| dc.contributor | Viviescas Ramírez, Carlos Leonardo | |
| dc.contributor | Caos y Complejidad | |
| dc.creator | Sevilla Moreno, Jose Mauricio | |
| dc.date.accessioned | 2021-02-12T16:28:28Z | |
| dc.date.available | 2021-02-12T16:28:28Z | |
| dc.date.created | 2021-02-12T16:28:28Z | |
| dc.date.issued | 2020-07-03 | |
| dc.identifier | Sevilla Moreno, J. M. (2020). Semiclassical propagators of wigner function: a comparative study [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional. | |
| dc.identifier | https://repositorio.unal.edu.co/handle/unal/79213 | |
| dc.description.abstract | Las aproximaciones semiclásicas para la dinámica han sido ampliamente utilizadas en distintas representaciones de la mecánica cuántica. En particular, las representaciones en espacios de fase presentan una forma clara de implementar estas aproximaciones haciendo comparaciones directas con la mecánica clásica. En los últimos años, dichas aproximaciones han recuperado interés, ya que las posibles aplicaciones numéricas son acordes a las arquitecturas computacionales modernas. En este trabajo, diferentes aproximaciones semiclásicas son construidas y comparadas en complejidad y desempeño, mostrando que son una forma viable para calcular la dinámica cuántica. Se presenta un estudio sobre las cáusticas en el potencial de Morse mostrando las similitudes en las funciones de Wigner considerando y no considerándolas. Siguiendo este camino, introducimos las representaciones de valor inicial y de valor final (RVI y RVF) para comparar las propiedades dinámicas con la representación de centro-centro propuesta por Dittrich et al. mostrando que esta última puede ser usada como representación de valor inicial en aplicaciones numéricas, obteniendo así, mejor desempeño com menor complejidad que las RVI y RVF usando distintos criterios de comparación. | |
| dc.description.abstract | Semiclassical approximations for the dynamics have been widely used in different representations of quantum mechanics. In particular, phase space representations exhibit a clear way to implement those approximations by direct comparison with classical mechanics theory. During the last years, such approximations have been recovering interest, due to the fact that numerical applications suit the modern computational architectures. In this work different semiclassical approximations are built and compared on performance and complexity, showing that they are a suitable way to calculate the quantum dynamics. A study over the caustics is presented on a the Morse potential showing the similarities of the final Wigner function considering and not considering them. Following this, we introduced an initial and fi nal value representations (IVR and FVR) to compare the dynamical properties with the center-center representation proposed by Dittrich et al. showing that the later can be used as a initial value representation in numerical applications, getting better performance with less complexity than the IVR and FVR using different criteria in such comparison. | |
| dc.language | eng | |
| dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Física | |
| dc.publisher | Departamento de Física | |
| dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.relation | Andrea Bon glioli, R. F. a. (2012). Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdor and Dynkin. Lecture Notes in Mathematics 2034. Springer-Verlag Berlin Heidelberg, 1 edition. | |
| dc.relation | Arnold, V., Vogtmann, K., and Weinstein, A. (2013). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer New York. | |
| dc.relation | Berry, M. V. and Mount, K. E. (1972). Semiclassical approximations in wave mechanics. Reports on Progress in Physics, 35(1):315-397. | |
| dc.relation | Ballentine, L. (1998). Quantum Mechanics: A Modern Development. World Scientific. | |
| dc.relation | Burden, R. and Faires, J. (2010). Numerical Analysis. Cengage Learning. | |
| dc.relation | Cabrera, R., Bondar, D. I., Jacobs, K., and Rabitz, H. A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems. Phys.
Rev. A, 92:042122. | |
| dc.relation | Dahl, J. P. and Springborg, M. (1988). The morse oscillator in position space, momentum space, and phase space. The Journal of Chemical Physics, 88(7):4535-4547. | |
| dc.relation | Daniela, D. (2005). Applications of the wigner distribution function in signal processing. EURASIP Journal on Advances in Signal Processing, 10. | |
| dc.relation | Dirac, P. A. M. and Fowler, R. H. (1927). The physical interpretation of the quantum dynamics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 113(765):621-641. | |
| dc.relation | Dittrich, T., Gomez, E., and Pachon, L. (2010). Semiclassical propagation of wigner functions. The Journal of chemical physics, 132:214102 | |
| dc.relation | Dittrich, T., Viviescas, C., and Sandoval, L. (2006). Semiclassical propagator of the wigner function. Phys. Rev. Lett., 96:070403 | |
| dc.relation | Domitrz, W., Manoel, M., and de M. Rios, P. (2013). The wigner caustic on shell and singularities of odd functions. Journal of Geometry and Physics, 71:58 - 72. | |
| dc.relation | Domitrz, W. and Zwierzynski, M. (2020). Singular points of the wigner caustic and affine equidistants of planar curves. Bulletin of the Brazilian Mathematical Society, New Series, 51:11 - 26. | |
| dc.relation | Feynman, R. (1966). The Feynman Lectures on Physics: Quantum mechanics. Number v. 3. | |
| dc.relation | Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20:367-387 | |
| dc.relation | Forest, E. (2006). Geometric integration for particle accelerators. Journal of Physics A: Mathematical and General, 39(19):5321 | |
| dc.relation | Frank, A., Rivera, A. L., and Wolf, K. B. (2000). Wigner function of morse potential eigenstates. Phys. Rev. A, 61:054102 | |
| dc.relation | Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766-2788 | |
| dc.relation | Goldstein, H., Poole, C., and Safko, J. (2002). Classical Mechanics. Addison Wesley. | |
| dc.relation | Gómez, E. A. (2010). Aplicaciones al propagador semiclásico de la función de wigner / applications to the semiclassical propagator of the wigner function. Tesis Doctorado en física. | |
| dc.relation | Gray, S. K., Noid, D. W., and Sumpter, B. G. (1994). Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods. The Journal of Chemical Physics, 101(5):4062{4072. | |
| dc.relation | Gutzwiller, M. C. (1967). Phase-integral approximation in momentum space and the bound states of an atom. Journal of Mathematical Physics, 8(10):1979-2000 | |
| dc.relation | Gutzwiller, M. C. (1969). Phase-integral approximation in momentum space and the bound states of an atom. ii. Journal of Mathematical Physics, 10(6):1004-1020. | |
| dc.relation | Gutzwiller, M. C. (1970). Energy spectrum according to classical mechanics. Journal of Mathematical Physics, 11(6):1791-1806 | |
| dc.relation | Gutzwiller, M. C. (1971). Periodic orbits and classical quantization conditions. Journal of Mathematical Physics, 12(3):343-358 | |
| dc.relation | Gutzwiller, M. C. (1992). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York. | |
| dc.relation | Hairer, E., Norsett, S., and Wanner, G. (2008). Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer Berlin Heidelberg. | |
| dc.relation | Heller, E. (1981). Frozen gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923-2931. | |
| dc.relation | Herman, M. F. and Kluk, E. (1984). A semiclassical justifi cation for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27 -
34. | |
| dc.relation | Hillery, M., O'Connell, R. F., Scully, M. O., and Wigner, E. P. (1997). Distribution Functions in Physics: Fundamentals, pages 273{317. Springer Berlin Heidelberg, Berlin, Heidelberg. | |
| dc.relation | Hudson, R. (1974). When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics, 6(2):249 { 252 | |
| dc.relation | Husimi, K. (1940). Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22(4):264-314 | |
| dc.relation | Jaubert, L. D. C. and de Aguiar, M. A. M. (2007). Semiclassical tunnelling of wavepackets with real trajectories. Physica Scripta, 75(3):363{373 | |
| dc.relation | Kay, K. G. (2013). Time-dependent semiclassical tunneling through barriers. Phys. Rev. A, 88:012122. | |
| dc.relation | Keller, J. B. (1985). Semiclassical mechanics. SIAM Review, 27(4):485-504. | |
| dc.relation | Koda, S.-i. (2015). Initial-value semiclassical propagators for the wigner phase space representation: Formulation based on the interpretation of the moyal equation as a schr odinger equation. The Journal of Chemical Physics, 143(24):244110. | |
| dc.relation | Landau, L. and E.M., L. (1977). Quantum Mechanics: Non-relativistic Theory. Butterworth-Heinemann. Butterworth-Heinemann | |
| dc.relation | Leonhardt, U., Knight, P., and Miller, A. (1997). Measuring the Quantum State of Light. Cambridge Studies in Modern Optics. Cambridge University Press. | |
| dc.relation | Littlejohn, R. G. (1992). The van vleck formula, maslov theory, and phase space geometry. Journal of Statistical Physics, 68(1-2):7-50. | |
| dc.relation | Maslov, V. and Fedoriuk, M. (1981). Semi-Classical Approximation in Quantum Mechanics. Mathematical Physics and Applied Mathematics. Dordrecht | |
| dc.relation | McLachlan, R. I. and Atela, P. (1992). The accuracy of symplectic integrators. Nonlinearity, 5(2):541 | |
| dc.relation | Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev., 34:57{64 | |
| dc.relation | Moyal, J. E. (1949). Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45(1):99-124. | |
| dc.relation | O'Connell, R. and Wigner, E. (1981a). Quantum-mechanical distribution functions: Conditions for uniqueness. Physics Letters A, 83(4):145 -148. | |
| dc.relation | O'Connell, R. and Wigner, E. (1981b). Some properties of a non-negative quantum-mechanical distribution function. Physics Letters A, 85(3):121-126. | |
| dc.relation | Ozorio de Almeida, A. (2009). Entanglement in Phase Space, pages 157-219. Springer Berlin Heidelberg, Berlin, Heidelberg | |
| dc.relation | Ozorio de Almeida, A., Vallejos, R., and Zambrano, E. (2013). Initial or fi nal values for semiclassical evolutions in the weyl-wigner representation. Journal of
Physics A: Mathematical and Theoretical, 46:135304 | |
| dc.relation | Ozorio de Almeida, A. M. (1989). Hamiltonian Systems: Chaos and Quantization. Cambridge Monographs on Mathematical Physics. Cambridge University Press. | |
| dc.relation | Ozorio de Almeida, A. M. (1998). The weyl representation in classical and quantum mechanics. Physics Reports, 295(6):265 { 342. | |
| dc.relation | Ozorio de Almeida, A. M. and Brodier, O. (2006). Phase space propagators for quantum operators. Annals of Physics, 321(8):1790-1813 | |
| dc.relation | Ozorio de Almeida, A. M., Lando, G. M., Vallejos, R. O., and Ingold, G.-L. (2019). Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A, 99:042125. | |
| dc.relation | P. Schleich, W. (2001). Quantum optics in phase space. Quantum Optics in Phase Space, by Wolfgang P. Schleich, pp. 716. ISBN 3-527-29435-X. Wiley-VCH , April
2001. | |
| dc.relation | Pachón, L. A. (2010). Coherencia y decoherencia en la propagación semiclásica de la función de wigner / Coherence and decoherence in the semiclassical propagation of the wigner function. Tesis Doctor en ciencias-física. | |
| dc.relation | Press, W. (2007). Numerical Recipes 3rd Edition: The Art of Scientifi c Computing.Cambridge University Press | |
| dc.relation | Sakurai, J. and Napolitano, J. (2011). Modern Quantum Mechanics. Addison-Wesley. | |
| dc.relation | Van Vleck, J. (1928). The correspondence principle in the statistical interpretation of quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 14(2):178{188. | |
| dc.relation | Villalba, O. E. R. (2017). Semiclassical approximation to the propagator of the wigner function for particles in con ned spaces. Magíster en Ciencias - Física | |
| dc.relation | Weinbub, J. and Ferry, D. K. (2018). Recent advances in wigner function approaches. Applied Physics Reviews, 5(4):041104. | |
| dc.relation | Weyl, H. (1927). Quantenmechanik und gruppentheorie. Zeitschrift f ur Physik, 46(1):1{46. | |
| dc.relation | Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749{759 | |
| dc.relation | Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5):262 { 268 | |
| dc.relation | Zachos, C., Fairlie, D., and Curtright, T. (2005). Quantum Mechanics in Phase Space: An Overview with Selected Papers. World Scienti fic series in 20th century physics. World Scienti fic | |
| dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights | Acceso abierto | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
| dc.title | Semiclassical propagators of wigner function: a comparative study | |
| dc.type | Otro | |