsen, G. S., Brouwer, J., & Dabdub, D. (2019). An uncertainty for clean air: Air quality modeling implications of underestimating VOC emissions in urban inventories. Atmospheric Environment, 211, 256–267. https://doi.org/10.1016/j.atmosenv.2019.05.019
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleImpact of chemical mechanisms and local emission inventories in the simulation of O3 and CO concentrations using WRF-Chem.
dc.typeTesis


Este ítem pertenece a la siguiente institución