dc.contributorTibaduiza Burgos, Diego Alexander
dc.contributorAnaya Vejar, Maribel
dc.contributorGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)
dc.creatorLeon Medina, Jersson Xavier
dc.date.accessioned2021-08-18T15:37:40Z
dc.date.available2021-08-18T15:37:40Z
dc.date.created2021-08-18T15:37:40Z
dc.date.issued2021-08-16
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79962
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractThe analysis of liquid substances is a current research area with applications in food, agricultural and chemical sciences, among others. These tests are generally time-consuming and performed with expensive equipment. Additionally, another way to analyze liquids is using a panel of previously trained experts who can evaluate some type of flavor. Although this method has proved to be effective, it is subject to disturbances produced by humans that can affect the classification process. Electronic tongue sensor arrays have emerged as an alternative to traditional liquid analysis methods, since they have demonstrated their effectiveness as classifiers of liquid substances and made it possible to automate this process. This doctoral thesis presents the development of an electronic system for classifying substances based on an array of electronic tongue sensor arrays. The system consists of an array of sensors, an electronic data acquisition system, and a computerized system for pattern recognition and multivariate analysis of the experimental data obtained. Different stages in the development of the classification system for liquid substances are described, such as the selection of sensors and electronic data acquisition equipment, system configuration, assembly and experimental design. Two new methodologies are presented for the processing of the signals obtained by electronic tongue sensor arrays. These methodologies include the use of feature extraction algorithms such as Principal Component Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) which are used to reduce the high dimensionality of the data. These methodologies are based on the pattern recognition approach and use machine learning algorithms for classification as k nearest neighbors k-NN. The developed methodologies are validated using different datasets from different experiments, sensors and configurations, thus showing the effectiveness of the developed methodologies. (Tex taken from source)
dc.description.abstractEl análisis de sustancias liquidas es un área de investigación actual con aplicaciones en ciencias alimentarias, agrícolas, químicas, entre otras. Estos análisis generalmente llevan tiempo y se realizan con equipos costosos. Adicionalmente, la forma de analizar líquidos es con un panel de personas expertas previamente entrenadas que pueden evaluar algún tipo de sabor y aunque este método ha mostrado ser efectivo está sujeto a las perturbaciones producidas por el ser humano que pueden afectar el proceso de clasificación. Los arreglos de sensores tipo lengua electrónica han surgido como una alternativa a los métodos tradicionales de análisis de líquidos dado que han demostrado su efectividad como clasificadores de sustancias liquidas y han permitido automatizar este proceso. Esta tesis doctoral presenta el desarrollo de un sistema electrónico de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónica. El sistema se compone de un arreglo de sensores, un sistema electrónico de adquisición de datos y un sistema computarizado de reconocimiento de patrones y análisis multivariante de los datos experimentales obtenidos. Se describen diferentes etapas en el desarrollo del sistema de clasificación de sustancias liquidas como la selección de sensores y equipo electrónico de adquisición de datos, configuración del sistema, montaje y diseño experimental. Se presentan dos nuevas metodologías para el procesamiento de las señales obtenidas por arreglos de sensores tipo lengua electrónica. Estas incluyen el uso de algoritmos de extracción de características como Análisis de componentes principales (PCA) y tdistributed stochastic neighbor embedding (t-SNE) los cuales son utilizados para reducir la alta dimensionalidad de los datos. Estas metodologías están basadas en el enfoque de reconocimiento de patrones y utilizan algoritmos de aprendizaje automático para la clasificación como k vecinos más cercanos k-NN. Las metodologías desarrolladas son validadas usando diferentes conjuntos de datos provenientes de diferentes experimentos, sensores y configuraciones mostrando la efectividad de las metodologías desarrolladas. (texto tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisherDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá - Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation“Harvey d (2010) analytical chemistry 2.0." https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumental_Analysis/Cyclic_Voltammetry. Accessed: 2021-01-24.
dc.relationT. Nasir, Electrochemical sensors of environmental pollutants based on carbon electrodes modified by ordered mesoporous silica. PhD thesis, Université de Lorraine, 2018.
dc.relationJ. X. Leon-Medina, W. A. Pineda-Muñoz, and D. A. T. Burgos, “Joint distribution adaptation for drift correction in electronic nose type sensor arrays," IEEE Access, vol. 8, pp. 134413-134421, 2020.
dc.relationL. Wang, Q. Niu, Y. Hui, and H. Jin, “Discrimination of rice with different pretreatment methods by using a voltammetric electronic tongue," Sensors (Switzerland), vol. 15, no. 7, pp. 17767-17785, 2015.
dc.relationM. Sliwinska, P. Wisniewska, T. Dymerski, J. Namiesnik, and W. Wardencki, “Food analysis using artificial senses," Journal of Agricultural and Food Chemistry, vol. 62, no. 7, pp. 1423-1448, 2014.
dc.relationH. Jiang, M. Zhang, B. Bhandari, and B. Adhikari, “Application of electronic tongue for fresh foods quality evaluation: A review," Food Reviews International, vol. 34, no. 8, pp. 746-769, 2018.
dc.relationC. Costa, C. Taiti, M. C. Strano, G. Morone, F. Antonucci, S. Mancuso, S. Claps, F. Pallottino, L. Sepe, N. Bazihizina, and P. Menesatti, Multivariate Approaches to Electronic Nose and PTR-TOF-MS Technologies in Agro-Food Products. 2016.
dc.relationD. Ha, Q. Sun, K. Su, H. Wan, H. Li, N. Xu, F. Sun, L. Zhuang, N. Hu, and P. Wang, “Recent achievements in electronic tongue and bioelectronic tongue as taste sensors," vol. 207, pp. 1136-1146, 2015.
dc.relationM. Esteban, C. Ariño, and J. M. Díaz-Cruz, “Chemometrics in electroanalytical chemistry," Crit. Rev. Anal. Chem., vol. 36, pp. 295-313, 2006.
dc.relationP. Oliveri, M. C. Casolino, and M. Forina, Chemometric Brains for Artificial Tongues, vol. 61. Elsevier Inc., 1 ed., 2010.
dc.relationM. del Valle, “Materials for electronic tongues: Smart sensor combining different materials and chemometric tools," in Materials for Chemical Sensing, pp. 227-265, Springer, 2017.
dc.relationL. Zhang and F. C. Tian, “A new kernel discriminant analysis framework for electronic nose recognition," Analytica Chimica Acta, vol. 816, pp. 8-17, 2014.
dc.relationL. Zhang, X. Wang, G. B. Huang, T. Liu, and X. Tan, “Taste Recognition in E-Tongue Using Local Discriminant Preservation Projection," IEEE Trans. Cybern., vol. PP, pp. 1-14, 2018.
dc.relationL. Zhang, F. Tian, and D. Zhang, E-Nose Algorithms and Challenges. Springer Singapore, 2018.
dc.relationJ. X. Leon-Medina, L. J. Cardenas-Flechas, and D. A. Tibaduiza, “A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue," International Journal of Distributed Sensor Networks, vol. 15, no. 10, p. ., 2019.
dc.relationM. del Valle, “Electronic tongues employing electrochemical sensors," Electroanalysis, vol. 22, pp. 1539-1555, jul 2010.
dc.relationJ. X. Leon-Medina, M. A. Vejar, and D. A. Tibaduiza, “Signal Processing and Pattern Recognition in Electronic Tongues: A Review," in Pattern Recognition Applications in Engineering (D. A. T. Burgos, M. A. Vejar, and F. Pozo, eds.), pp. 84-108, Hershey, PA, USA: IGI Global, 2020.
dc.relationS. Y. Tian, S. P. Deng, and Z. X. Chen, “Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue," Sensors and Actuators, B: Chemical, vol. 123, no. 2, pp. 1049-1056, 2007.
dc.relationZ. Wei, J. Wang, and W. Jin, “Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms," Sensors and Actuators B: Chemical, vol. 177, pp. 684-694, 2013.
dc.relationP. Ivarsson, S. Holmin, N.-E. Höjer, C. Krantz-Rülcker, and F. Winquist, “Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms," Sensors and Actuators B: Chemical, vol. 76, no. 1-3, pp. 449-454, 2001.
dc.relationZ. Wei, J. Wang, and L. Ye, “Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue," Biosensors and bioelectronics, vol. 26, no. 12, pp. 4767-4773, 2011.
dc.relationM. Palit, B. Tudu, P. K. Dutta, A. Dutta, A. Jana, J. K. Roy, N. Bhattacharyya, R. Bandyopadhyay, and A. Chatterjee, “Classification of black tea taste and correlation with tea taster's mark using voltammetric electronic tongue," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 8, pp. 2230-2239, 2009.
dc.relationZ. Wei and J. Wang, “Classification of monofloral honeys by voltammetric electronic tongue with chemometrics method," Electrochimica acta, vol. 56, no. 13, pp. 4907-4915, 2011.
dc.relationA. Gutes, F. Cespedes, M. Del Valle, D. Louthander, C. Krantz-Rülcker, and F. Winquist, “A ow injection voltammetric electronic tongue applied to paper mill industrial waters," Sensors and Actuators B: Chemical, vol. 115, no. 1, pp. 390-395, 2006.
dc.relationT. Liu, Y. Chen, D. Li, T. Yang, and J. Cao, “Electronic tongue recognition with feature specificity enhancement," Sensors, vol. 20, no. 3, p. 772, 2020.
dc.relationT. Liu, Y. Chen, D. Li, and M. Wu, “An Active Feature Selection Strategy for DWT in Artificial Taste," Journal of Sensors, vol. 2018, 2018.
dc.relationX. Wang and K. K. Paliwal, “Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition," Pattern recognition, vol. 36, no. 10, pp. 2429-2439, 2003.
dc.relationL. F. Villamil Cubillos, “Implementación y validación de algoritmos de selección de características en el proceso de clasificación de líquidos con arreglos de sensores tipo lengua electrónica," tech. rep., Trabajo de grado. Programa de Ingeniería mecatrónica. Universidad Nacional de Colombia sede Bogotá, 2020.
dc.relationJ. X. Leon-Medina, M. Anaya, F. Pozo, and D. Tibaduiza, “Nonlinear feature extraction through manifold learning in an electronic tongue classification task," Sensors, vol. 20, no. 17, 2020.
dc.relationI. Levner, “Feature selection and nearest centroid classification for protein mass spectrometry," BMC bioinformatics, vol. 6, no. 1, p. 68, 2005.
dc.relationJ. Yan, X. Guo, S. Duan, P. Jia, L. Wang, C. Peng, and S. Zhang, “Electronic nose feature extraction methods: A review," Sensors, vol. 15, no. 11, pp. 27804-27831, 2015.
dc.relationG. Sugihara, R. May, H. Ye, C.-h. Hsieh, E. Deyle, M. Fogarty, and S. Munch, “Detecting causality in complex ecosystems," science, vol. 338, no. 6106, pp. 496-500, 2012.
dc.relationY. Huang, G. Kou, and Y. Peng, “Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, vol. 258, no. 2, pp. 692-702, 2017.
dc.relationD. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 55-66, 2013.
dc.relationK. Yildiz, A. Y. Çamurcu, and B. Dogan, “Comparison of dimension reduction techniques on high dimensional datasets.," Int. Arab J. Inf. Technol., vol. 15, no. 2, pp. 256-262, 2018.
dc.relationJ. X. Leon, W. A. P. MuÑOz, M. Anaya, J. Vitola, and D. A. Tibaduiza, “Structural damage classification using machine learning algorithms and performance measures," Structural Health Monitoring 2019, 2019.
dc.relationD. Agis and F. Pozo, “A frequency-based approach for the detection and classification of structural changes using t-sne," Sensors, vol. 19, no. 23, p. 5097, 2019.
dc.relationV. D. Silva and J. B. Tenenbaum, “Global versus local methods in nonlinear dimensionality reduction," in Advances in neural information processing systems, pp. 721-728, 2003.
dc.relationF. Plastria, S. De Bruyne, and E. Carrizosa, “Dimensionality reduction for classification, comparison of techniques and dimension choice," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5139 LNAI, pp. 411-418, 2008.
dc.relationP. Jia, T. Huang, L. Wang, S. Duan, J. Yan, and L. Wang, “A novel pre-processing technique for original feature matrix of electronic nose based on supervised locality preserving projections," Sensors, vol. 16, no. 7, p. 1019, 2016.
dc.relationP. Zhu, J. Du, B. Xu, and M. Lu, “Modified unsupervised discriminant projection with an electronic nose for the rapid determination of chinese mitten crab freshness," Analytical Methods, vol. 9, no. 11, pp. 1806-1815, 2017.
dc.relationL. Ding, Z. Guo, S. Pan, and P. Zhu, “Manifold learning for dimension reduction of electronic nose data," in 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 169-174, IEEE, 2017.
dc.relationP. Zhu, Y. Zhang, and L. Ding, “Rapid freshness prediction of crab based on a portable electronic nose system," International Journal of Computer Applications in Technology, vol. 61, no. 4, pp. 241-246, 2019.
dc.relationJ. Leon-Medina, M. Anaya, F. Pozo, and D. Tibaduiza, “Application of manifold learning algorithms to improve the classification performance of an electronic nose," in 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, IEEE, 2020.
dc.relationR. Zhi, L. Zhao, B. Shi, and Y. Jin, “New dimensionality reduction model (manifold learning) coupled with electronic tongue for green tea grade identification," European Food Research and Technology, vol. 239, no. 1, pp. 157-167, 2014.
dc.relationM. Liu, M. Wang, J. Wang, and D. Li, “Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar," Sensors and Actuators, B: Chemical, vol. 177, pp. 970-980, 2013.
dc.relationJ. M. Gutiérrez, Z. Haddi, A. Amari, B. Bouchikhi, A. Mimendia, X. Cetó, and M. del Valle, “Hybrid electronic tongue based on multisensor data fusion for discrimination of beers," Sensors and Actuators B: Chemical, vol. 177, pp. 989-996, 2013.
dc.relationJ. X. Leon-Medina, M. A. Vejar, and D. A. Tibaduiza, “Signal processing and pattern recognition in electronic tongues: A review," in Pattern Recognition Applications in Engineering, pp. 84-108, IGI Global, 2020.
dc.relationS. Zhang, R. He, J. Zhang, Z. Zhou, X. Cheng, G. Huang, J. Zhang, et al., “A convolutional neural network based auto features extraction method for tea classification with electronic tongue," Applied Sciences, vol. 9, no. 12, p. 2518, 2019.
dc.relationJ. X. Leon-Medina, L. J. Cardenas-Flechas, and D. A. Tibaduiza, “A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue," International Journal of Distributed Sensor Networks, vol. 15, no. 10, p. 1550147719881601, 2019.
dc.relationQ. Shi, T. Guo, T. Yin, Z. Wang, C. Li, X. Sun, Y. Guo, and W. Yuan, “Classification of pericarpium citri reticulatae of different ages by using a voltammetric electronic tongue system," International Journal Of Electrochemical Science, vol. 13, no. 12, pp. 11359-11374, 2018.
dc.relationM. Palit, B. Tudu, N. Bhattacharyya, A. Dutta, P. K. Dutta, A. Jana, R. Bandyopadhyay, and A. Chatterjee, “Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea," Analytica Chimica Acta, vol. 675, no. 1, pp. 8-15, 2010.
dc.relationY. Vlasov, A. Legin, A. Rudnitskaya, C. Di Natale, and A. D'amico, “Nonspecific sensor arrays (.electronic tongue") for chemical analysis of liquids (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 77, no. 11, pp. 1965-1983, 2005.
dc.relationA. Bratov, N. Abramova, and A. Ipatov, “Recent trends in potentiometric sensor arrays-a review," Anal. Chim. Acta, vol. 678, pp. 149-159, 2010.
dc.relationZ. Wei, Y. Yang, J. Wang, W. Zhang, and Q. Ren, “The measurement principles, working parameters and configurations of voltammetric electronic tongues and its applications for foodstuff analysis," J. Food Eng., vol. 217, pp. 75-92, 2018.
dc.relationC. G. Zoski, Handbook of electrochemistry. Elsevier, 2006.
dc.relation“Real academia de ingeniería (2021) electroanálisis." http://diccionario.raing.es/es/lema/electroan%C3%A1lisis. Accessed: 2021-04-12.
dc.relationD. J. Munch, M. Wasko, E. Flynt, S. C. Wendelken, J. Scifres, J. R. Mario, M. Hunt, D. Gregg, T. Schaeffer, M. Clarage, et al., “Validation and peer review of us environmental protection agency chemical methods of analysis," in Forum on Environmental Measurements, US Environmental Protection Agency, Washington, DC, Citeseer, 2005.
dc.relationA. Wilken, V. Kraft, S. Girod, M. Winter, and S. Nowak, “A fluoride-selective electrode (fse) for the quantification of fluoride in lithium-ion battery (lib) electrolytes," Analytical methods, vol. 8, no. 38, pp. 6932-6940, 2016.
dc.relationV. Pravdová, M. Pravda, and G. Guilbault, “Role of chemometrics for electrochemical sensors," Analytical letters, vol. 35, no. 15, pp. 2389-2419, 2002.
dc.relationM. Holmberg, M. Eriksson, C. Krantz-Rülcker, T. Artursson, F. Winquist, A. Lloyd-Spetz, and I. Lundström, “2nd workshop of the second network on artificial olfactory sensing (nose ii)," Sensors and Actuators B: Chemical, vol. 101, no. 1-2, pp. 213-223, 2004.
dc.relationI. Campos Sánchez, Sensores electroquímicos tipo lengua electrónica voltamétrica aplicados al control medioambiental ya la industria alimentaria. PhD thesis, Universitat Politècnica de Valencia, 2013.
dc.relationM. del Valle, “Electronic tongues employing electrochemical sensors," Electroanalysis, vol. 22, no. 14, pp. 1539-1555, 2010.
dc.relationM. del Valle, “Potentiometric electronic tongues applied in ion multidetermination," Comprehensive Analytical Chemistry, vol. 49, pp. 721-753, 2007.
dc.relationJ. Wang, Study of Electrode Reactions and Interfacial Properties, ch. 2, pp. 29-66. Analytical Electrochemistry John Wiley Sons, Ltd, 2006.
dc.relationM. M. Cuenca Quicazan, Desarrollo de una herramienta instrumental de gusto artificial aplicable a bebidas alcohólicas a base de miel de abejas. PhD thesis, Universidad Nacional de Colombia sede Bogotá, 2014.
dc.relationQ. Ouyang, Y. Yang, J. Wu, Z. Liu, X. Chen, C. Dong, Q. Chen, Z. Zhang, and Z. Guo, “Rapid sensing of total theaflavins content in black tea using a portable electronic tongue system coupled to efficient variables selection algorithms," Journal of Food Composition and Analysis, vol. 75, pp. 43-48, 2019.
dc.relationQ. Ouyang, Y. Yang, J. Wu, Q. Chen, Z. Guo, and H. Li, “Measurement of total free amino acids content in black tea using electronic tongue technology coupled with chemometrics," LWT, vol. 118, p. 108768, 2020.
dc.relationE. M. Fuentes Perez, Aplicación de la lengua electrónica voltamétrica a alimentos líquidos. PhD thesis, Universitat Politècnica de Valencia, 2017.
dc.relationE. Baldeon Chamorro, Desarrollo de la técnica de lengua electrónica voltamétrica para la determinación de la capacidad antioxidante total de extractos de plantas y frutas peruanas. PhD thesis, Universitat Politècnica de Valencia, 2015.
dc.relationM. A. Fillol, Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario. PhD thesis, Universitat Politècnica de Valencia, 2011.
dc.relationF. Winquist, P. Wide, and I. Lundström, “An electronic tongue based on voltammetry," Anal. Chim. Acta, vol. 357, pp. 21-31, 1997.
dc.relationZ. Wei, J. Wang, and W. Jin, “Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms," Sens. Actuators, B, vol. 177, pp. 684-694, 2013.
dc.relationC. A. Nunes, V. O. Alvarenga, A. de Souza Sant'Ana, J. S. Santos, and D. Granato, “The use of statistical software in food science and technology: Advantages, limitations and misuses," Food Research International, vol. 75, pp. 270-280, 2015.
dc.relationP. C. Jurs, G. A. Bakken, and H. E. McClelland, “Computational methods for the analysis of chemical sensor array data from volatile analytes," Chemical Reviews, vol. 100, no. 7, pp. 2649-2678, 2000.
dc.relationR. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.
dc.relationD. A. Tibaduiza, L. E. Mujica, and J. Rodellar, “Damage classification in structural health monitoring using principal component analysis and self-organizing maps," Structural Control and Health Monitoring, vol. 20, no. 10, pp. 1303-1316, 2013.
dc.relationM. Anaya, D. A. Tibaduiza, and F. Pozo, “A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring," Shock and Vibration, vol. 501, p. 648097, 2015.
dc.relationJ. A. Westerhuis, T. Kourti, and J. F. MacGregor, “Comparing alternative approaches for multivariate statistical analysis of batch process data," Journal of Chemometrics, vol. 13, no. 3-4, pp. 397-413, 1999.
dc.relationF. Pozo, Y. Vidal, and Ó. Salgado, “Wind turbine condition monitoring strategy through multiway PCA and multivariate inference," Energies, vol. 11, no. 4, pp. 1-19, 2018.
dc.relationM. Anaya, D. A. Tibaduiza, and F. Pozo, “Detection and classification of structural changes using artificial immune systems and fuzzy clustering," International Journal of Bio-Inspired Computation, vol. 9, no. 1, pp. 35-52, 2017.
dc.relationD. Agis, D. A. Tibaduiza, and F. Pozo, “Vibration-based detection and classification of structural changes using principal component analysis and-distributed stochastic neighbor embedding," Structural Control and Health Monitoring, vol. 27, no. 6, p. e2533, 2020.
dc.relationJ. M. Gutiérrez, L. Moreno-Barón, F. Céspedes, R. Munoz, and M. del Valle, “Resolution of heavy metal mixtures from highly overlapped asv voltammograms employing a wavelet neural network," Electroanal, vol. 21, no. 3-5, pp. 445-451, 2009.
dc.relationZ. Haddi, H. Alami, N. El Bari, M. Tounsi, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi, “Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles," Food Research International, vol. 54, no. 2, pp. 1488-1498, 2013.
dc.relationK. Thongpull, Advancing the automated design of integrated intelligent multi-sensory systems with self-X properties. PhD thesis, Technischen Universität Kaiserslautern, 2016.
dc.relationS. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative study of dimensionality reduction techniques for high dimensional data," Information Fusion, vol. 59, pp. 44-58, 2020.
dc.relationS. Wold, K. Esbensen, and P. Geladi, “Principal component analysis," Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37-52, 1987.
dc.relationH. Abdi and L. J. Williams, “Principal component analysis," Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433-459, 2010.
dc.relationR. Bro and A. K. Smilde, “Principal component analysis," Analytical Methods, vol. 6, no. 9, pp. 2812-2831, 2014.
dc.relationD.-A. Tibaduiza, M.-A. Torres-Arredondo, L. Mujica, J. Rodellar, and C.-P. Fritzen, “A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring," Mechanical Systems and Signal Processing, vol. 41, no. 1-2, pp. 467-484, 2013.
dc.relationM. Anaya, D. A. Tibaduiza, and F. Pozo, “Detection and classification of structural changes using artificial immune systems and fuzzy clustering," International Journal of Bio-Inspired Computation, vol. 9, no. 1, p. 35, 2017.
dc.relationD. Tibaduiza, L. Mujica, and J. Rodellar, “Damage classification in structural health monitoring using principal component analysis and self-organizing maps," Structural Control and Health Monitoring, vol. 20, no. 10, pp. 1303-1316, 2013.
dc.relationM. Anaya Vejar, Design and validation of structural health monitoring system based on bio-inspired algorithms. PhD thesis, Universitat Politècnica de Catalunya, 2016.
dc.relationB. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S. Koch, “PLS Toolbox 3.5 for use with Matlab. ," Manson, WA: Eigenvector Research Inc, 2005.
dc.relationM. Anaya, D. Tibaduiza, and F. Pozo, “Data driven methodology based on artificial immune systems for damage detection," in 7th European Workshop on Structural Health Monitoring. La Cité, Nantes, France, July 8-11, 2014.
dc.relationD. A. Tibaduiza Burgos, Design and validation of a structural health monitoring system for aeronautical structures. PhD thesis, Universitat Politècnica de Catalunya, 2013.
dc.relationJ. Vitola, F. Tibadui, D. Tibaduiza, and M. Anaya, “A sensor data fusion system based on k-nearest neighbor pattern classification for structural health monitoring applications," Sensors, vol. 17, p. 417, 2017.
dc.relationY. Ma and Y. Fu, Manifold learning theory and applications. CRC press, 2011.
dc.relationJ. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction," science, vol. 290, no. 5500, pp. 2319-2323, 2000.
dc.relationL. Van der Maaten, “An introduction to dimensionality reduction using matlab," Report, vol. 1201, no. 07-07, p. 62, 2007.
dc.relationJ. A. Lee and M. Verleysen, Nonlinear dimensionality reduction. Springer Science & Business Media, 2007.
dc.relation“Gabriel peyré (2011) manifold learning with isomap." http://www.numerical-tours.com/matlab/shapes_7_isomap/. Accessed: 2021-04-12.
dc.relationG. Peyré, “The numerical tours of signal processing-advanced computational signal and image processing," IEEE Computing in Science and Engineering, vol. 13, no. 4, pp. 94-97, 2011.
dc.relationM. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation," Neural computation, vol. 15, no. 6, pp. 1373-1396, 2003.
dc.relationÁ. Fernández Pascual, “Advanced methods for dimensionality reduction and clustering: Laplacian eigenmaps and spectral clustering," Master's thesis, Universidad Autónoma de Madrid, 2010.
dc.relationS. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding," science, vol. 290, no. 5500, pp. 2323-2326, 2000.
dc.relationY. Ni, J. Chai, Y.Wang, and W. Fang, “A fast radio map construction method merging self-adaptive local linear embedding (lle) and graph-based label propagation in wlan fingerprint localization systems," Sensors, vol. 20, no. 3, p. 767, 2020.
dc.relationZ. Zhang and J. Wang, “Mlle: Modified locally linear embedding using multiple weights," in Advances in neural information processing systems, pp. 1593-1600, 2007.
dc.relationD. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data," Proceedings of the National Academy of Sciences, vol. 100, no. 10, pp. 5591-5596, 2003.
dc.relationL. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality reduction: a comparative," J Mach Learn Res, vol. 10, no. 66-71, p. 13, 2009.
dc.relationZ. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM journal on scienti_c computing, vol. 26, no. 1, pp. 313-338, 2004.
dc.relationL. v. d. Maaten and G. Hinton, “Visualizing data using t-sne," Journal of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.
dc.relationG. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding," in Advances in neural information processing systems, pp. 857-864, 2003.
dc.relationM. Husnain, M. M. S. Missen, S. Mumtaz, M. M. Luqman, M. Coustaty, and J.-M. Ogier, “Visualization of high-dimensional data by pairwise fusion matrices using t-sne," Symmetry, vol. 11, no. 1, p. 107, 2019.
dc.relationR. E. Sha_er, S. L. Rose-Pehrsson, and R. A. McGill, “A comparison study of chemical sensor array pattern recognition algorithms," Analytica Chimica Acta, vol. 384, no. 3, pp. 305-317, 1999.
dc.relationM. Weso ly and P. Ciosek, “Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue," Sensors and Actuators B: Chemical, vol. 267, pp. 570-580, 2018.
dc.relationS. Dhanabal and S. Chandramathi, “A review of various k-nearest neighbor query processing techniques," International Journal of Computer Applications, vol. 31, no. 7, pp. 14-22, 2011.
dc.relationX. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., “Top 10 algorithms in data mining," Knowledge and information systems, vol. 14, no. 1, pp. 1-37, 2008.
dc.relationR. A. Fisher, “The use of multiple measurements in taxonomic problems," Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.
dc.relationMathWorks:, Statistics and Machine Learning Toolbox for Matlab; ,. 2015.
dc.relationF. J. H. . O. R. A. Breiman, L., Classification and Regression Trees. Belmont, California.: Wadsworth,, 1984.
dc.relationL. Breiman, “Random forests," Machine Learning, vol. 45, pp. 5-32, 2001.
dc.relationT. K. Ho, “The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 832-844, Aug. 1998.
dc.relationC. Cortes and V. Vapnik, “Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
dc.relationC. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, pp. 415-425, Mar. 2002.
dc.relationM. Liu, M. Wang, J. Wang, and D. Li, “Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and chinese vinegar," Sens. Actuators, B, vol. 177, pp. 970-980, 2013.
dc.relationT.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation," Pattern Recognition, vol. 48, no. 9, pp. 2839-2846, 2015.
dc.relationD. Ballabio, F. Grisoni, and R. Todeschini, “Multivariate comparison of classification performance measures," Chemometrics and Intelligent Laboratory Systems, vol. 174, no. February, pp. 33-44, 2018.
dc.relationK. Varmuza and P. Filzmoser, Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton, FL: CRC press, 2009.
dc.relationL. F. Villamil-Cubillos, J. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “Evaluation of feature selection techniques in a multifrequency large amplitude pulse voltametric electronic tongue," Engineering Proceedings, vol. 2, no. 1, 2020.
dc.relationJ. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “Locally linear embedding as nonlinear feature extraction to discriminate liquids with a cyclic voltammetric electronic tongue," in CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, (Basel), pp. 1-6, MDPI, 2021.
dc.relationE. G. Mendez-Lopez, J. X. Leon-Medina, and D. A. Tibaduiza, “Development of a pattern recognition tool for the classification of electronic tongue signals using machine learning," in CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, (Basel), pp. 1-6, MDPI, 2021.
dc.relationJ. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “T-distributed stochastic neighbor embedding to improve the discrimination of yogurt using a multistep amperometry electronic tongue," ECS Meeting Abstracts, vol. MA2021-01, pp. 2061-2061, may 2021.
dc.relationN. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry," Journal of the Brazilian Chemical Society, vol. 14, no. 2, pp. 159-173, 2003.
dc.relationJ. Bobacka, A. Ivaska, and A. Lewenstam, “Potentiometric ion sensors," Chemical reviews, vol. 108, no. 2, pp. 329-351, 2008.
dc.relationJ. Wang, Electrochemical Sensors, ch. 6, pp. 201-243. John Wiley Sons, Ltd, 2006.
dc.relationB. Uslu and S. A. Ozkan, “Solid electrodes in electroanalytical chemistry: present applications and prospects for high throughput screening of drug compounds," Combinatorial chemistry & high throughput screening, vol. 10, no. 7, pp. 495-513, 2007.
dc.relationB. Uslu and S. A. Ozkan, “Electroanalytical application of carbon based electrodes to the pharmaceuticals," Analytical Letters, vol. 40, no. 5, pp. 817-853, 2007.
dc.relationP. Kissinger and W. R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, revised and expanded. CRC press, 2018.
dc.relationJ. Wang, “Stripping analysis at bismuth electrodes: a review," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 17, no. 15-16, pp. 1341-1346, 2005.
dc.relationD. F. Nieto Arboleda, “Desarrollo de un sistema de adquisición de datos provenientes de sensores tipo lengua electrónica para aplicaciones en industria alimenticia," tech. rep., Trabajo de grado. Programa de Ingeniería electrónica. Universidad Nacional de Colombia sede Bogotá, 2020.
dc.relationF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
dc.relationK. Johnsson, Structures in High-Dimensional Data: Intrinsic Dimension and Cluster Analysis. PhD thesis, Lund University, 2016.
dc.relationG. Kraemer, M. Reichstein, and M. D. Mahecha, “dimred and coranking-unifying dimensionality reduction in r," R Journal, vol. 10, no. 1, pp. 342-358, 2018.
dc.relation“Robrecht cannoodt and wouter saelens (2020) dyndimred: Dimensionality reduction methods in a common format." https://cran.microsoft.com/snapshot/2020-04-20/web/packages/dyndimred/index.html. Accessed: 2021-04-12.
dc.relationK. You, “Rdimtools: An r package for dimension reduction and intrinsic dimension estimation," arXiv preprint arXiv:2005.11107, 2020.
dc.relationI. Capera, J. Calder_on, O. Ramos, and O. Restrepo, “Inuencia del voltaje sobre las características reológicas del sabajón," Publicaciones e Investigación, vol. 1, pp. 15-35, 2007.
dc.relationC. A. Fuenmayor, A. C. Díaz-Moreno, C. M. Zuluaga-Domínguez, and M. C. Quicazán, “Honey of colombian stingless bees: Nutritional characteristics and physicochemical quality indicators," in Pot-Honey, pp. 383-394, Springer, 2013.
dc.relationA. Naila, S. H. Flint, A. Z. Sulaiman, A. Ajit, and Z. Weeds, “Classical and novel approaches to the analysis of honey and detection of adulterants," Food Control, vol. 90, pp. 152-165, 2018.
dc.relationC. Maione, F. Barbosa, and R. M. Barbosa, “Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review," Computers and Electronics in Agriculture, vol. 157, no. January, pp. 436-446, 2019.
dc.relationM. Bougrini, K. Tahri, T. Saidi, N. El Alami El Hassani, B. Bouchikhi, and N. El Bari, “Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue," Food Analytical Methods, vol. 9, no. 8, pp. 2161-2173, 2016.
dc.relationJ. Cai, X. Wu, L. Yuan, E. Han, L. Zhou, and A. Zhou, “Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics, "Analytical Methods, vol. 5, no. 9, pp. 2324-2328, 2013.
dc.relationZ. Gan, Y. Yang, J. Li, X.Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey," Journal of Food Engineering, vol. 178, pp. 151-158, 2016.
dc.relationM. Juan-Borrás, J. Soto, L. Gil-Sánchez, A. Pascual-Maté, and I. Escriche, “Antioxidant activity and physico-chemical parameters for the differentiation of honey using a potentiometric electronic tongue," Journal of the Science of Food and Agriculture, vol. 97, no. 7, pp. 2215-2222, 2016.
dc.relationM. Oroian, S. Paduret, and S. Ropciuc, “Honey adulteration detection: voltammetric etongue versus official methods for physicochemical parameter determination," Journal of the Science of Food and Agriculture, vol. 98, no. 11, pp. 4304-4311, 2018.
dc.relationM. Oroian and S. Ropciuc, “Romanian honey authentication using voltammetric electronic tongue. correlation of voltammetric data with physico-chemical parameters and phenolic compounds," Computers and electronics in agriculture, vol. 157, pp. 371-379, 2019.
dc.relationD. Pauliuc, F. Dranca, and M. Oroian, “Raspberry, rape, thyme, sunower and mint honeys authentication using voltammetric tongue," Sensors, vol. 20, no. 9, p. 2565, 2020.
dc.relationK. Tiwari, B. Tudu, R. Bandyopadhyay, and A. Chatterjee, “Identification of monofloral honey using voltammetric electronic tongue," Journal of Food Engineering, vol. 117, no. 2, pp. 205-210, 2013.
dc.relationL. Sobrino-Gregorio, R. Bataller, J. Soto, and I. Escriche, “Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue," Food Control, vol. 91, pp. 254-260, 2018.
dc.relationA. C. Veloso, M. E. Sousa, L. Estevinho, L. G. Dias, and A. M. Peres, “Honey evaluation using electronic tongues: An overview," Chemosensors, vol. 6, no. 3, pp. 1-25, 2018.
dc.relationJ. W. Gardner and P. N. Bartlett, “A brief history of electronic noses," Sensors and Actuators: B. Chemical, vol. 18, no. 1-3, pp. 210-211, 1994.
dc.relationM. Holmberg, F. Winquist, I. Lundström, F. Davide, C. DiNatale, and A. D'Amico, “Drift counteraction for an electronic nose," Sens. Actuators, B, vol. 36, no. 1-3, pp. 528-535, 1996.
dc.relationM. Zuppa, C. Distante, P. Siciliano, and K. C. Persaud, “Drift counteraction with multiple self-organising maps for an electronic nose," Sens. Actuators, B, vol. 98, no. 2-3, pp. 305-317, 2004.
dc.relationA. Rudnitskaya, “Calibration Update and Drift Correction for Electronic Noses and Tongues," Frontiers in Chemistry, vol. 6, no. September, 2018.
dc.relationG. Korotcenkov and B. Cho, “Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey)," Sens. Actuators, B, vol. 156, no. 2, pp. 527-538, 2011.
dc.relationS. Di Carlo and M. Falasconi, “Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges," in Advances in Chemical Sensors, IntechOpen, 2012.
dc.relationA. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta, “Chemical gas sensor drift compensation using classifier ensembles," Sensors and Actuators, B: Chemical, vol. 166-167, pp. 320-329, 2012.
dc.relationJ. Fonollosa, I. Rodríguez-Luján, and R. Huerta, “Chemical gas sensor array dataset," Data in brief, vol. 3, pp. 85-89, 2015.
dc.relationL. Zhang, D. Zhang, X. Yin, and Y. Liu, “A novel semi-supervised learning approach in artificial olfaction for e-nose application," IEEE Sensors J., vol. 16, no. 12, pp. 4919- 4931, 2016.
dc.relationA. ur Rehman and A. Bermak, “Swarm intelligence and similarity measures for memory efficient electronic nose system," IEEE Sensors J., vol. 18, no. 6, pp. 2471-2482, 2018.
dc.relationT. Liu, D. Li, J. Chen, Y. Chen, T. Yang, and J. Cao, “Gas-sensor drift counteraction with adaptive active learning for an electronic nose," Sensors, vol. 18, no. 11, p. 4028, 2018.
dc.relationK. Yan, L. Kou, and D. Zhang, “Learning domain-invariant subspace using domain features and independence maximization," IEEE transactions on cybernetics, vol. 48, no. 1, pp. 288-299, 2017.
dc.relationB. Liu, X. Zeng, F. Tian, S. Zhang, and L. Zhao, “Domain transfer broad learning system for long-term drift compensation in electronic nose systems," IEEE Access, vol. 7, pp. 143947-143959, 2019.
dc.relationA. Grover and B. Lall, “A novel method for removing baseline drifts in multivariate chemical sensor," IEEE Transactions on Instrumentation and Measurement, 2020.
dc.relationT. Liu, Y. Chen, D. Li, T. Yang, J. Cao, and M. Wu, “Drift compensation for an electronic nose by adaptive subspace learning," IEEE Sensors Journal, vol. 20, no. 1, pp. 337-347, 2019.
dc.relationS. J. Pan and Q. Yang, “A survey on transfer learning," IEEE Trans Knowl Data Eng, vol. 22, no. 10, pp. 1345-1359, 2009.
dc.relationA. Arnold, R. Nallapati, and W. W. Cohen, “A comparative study of methods for transductive transfer learning.," in ICDM Workshops, pp. 77-82, 2007.
dc.relationM. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature learning with joint distribution adaptation," in Proceedings of the IEEE international conference on computer vision, pp. 2200-2207, 2013.
dc.relationA. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola, “A kernel method for the two-sample problem," arXiv preprint arXiv:0805.2368, 2008.
dc.relationH. Abdi and L. J. Williams, “Principal component analysis," Wiley Interdiscip Rev Comput Stat, vol. 2, no. 4, pp. 433-459, 2010.
dc.relationS. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, 2010.
dc.relationT.-M. Huang, V. Kecman, and I. Kopriva, Kernel based algorithms for mining huge data sets, vol. 1. Springer, 2006.
dc.relationG. Camps-Valls, “Kernel spectral angle mapper," Electron. Lett., vol. 52, no. 14, pp. 1218-1220, 2016.
dc.relationB. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic ow kernel for unsupervised domain adaptation," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066-2073, IEEE, 2012.
dc.relationQ. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, “A two-stage weighting framework for multi-source domain adaptation," in Advances in neural information processing systems, pp. 505-513, 2011.
dc.relationI. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer, and R. Huerta, “On the calibration of sensor arrays for pattern recognition using the minimal number of experiments," Chemometrics and Intelligent Laboratory Systems, vol. 130, pp. 123-134, 2014.
dc.relationE. G. Méndez López, “Desarrollo de una interfaz gráfica de usuario gui para el procesamiento de señales obtenidas con arreglos de sensores tipo lengua electrónica," tech. rep., Trabajo de grado. Programa de Ingeniería eléctrica. Universidad Nacional de Colombia sede Bogotá, 2021.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2021
dc.titleDesarrollo de un sistema de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónica
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución