dc.contributorChejne Janna, Farid
dc.contributorMontoya, Jorge Iván
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorTermodinámica Aplicada y Energías Alternativas
dc.creatorRojas Salas, Myriam Carmenza
dc.date.accessioned2021-02-17T21:25:24Z
dc.date.available2021-02-17T21:25:24Z
dc.date.created2021-02-17T21:25:24Z
dc.date.issued2021-02-10
dc.identifierRojas Salas, M. (2020). ANALYSIS OF THE COCOA ROASTING PROCESS (Theobroma cacao L). (Doctor of Philosophy in Energy Systems Engineering Doctoral Thesis). Universidad Nacional de Colombia, Institutional Repository
dc.identifierRojas S. Myriam., (2020). ANALYSIS OF THE COCOA ROASTING PROCESS (Theobroma cacao L). (Doctor of Philosophy in Energy Systems Engineering Doctoral Thesis). Universidad Nacional de Colombia, Institutional Repository
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79268
dc.description.abstractEn esta tesis doctoral se analizó el proceso de torrefacción de partículas de cacao, se estudió la cinética de formación y volatilización de compuestos de bajo peso molecular, el efecto del tamaño de partícula, velocidad de calentamiento y tipo de gas portador (inerte u oxidante), así como el modelamiento del proceso en condiciones no isotérmicas. La investigación se llevó a cabo en la Universidad Nacional de Colombia y en la "Rijksuniversiteit Groningen" en Los Paises bajos. La experimentación se realizó en TGA y un microrreactor (PTV-GC-MS) con pequeñas partículas de cacao, identificando la composición química de los gases liberados durante el calentamiento. De esta forma, fue posible explicar el proceso de degradación térmica mediante un esquema cinético de tres etapas claramente definido.
dc.description.abstractIn this research, the effect of infrared roasting at 100, 150 and 200 °C on the main physical and chemical changes of cocoa nibs were identified. By MDSC, the fusion of fat at around 35 °C, desolvation of water and volatile compounds were found, and obstruction of porosity was determined by BET approach. Additionally, a decrease in reducing sugars with increasing pyrazines content due to Maillard reaction was identified. Through experiments with small cocoa powder samples under non-isothermal conditions, high differences were found in the volatilization in the air compared with nitrogen. Smaller particles have a greater slope of weight loss due to their Bigger specific surface area available for oxygen interaction compared to the area of the large ones, facilitating reactions such as lipid oxidation during heating. For a specific kinetic analysis, the DTG curves were filtered by Fourier deconvolution (6 peaks for N2 and 7 peaks for the air), and the kinetic parameters were determined using the global Friedman model (the entire curve) and for each peak resulting from the deconvolution. In addition, the chemical composition of these peaks was identified by PTV-GC-MS and similarly, the aromatic components remaining in the solid after the heating by SPME-GC-MS. It was found that at temperatures starting from 150 °C, a high number of compounds are generated which are volatilized to the gas phase when higher temperatures are reached. Consequently, a higher number of species was identified in the gas phase. The types of components identified in both the gas and solid phases were acids, alcohols, aldehydes, pyrazines, esters, ketones, alkanes, alkaloids, phenol, pyrroles, and pyridines. All these components are important for the quality of aroma and flavour of cocoa, especially pyrazines, aldehydes, and ketones. Finally, a phenomenological model able to predict the behaviour of a small cocoa particle using the PTV injector as a u-reactor was obtained. This methodology and model were able to explain the effect of the heating rate on the presence of thermal differences, pressures, and the gas outlet rate, as well as the identification of aromatic compounds volatilized at different temperatures, making it an effective tool to analyze with more depth the production of volatiles in thermochemical and kinetic processes of complex biomass that are generally carried out in TGA.
dc.languageeng
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisherDepartamento de Procesos y Energía
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbdilla-Santes, R. M., Rasrendra, C. B., Winkelman, J. G. M., & Heeres, H. J. (2019). Conversion of levoglucosan to glucose using an acidic heterogeneous Amberlyst 16 catalyst: Kinetics and packed bed measurements. Chemical Engineering Research and Design, 152, 193-200. doi:https://doi.org/10.1016/j.cherd.2019.09.016
dc.relationAbhay S.M., Hii C.L., Law C.L., Suzannah S., & M., D. (2016). Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. International Food Research Journal, 23, 1479-1484.
dc.relationAckbarali, D., & Maharaj, R. (2014). Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at The University of Trinidad and Tobago. Journal of Curriculum and Teaching, 3(1). doi:Copyright © Sciedu Press
dc.relationAfoakwa, E., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840-857. doi:10.1080/10408390701719272
dc.relationAfoakwa, E. O., Quao, J., Takrama, J., Budu, A. S., & Saalia, F. K. (2013). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097-1105. doi:10.1007/s13197-011-0446-5
dc.relationneurodegenerative diseases. Molecular Nutrition & Food Research, 61(6), 1600670. doi:doi:10.1002/mnfr.201600670
dc.relationAlean, J., Chejne, F., Maya, J. C., Camargo-Trillos, D., Ramírez, S., Rincón, E., & Rojano, B. (2019). Evolution of the porous structure of cocoa beans during microwave drying. Drying Technology, 1-10. doi:10.1080/07373937.2019.1635617
dc.relationAlean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering, 189, 99-105. doi:http://dx.doi.org/10.1016/j.jfoodeng.2016.05.026
dc.relationAli, G., Nisar, J., Iqbal, M., Shah, A., Abbas, M., Shah, M. R., . . . Shah, F. (2020). Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models. 38(2), 202-212. doi:10.1177/0734242x19865339
dc.relationAmbrogi, V., Bloch, K., Daturi, S., Logemann, W., & Parenti, M. A. (1972). Synthesis of pyrazine derivatives as potential hypoglycemic agents. Journal of Pharmaceutical Sciences, 61(9), 1483-1486. doi:https://doi.org/10.1002/jps.2600610933
dc.relationAmeri, B., Hanini, S., & Boumahdi, M. (2020). Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge. Renewable Energy, 147, 1107-1119. doi:https://doi.org/10.1016/j.renene.2019.09.072
dc.relationAprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor chemistry of cocoa and cocoa products - an overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:doi:10.1111/1541-4337.12180
dc.relationAscrizzi, R., Flamini, G., Tessieri, C., & Pistelli, L. (2017). From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchemical Journal, 133(Supplement C), 474-479. doi:https://doi.org/10.1016/j.microc.2017.04.024
dc.relationBaghdadi, Y. A., & Hii, C. l. (2017). Mass transfer kinetics and effective diffusivities during cocoa roasting Journal of Engineering Science and Technology, 12 (1), 127 - 137.
dc.relationBandeira, C. M., Evangelista, W. P., & Gloria, M. B. A. (2012). Bioactive amines in fresh, canned and dried sweet corn, embryo and endosperm and germinated corn. Food Chemistry, 131(4), 1355-1359. doi:https://doi.org/10.1016/j.foodchem.2011.09.135
dc.relationBarišić, V., Kopjar, M., Jozinović, A., Flanjak, I., Ačkar, Đ., Miličević, B., . . . Babić, J. (2019). The Chemistry behind Chocolate Production. Molecules, 24 (17)(3163). doi:https://doi.org/10.3390/molecules24173163
dc.relationBart-Plange, A., & Baryeh, E. A. (2003). The physical properties of Category B cocoa beans. Journal of Food Engineering, 60(3), 219-227. doi:https://doi.org/10.1016/S0260-8774(02)00452-1
dc.relationBhattacharya Sila. (2014). Roasting and Toasting Operations in Food: Process Engineering and Applications Conventional and Advanced Food Processing Technologies (pp. 221-248): John Wiley & Sons, Ltd.
dc.relationBonvehí, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol, 221, 19–29. doi:https://doi.org/10.1007/s00217-005-1147-y
dc.relationBorda-Yepes, V. H., Chejne, F., Granados, D. A., Rojano, B., & Raghavan, V. S. G. (2019). Mathematical particle model for microwave drying of leaves. Heat and Mass Transfer, 55(10), 2959-2974. doi:10.1007/s00231-019-02626-w
dc.relationBordiga, M., Locatelli, M., Travaglia, F., Coisson, J. D., Mazza, G., & Arlorio, M. (2015). Evaluation of the effect of processing on cocoa polyphenols: antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. International Journal of Food Science and Technology, 50(3), 840-848. doi:10.1111/ijfs.12760
dc.relationBuckholz, L. L., Daun, H., Stier, E., & Trout, R. (1980). Influence of roasting time on sensory attributes of fresh roasted peanuts. J. Food Sci, 45, 547-554.
dc.relationCapuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology, 44(4), 793-810. doi:http://dx.doi.org/10.1016/j.lwt.2010.11.002
dc.relationCastro-Alayo, E. M., Idrogo-Vásquez, G., Siche, R., & Cardenas-Toro, F. P. (2019). Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon, 5(1). doi:10.1016/j.heliyon.2019.e01157
dc.relationCBI, M. o. F. A.-. (2019). What is the demand for cocoa on the European market? https://www.cbi.eu/market-information/cocoa/trade-statistics/: Updated on Tuesday, September 17, 2019 - 12:00 Retrieved from https://www.cbi.eu/market-information/cocoa/trade-statistics/.
dc.relationChung, C., & McClements, D. J. (2014). Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 1(2), 106-126. doi:https://doi.org/10.1016/j.foostr.2013.11.002
dc.relationCoultate, T. P. (2009). Food: The Chemistry of Its Components (5th ed.). Great Britain: Royal Society of Chemistry.
dc.relationCounet, C., Callemien, D., Ouwerx, C., & Collin, S. (2002). Use of Gas Chromatography−Olfactometry To Identify Key Odorant Compounds in Dark Chocolate. Comparison of Samples before and after Conching. Journal of Agricultural and Food Chemistry, 50(8), 2385-2391. doi:10.1021/jf0114177
dc.relationCroguennec, T. (2016). Non-Enzymatic Browning. In Wiley (Ed.), Handbook of Food Science and Technology 1 (pp. 133-157).
dc.relationDarin A., S. (2017). Elements of harmonized international standards for cocoa quality and flavour assessment. Paper presented at the Third Annual Seminar on Cocoa in the Americas Sonesta Hotel, Guayaquil, Ecuador. https://www.worldcocoafoundation.org/wp-content/uploads/files_mf/14738683452.D.Sukha.pdf
dc.relationDarin A. Sukha, Pathmanathan Umaharan, & David R. Butler. (2017). The Impact of Pollen Donor on Flavor in Cocoa. Journal of the American Society for Horticultural Science, 142(1), 13-19. doi:https://doi.org/10.21273/JASHS03817-16
dc.relationDi Castelnuovo, A., di Giuseppe, R., Iacoviello, L., & de Gaetano, G. (2012). Consumption of cocoa, tea and coffee and risk of cardiovascular disease. European Journal of Internal Medicine, 23(1), 15-25. doi:10.1016/j.ejim.2011.07.014
dc.relationDing, Y. L., Forster, R. N., Seville, J. P. K., & Parker, D. J. (2001). Some aspects of heat transfer in rolling mode rotating drums operated at low to medium temperatures. Powder Technology, 121(2), 168-181. doi:https://doi.org/10.1016/S0032-5910(01)00343-6
dc.relationEskes, A., Ahnert, D., Garcia Carrion, L., Seguine, E., Assemat, S., Guarda, D., & Garcia R, P. (2012). Evidence on the effect of the cocoa pulp flavour environment during fermentation on the flavour profile of chocolates. Paper presented at the Conférence Internationale sur la Recherche Cacaoyère, Yaoundé, Cameroun. Paper without proceedings retrieved from
dc.relationFarah, D. M. H., Zaibunnisa, A. H., Misnawi, J., & Zainal, S. (2012). Effect of roasting process on the concentration of acrylamide and pyrizines in roasted cocoa beans from different origins. APCBEE Procedia, 4, 204-208. doi:http://dx.doi.org/10.1016/j.apcbee.2012.11.034
dc.relationFeyissa, A. H., Gernaey, K. V., & Adler-Nissen, J. (2012). Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process. Journal of Food Engineering, 109(2), 281-290. doi:https://doi.org/10.1016/j.jfoodeng.2011.09.012
dc.relationFowler, M. S., & Coutel, F. (2017). Cocoa beans: from tree to factory Beckett's Industrial Chocolate Manufacture and Use (pp. 9-49).
dc.relationFrauendorfer, F., & Schieberle, P. (2008). Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. Journal of Agricultural and Food Chemistry, 56(21), 10244-10251. doi:10.1021/jf802098f
dc.relationGarza-Garza, O., & Duduković, M. P. (1982). A variable size grain model for gas-solid reactions with structural changes. The Chemical Engineering Journal, 24(1), 35-45. doi:https://doi.org/10.1016/0300-9467(82)80048-8
dc.relationGeorgakis, C., Chang, C. W., & Szekely, J. (1979). A changing grain size model for gas—solid reactions. Chemical Engineering Science, 34(8), 1072-1075. doi:https://doi.org/10.1016/0009-2509(79)80012-3
dc.relationGiacometti, J., Jolić, S. M., & Josić, D. (2015). Chapter 73 - Cocoa processing and impact on composition Processing and Impact on Active Components in Food (pp. 605-612). San Diego: Academic Press.
dc.relationGökmen, V., & Palazoğlu, T. K. (2008). Acrylamide Formation in Foods during Thermal Processing with a Focus on Frying. Food and Bioprocess Technology, 1(1), 35-42. doi:10.1007/s11947-007-0005-2
dc.relationGranados, D. A., Chejne, F., & Basu, P. (2016). A two dimensional model for torrefaction of large biomass particles. Journal of Analytical and Applied Pyrolysis, 120, 1-14. doi:https://doi.org/10.1016/j.jaap.2016.02.016
dc.relationGuillén-Casla, V., Rosales-Conrado, N., León-González, M. E., Pérez-Arribas, L. V., & Polo-Díez, L. M. (2012). Determination of serotonin and its precursors in chocolate samples by capillary liquid chromatography with mass spectrometry detection. Journal of Chromatography A, 1232, 158-165. doi:https://doi.org/10.1016/j.chroma.2011.11.037
dc.relationHedegaard, R. V., & Skibsted, L. H. (2013). 16 - Shelf-life of food powders. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of Food Powders (pp. 409-434): Woodhead Publishing.
dc.relationHii, C. L., Law, C. L., & Cloke, M. (2009). Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering, 90(2), 191-198. doi:https://doi.org/10.1016/j.jfoodeng.2008.06.022
dc.relationHii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153-161. doi:https://doi.org/10.1016/j.biosystemseng.2008.10.007
dc.relationHinneh, M., Abotsi, E. E., Van de Walle, D., Tzompa-Sosa, D. A., De Winne, A., Simonis, J., . . . Dewettinck, K. (2019). Pod storage with roasting: A tool to diversifying the flavor profiles of dark chocolates produced from ‘bulk’ cocoa beans? (part I: aroma profiling of chocolates). Food Research International, 119, 84-98. doi:https://doi.org/10.1016/j.foodres.2019.01.057
dc.relationHo, V. T. T., Zhao, J., & Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology, 174, 72-87. doi:10.1016/j.ijfoodmicro.2013.12.014
dc.relationHuang, Y., & Barringer, S. A. (2010). Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 75(1), C121-C127. doi:10.1111/j.1750-3841.2009.01455.x
dc.relationHuang, Y., & Barringer, S. A. (2011). Monitoring of Cocoa Volatiles Produced during Roasting by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 76(2), C279-C286. doi:10.1111/j.1750-3841.2010.01984.x
dc.relationICCO, I. C. O.-. (2012). Physical and chemical information on cocoa beans, butter, mass and powder. The ICCO International Cocoa p. 1. Retrieved from https://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.html
dc.relationCCO, I. C. O.-. (2019). The Chocolate Industry. Retrieved from https://www.icco.org/about-cocoa/chocolate-industry.html
dc.relationIoannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256-262. doi:http://dx.doi.org/10.1016/j.foodchem.2014.11.019
dc.relationJanuszewska, R. (2018). Introduction. In R. Januszewska (Ed.), Hidden Persuaders in Cocoa and Chocolate (pp. xi-xvii): Woodhead Publishing.
dc.relationayas Digvir S., Cenkowski Stefan, Pabis Stanislaw, & E., M. W. (1991). Review of Thin-Layer and wetting Equations Drying Technology, 9(3), 551-588. doi:10.1080/07373939108916697
dc.relationJumnongpon, R., Chaiseri, S., Hongsprabhas, P., Healy, J. P., Meade, S. J., & Gerrard, J. A. (2012). Cocoa protein crosslinking using Maillard chemistry. Food Chemistry, 134(1), 375-380. doi:http://doi.org/10.1016/j.foodchem.2012.02.189
dc.relationKamila, B., Sadhukhan, A. K., Gupta, P., Basu, P., Regmi, B., Dutta, A., & Acharya, B. (2017). Two-dimensional modeling of torrefaction of a large biomass particle. International Journal of Green Energy, 14(13), 1119-1129. doi:10.1080/15435075.2017.1359785
dc.relationKaren., S. (2019). Side effects of eating too much chocolate. Live Healthy / Nutrition. Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012
dc.relationKorbel, E., Attal, E.-H., Grabulos, J., Lluberas, E., Durand, N., Morel, G., . . . Brat, P. (2012, 2012-11-14 / 2012-11-16). Impact of temperature and water activity on enzymatic and non-enzymatic reactions development in reconstituted dried mango. Paper presented at the International Conference on Chemical Reactions in Food, Prague, République tchèque.
dc.relationKothe, L., Zimmermann, B. F., & Galensa, R. (2013). Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chemistry, 141(4), 3656-3663. doi:https://doi.org/10.1016/j.foodchem.2013.06.049
dc.relationKoua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences. doi:http://dx.doi.org/10.1016/j.jssas.2017.01.002
dc.relationLenfant, F., Hartmann, C., Watzke, B., Breton, O., Loret, C., & Martin, N. (2013). Impact of the shape on sensory properties of individual dark chocolate pieces. LWT - Food Science and Technology, 51(2), 545-552. doi:https://doi.org/10.1016/j.lwt.2012.11.001
dc.relationMabrouk, S. B., Khiari, B., & Sassi, M. (2006). Modelling of heat and mass transfer in a tunnel dryer. Applied Thermal Engineering, 26(17), 2110-2118. doi:https://doi.org/10.1016/j.applthermaleng.2006.04.007
dc.relationMacht, M., & Dettmer, D. (2006). Everyday mood and emotions after eating a chocolate bar or an apple. Appetite, 46(3), 332-336. doi:https://doi.org/10.1016/j.appet.2006.01.014
dc.relationMarseglia, A., Musci, M., Rinaldi, M., Palla, G., & Caligiani, A. (2020). Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Research International, 132, 109101. doi:https://doi.org/10.1016/j.foodres.2020.109101
dc.relationMaya, J. C., & Janna, F. C. (2016). Novel model for non catalytic solid–gas reactions with structural changes by chemical reaction and sintering. Chemical Engineering Science, 142, 258-268. doi:https://doi.org/10.1016/j.ces.2015.11.036
dc.relationMba, O. I., Kwofie, E. M., & Ngadi, M. (2019). Kinetic modelling of polyphenol degradation during common beans soaking and cooking. Heliyon, 5(5), e01613. doi:https://doi.org/10.1016/j.heliyon.2019.e01613
dc.relationMcCabe, W., Smith, J., & Harriott, P. (2005). Unit Operations of Chemical Engineering: McGraw-Hill Education.
dc.relationMcShea, A., Ramiro-Puig, E., Munro, S. B., Casadesus, G., Castell, M., & Smith, M. A. (2008). Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutr Rev, 66(11), 630-641. doi:10.1111/j.1753-4887.2008.00114.x
dc.relationMisnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2005). Changes in polyphenol ability to produce astringency during roasting of cocoa liquor. Journal of the Science of Food and Agriculture, 85(6), 917-924. doi:10.1002/jsfa.1954
dc.relationMontoya A., J. I. (2016). Kinetic Study and Phenomenological Modeling of a Biomass Particle during Fast Pyrolysis Process. (Energy Systerms Engineerig Ph.D. Doctoral), Universidad Nacional de Colombia - Sede Medellìn., bdigital. Retrieved from http://bdigital.unal.edu.co/cgi/export/56371/ (1)
dc.relationMorales, F. J., & Van Boekel, M. A. J. S. (1997). A study on advanced maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. International Dairy Journal, 7(11), 675-683. doi:10.1016/S0958-6946(97)00071-X
dc.relationNiksiar, A., & Rahimi, A. (2009). A study on deviation of noncatalytic gas–solid reaction models due to heat effects and changing of solid structure. Powder Technology, 193(1), 101-109. doi:https://doi.org/10.1016/j.powtec.2009.02.012
dc.relationPätzold, R., & Brückner, H. (2006). Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids, 31(1), 63. doi:10.1007/s00726-006-0330-1
dc.relationPérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176. doi:https://doi.org/10.1016/j.foodcont.2016.02.048
dc.relationRamli, N., Hassan, O., Said, M., Samsudin, W., & Idris, N. A. (2006). Influence of roasting conditions on volatile flavor of roasted Malaysian cocoa beans. Journal of Food Processing and Preservation, 30(3), 280-298. doi:10.1111/j.1745-4549.2006.00065.x
dc.relationReineccius, G. (2005). Flavor Chemistry and Technology: CRC Press. Rodriguez J., Escalona H. B., M.., C. S., I.., O., E.., J., & E.., L. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277-288. doi:10.1016/j.foodchem.2011.10.078
dc.relationRohan., T. A., & Stewart., T. (1967). The Precursors of Chocolate Aroma: Production of Reducing Sugars during Fermentation of Cocoa Beans. 32(4), 399-402. doi:10.1111/j.1365-2621.1967.tb09694.x
dc.relationRojas , M., Chejne, F., Ciro, H., & Montoya, J. (2020). Roasting impact on the chemical and physical structure of Criollo cocoa variety (Theobroma cacao L). n/a(n/a), e13400. doi:10.1111/jfpe.13400
dc.relationRuan, D., Wang, H., & Cheng, F. (2018). The Maillard Reaction The Maillard Reaction in Food Chemistry: Current Technology and Applications (pp. 1-21). Cham: Springer International Publishing.
dc.relationSacchetti, G., Ioannone, F., De Gregorio, M., Di Mattia, C., Serafini, M., & Mastrocola, D. (2016). Non enzymatic browning during cocoa roasting as affected by processing time and temperature. Journal of Food Engineering, 169, 44-52. doi:http://dx.doi.org/10.1016/j.jfoodeng.2015.08.018
dc.relationSharma, P., Gujral, H. S., & Rosell, C. M. (2011). Effects of roasting on barley β-glucan, thermal, textural and pasting properties. Journal of Cereal Science, 53(1), 25-30. doi:10.1016/j.jcs.2010.08.005
dc.relationSrivastava, P. P., Das, H., & Prasad, S. (1994). Effect of roasting process variables on hardness of Bengal gram, maize and soybean. Journal Food Science and Technology, 31, 62-65.
dc.relationStanley, T. (2014). Effects of alkalization and roasting on polyphenolic content of cocoa beans and cocoa powder. (Master of Science Master Thesis), The Pennsylvania State University, Pennsylvania. (1)
dc.relationStanley, T. H., Van Buiten, C. B., Baker, S. A., Elias, R. J., Anantheswaran, R. C., & Lambert, J. D. (2018). Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry, 255, 414-420. doi:https://doi.org/10.1016/j.foodchem.2018.02.036
dc.relationSteinhart, H. (2005). The Maillard Reaction. Chemistry, Biochemistry and Implications. By Harry Nursten. 44(46), 7503-7504. doi:10.1002/anie.200585332
dc.relationSwisscontact. (2017). Guía de buenas prácticas de cosecha, fermentación y secado para la producción de cacaos especiales. In F. S. p. l. C. T.-. SWISSCONTACT (Ed.), 1 (pp. 33). https://www.swisscontact.org/.
dc.relationTeh, Q. T. M., Tan, G. L. Y., Loo, S. M., Azhar, F. Z., Menon, A. S., & Hii, C. L. (2016). THE DRYING KINETICS AND POLYPHENOL DEGRADATION OF COCOA BEANS. Journal of Food Process Engineering, 39(5), 484-491. doi:10.1111/jfpe.12239
dc.relationToker, O. S., Palabiyik, I., Pirouzian, H. R., Aktar, T., & Konar, N. (2020). Chocolate aroma: Factors, importance and analysis. Trends in Food Science & Technology, 99, 580-592. doi:https://doi.org/10.1016/j.tifs.2020.03.035
dc.relationTorres-Moreno, M., Torrescasana, E., Salas-Salvadó, J., & Blanch, C. (2015). Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry, 166, 125-132. doi:https://doi.org/10.1016/j.foodchem.2014.05.141
dc.relationTran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., . . . Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food Research International, 77, 657-669. doi:https://doi.org/10.1016/j.foodres.2015.09.019
dc.relationUtrilla-Vázquez, M., Rodríguez-Campos, J., Avendaño-Arazate, C. H., Gschaedler, A., & Lugo-Cervantes, E. (2020). Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Research International, 129, 108834. doi:https://doi.org/10.1016/j.foodres.2019.108834
dc.relationWarrell. (2016). The Difference Between Good Chocolate And Bad Chocolate. Retrieved from Camp Hill, Pennsylvania, United States: https://www.warrellcorp.com/blog/difference-between-good-chocolate-and-bad-chocolate/
dc.relationYahia, E. M., Carrillo-López, A., & Bello-Perez, L. A. (2019). Chapter 9 - Carbohydrates. In E. M. Yahia (Ed.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 175-205): Woodhead Publishing.
dc.relationYates, P. (2009). 3 - Formulation of chocolate for industrial applications. In G. Talbot (Ed.), Science and Technology of Enrobed and Filled Chocolate, Confectionery and Bakery Products (pp. 29-52): Woodhead Publishing.
dc.relationYoneda, M., Sugimoto, N., Katakura, M., Matsuzaki, K., Tanigami, H., Yachie, A., . . . Shido, O. (2017). Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. The Journal of Nutritional Biochemistry, 39, 110-116. doi:https://doi.org/10.1016/j.jnutbio.2016.10.002
dc.relationYu, A.-N., Tan, Z.-W., & Shi, B.-A. (2012a). Influence of the pH on the formation of pyrazine compounds by the Maillard reaction of L-ascorbic acid with acidic, basic and neutral amino acids. Asia-Pacific Journal of Chemical Engineering, 7(3), 455-462. doi:10.1002/apj.594
dc.relationYu, A.-N., Tan, Z.-W., & Shi, B.-A. (2012b). Influence of the pH on the formation of pyrazine compounds by the Maillard reaction of L-ascorbic acid with acidic, basic and neutral amino acids. 7(3), 455-462. doi:10.1002/apj.594
dc.relationZamora, R., Aguilar, I., & Hidalgo, F. J. (2017). Epoxyalkenal-trapping ability of phenolic compounds. Food chemistry., 237, 444-452. doi:10.1016/j.foodchem.2017.05.129
dc.relationZamora, R., & Hidalgo, F. J. (2011). The Maillard reaction and lipid oxidation. 23(3), 59-62. doi:10.1002/lite.201100094
dc.relationZiegleder, G. (2009). Flavour development in cocoa and chocolate Industrial Chocolate Manufacture and Use (Fourth ed., pp. 169-191): Wiley-Blackwell.
dc.relationZyzelewicz, D., Budryn, G., Krysiak, W., Oracz, J., Nebesny, E., & Bojczuk, M. (2014). Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter extracted from cocoa bean of Forastero variety cultivated in Togo. Food Research International, 63, 328-343. doi:10.1016/j.foodres.2014.04.053
dc.relationZzaman, W., Bhat, R., Yang, T. A., & Easa, A. M. (2017). Influences of superheated steam roasting on changes in sugar, amino acid and flavour active components of cocoa bean (Theobroma cacao). Journal of the Science of Food and Agriculture, 97(13), 4429-4437. doi:10.1002/jsfa.8302
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAnalysis of the cocoa roasting process (Theobroma cacao L)
dc.typeOtro


Este ítem pertenece a la siguiente institución