dc.contributorMarín Montoya, Mauricio Alejandro
dc.contributorBiotecnologia Vegetal
dc.creatorCorrales Cabra, Erika Margarita
dc.date.accessioned2022-08-29T21:38:18Z
dc.date.available2022-08-29T21:38:18Z
dc.date.created2022-08-29T21:38:18Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82181
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa uchuva (Physalis peruviana L.) es un frutal solanáceo nativo de los Andes, con un gran potencial de exportación gracias a sus excelentes características organolépticas y nutricionales. En los últimos años en Colombia, este cultivo presenta diferentes problemas fitosanitarios, entre los que se destacan las enfermedades virales, que entre otros efectos causan la disminución de los rendimientos, reducción de la longevidad de las plantas y el deterioro de las características de los frutos, ocasionando la reducción de su valor comercial. A diferencia de otras enfermedades causadas por hongos, nemátodos y bacterias, las enfermedades virales son difíciles de controlar ya que la manifestación de los síntomas generalmente ocurre después de largos períodos de infección sistémica. Desafortunadamente, en la agroindustria de uchuva no existe un sistema de detección viral o pruebas de diagnóstico validadas que permitan identificar oportunamente la presencia de virus en plantas asintomáticas o en material de siembra. El manejo de las enfermedades virales se basa en la implementación de prácticas preventivas como la siembra de material certificado por su sanidad viral, lo que se puede lograr por medio de técnicas de limpieza in vitro de plantas y su propagación a gran escala bajo principios de exclusión fitosanitaria. En este trabajo, utilizando técnicas moleculares como RT-qPCR, RT-PCR convencional, secuenciación Sanger y secuenciación masiva de alto rendimiento (HTS), se identificaron y caracterizaron genómicamente los virus que afectan los cultivos de uchuva en el departamento de Antioquia en material de siembra y en plantas en producción. En la subregión del oriente se encontraron altos niveles de prevalencia para las infecciones por PVY, CGIV-1, PVS y PVX. Además, con el uso NGS, se reportó por primera vez la presencia de tres nuevas especies de virus denominadas tentativamente como: Physalis vein necrosis virus (PhyVNV, Nepovirus), Physalis torradovirus (PhyTV, Torradovirus), y Physalis virus X (PhyVX, Potexvirus). Para el caso de la subregión del suroeste, se detectaron los virus PVX, PVS, PVY, PhyVNV y CGIV-1. Adicionalmente, mediante el análisis de NGS se detectó la presencia de secuencias de los virus CMV, PhyVNV, PVS y TaLMV. Para TaLMV se confirmó su infección en uchuva mediante RT-qPCR y RT-PCR, siendo el primer reporte de este virus en un hospedero diferente al tamarillo (Solanum betaceum). Por último, en esta investigación se evaluaron metodologías derivadas de técnicas de cultivo in vitro para la generación de material de siembra de uchuva libre de virus y/o con baja carga viral, definiéndose como el mejor tratamiento la termoterapia 37ºC por 30 días con un fotoperiodo de 12 h de luz artificial, y un período de recuperación de 45 días a 21°C, al reducirse la incidencia de PVS y PVY, con respecto a los controles no tratados. Para el caso de quimioterapia, se encontró que el mejor tratamiento correspondió a la aplicación de 30 ppm de ribavirina al medio de crecimiento modificado de Montiel-Martínez et al. (2011) durante 45 días a 21°C, con un fotoperiodo de 12 horas luz, reduciéndose la incidencia de PVX, PVY y PMTV, con respecto a los controles no tratados. Se espera que los resultados de esta tesis estimulen al gremio fruticultor del departamento y del país a utilizar herramientas moleculares y técnicas in vitro para el establecimiento de programas de certificación de semilla de uchuva y de seguimiento epidemiológico de las enfermedades virales en este cultivo. (Texto tomado de la fuente)
dc.description.abstractCape gooseberry (Physalis peruviana L.) is an Andean solanaceous crop with great export potential due to its unique organoleptic and nutritional characteristics. Unfortunately, in recent years there has been an emergence of a wide spectrum of phytosanitary problems affecting the yields, plant longevity and fruit quality of cape gooseberry. In contrast to diseases caused by fungi, nematodes or bacteria, viral diseases can be difficult to control as symptoms may take a long time before they become conspicuous. This problem is exacerbated by the lack of reliable diagnostic tools that allow detection of viruses in asymptomatic plants and planting material. In agriculture, viral diseases are controlled in a preventive manner through seed certification programs that guarantee the elimination of viruses from stock plants using in vitro culture techniques, and propagation of planting material at large scale under controlled conditions. In this work, a wide variety of viruses infecting cape gooseberry in Antioquia were characterized using RT-qPCR, standard PCR, Sanger sequencing and High-throughput sequencing (HTS). Testing was performed on adult plants from commercial cape gooseberry fields, seeds, and plantlets. In eastern Antioquia, the viruses PVY, CGIV-1, PVS, and PVX were highly prevalent and the use of HTS revealed the presence of three new viruses tentatively named as Physalis vein necrosis virus (PhyVNV, Nepovirus), Physalis torradovirus (PhyTV, Torradovirus), and Physalis virus X (PhyVX, Potexvirus). In the southwestern region, the viruses PVX, PVS, PVY, PhyVNV, and CGIV-1 were detected and HTS revealed the presence of CMV, PhyVNV, PVS, and TaLMV. Infection by TaLMV was further confirmed by RT-qPCR making this the first report of natural infection of this virus in a host different to tamarillo (Solanum betaceum). Finally, different in vitro tissue culture methods for the elimination of viruses were tested. The best performance was achieved with thermotherapy at 37 ºC for 30 days, using a photoperiod of 12 h under artificial light, followed by a recovery stage of 45 days at 21°C. This protocol was effective in reducing the prevalence of PVS and PVY with respect to the untreated controls. Thermotherapy, on the other hand, worked best at a 30 ppm concentration of ribavirin using the Montiel-Martínez et al. (2011) growth medium for 45 days at 21°C, with a photoperiod of 12 h under artificial light. This method was effective in reducing the prevalence of PVX, PVY, and PMTV. Hopefully, these results will promote the implementation of molecular and in vitro culture methods in seed certification and virus surveillance programs of cape gooseberry by the fruit agroindustry of Antioquia and Colombia.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherEscuela de biociencias
dc.publisherFacultad de Ciencias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAdams, M., Antoniw, J. y Beaudoin, F. (2005). Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol. 6(4), 471-478. https://doi.org/10.1111/j.1364-3703.2005.00296.x
dc.relationAgindotan, B. O., Shiel, P. J. y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT PCR. J Virol Methods. 142(1-2), 1-9. https://doi.org/10.1016/j.jviromet.2006.12.012
dc.relationAguirre-Ráquira, W., Borda, D. y Hoyos-Carvajal, L. (2014). Potyvirus Affecting Uchuva (Physalis peruviana L.) in Centro Agropecuario Marengo, Colombia. Agric Sci. 5(10), 897-905. http://dx.doi.org/10.4236/as.2014.510097
dc.relationAgronet. (2018). Área Producción y Rendimiento Nacional por cultivo. Recuperado el 15 de noviembre de 2019 de http://www.agronet.gov.co/Paginas/estadisticas.aspx
dc.relationAlemu, K. (2015). Detection of diseases, identification and diversity of viruses: A Review. J Biol Agri Healthc. 5(1), 204-214.
dc.relationAlfonso, K. (2017). La uchuva duplica exportaciones a EE UU. Colombia: Agronegocios Recuperado en 18 abril de 2020 de https://www.agronegocios.co/agricultura/la-uchuva-duplica-exportaciones-a-eeuu-2622616
dc.relationAlmaarr, K., Massa, R. y Albiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotech. 237-243. https://doi.org/10.5511/plantbiotechnology.12.0215a
dc.relationAnaldex. (2019). Informe de exportaciones de fruta enero – mayo 2019. Resuperado el 18 enero de 2020 de https://www.analdex.org/2019/07/31/informe-de-exportaciones-de-fruta-enero-mayo-2019/
dc.relationAnaldex. (2019). Exportaciones de uchuva. Recuperado el 30 de marzo de 2019 de https://www.analdex.org/2019/03/12/informe-de-exportaciones-de-uchuva-2018/
dc.relationAnaldex. (2019). Comportamiento de la uchuva Recuperado el 30 de abril de 2020 de https://www.analdex.org/2019/05/22/informe-de-exportaciones-de-uchuva-2018-2019/
dc.relationAnaldex. (2021). Informe de exportaciones de uchuva. Recuperado el 08 de septiembre de 2021 de https://www.analdex.org/2021/07/30/informe-exportaciones-de-uchuva-mayo-2021/
dc.relationAndrade, L. (2019). Identificación serológica y molecular del virus del mosaico rugoso PVX en cultivos de Physalis peruviana de la Sierra centro norte del Ecuador (Trabajo de Grado), (pp. 20-31) Quito: Pontificia Universidad Catolica del Ecuador
dc.relationAli, M., Nasiruddin, K., Haque, M. y Faisal, S. (2014). Virus elimination in potato through meristem culture followed by thermotherapy. SAARC J Agrc. 11(1), 71-80. https://doi.org/10.3329/sja.v11i1.18376
dc.relationAlvaréz, D., Gutiérrez, P. y Marin, M. (2016). Caracterización Molecular del Potato virus V (PVV) Infectando Solanum phureja mediante secuenciación de nueva generación. Acta biol Colomb. 21(3), 521-531. https://doi.org/10.15446/abc.v21n3.54712
dc.relationAlvarez, N., Jaramillo, H., Gallo, Y., Gutiérre, P. A. y Marín, M. (2018). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agron Colomb. 36(1), 13-23. http://dx.doi.org/10.15446/agron.colomb.v36n1.65051
dc.relationBadoni, A. y Chauhan, J. S. (2009). Effect of growth regulators on meristem-tip development and in vitro multiplication of potato cultivar ‘Kufri Himalini’. Nature and Sci. 7(9), 31-34.
dc.relationBankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Andrey, D. P., Pyshkin, A. V.,Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2012). Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5), 455-477. http://doi.org/10.1089/cmb.2012.0021
dc.relationBarba, M., Ilardi, V. y Pasquini, G. (2015). Control of pome and stone fruit virus diseases. Adv virus Res. 91, 47-83. https://doi.org/10.1016/bs.aivir.2014.11.001
dc.relationBarrero, R., Napier, K., Cunnington, J., Liefting, L., Keenan, S., Frampton, R., Szabo, T., Bulman, S., Hunter, A.,Ward, L., Whattan, M. y Bellgard, M. I.(2017). An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinformatics.18(26), 1-12. https://doi.org/10.1186/s12859-016-1428-4
dc.relationBhatia, S., Sharma, K. y Bera, T. (2015). Chapter 11: Micropagation. Bhatia, S., Sharma, K., Dahiya, R. y Bera, T. (Ed), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. (pp. 361-368). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00011-X
dc.relationBio-Rad. (2020). Guide: An Introduction to ELISA. Recuperado el 29 de abril de 2020 de https://www.bio-rad-antibodies.com/elisa-types-direct-indirect-sandwich-competition-elisa-formats.html#Indirect
dc.relationBlanco-Urgoiti, B., Sanchez, F., Perez de San Roman, C., Dopazo, J. y Ponz, F. (1998). Potato Virus Y group C isolates are a homogeneous pathotype but two different genetic strains. J Genl Virol. 79(8), 2037-2042. https://doi.org/10.1099/0022-1317-79-8-2037
dc.relationBoratyn, G., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 20 (1), 405. https://doi.org/10.1186/s12859-019-2996-x
dc.relationBoonham, N., Kreuze, J., Winter, S., Van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186, 20-31. https://doi.org/10.1016/j.virusres.2013.12.007
dc.relationBuermans, H. y Den Dunnen, J. (2014). Next generation sequencing technology: Advances and applications. Biochim Biophys Acta. 1842(10), 1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015
dc.relationBujarski, J., Gallitelli, D., Garcia-Arenal, F.,Pallás, V.,Palukaitis, P., Reddy, M. K. y Wang, A. (2019). ICTV virus profile: Bromoviridae. J Gen Virol. 100, 1206-1207.
dc.relationCalvert, E., Cooper, P. y McClure, J. (1980). An aphid transmitted strain of PVYc recorded in potatoes in Northern Ireland. Rec Agric Res. 28, 63-74.
dc.relationCassells, A. C. y Long, R. D. (1982). The elimination of potato viruses X, Y, S and M in meristem and explant cultures of potato in the presence of Viralzole. Potato Res. 25, 165-173. https://doi.org/10.1007/BF02359803
dc.relationCieślińska, M. (2002). Elimination of Apple chlorotic leafspot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hortic. 596(596), 481-484. https://doi.org/10.17660/ActaHortic.2002.596.80
dc.relationChomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 15(3), 532-537.
dc.relationChung, B. Y., Miller, W. A., Atkins, J. F. y Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA. 105(15), 5897–5902. https://doi.org/10.1073/pnas.0800468105
dc.relationClark, M. F. y Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses Free. J Gen Virol. 34(3), 475-483. https://doi.org/10.1099/0022-1317-34-3-475
dc.relationConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szczesmiak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X. y Motazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biol. 17(13). https://doi.org/10.1186/s13059-016-0881-8
dc.relationCotes, A., Díaz, A., García, A., Smith, A., Zapata, J. y Mesa, P. (2012). Avances en el manejo y control de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). (pp. 24) Bogota: Corpoica.
dc.relationCrotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R. y Cameron C. E. (2000). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 6(12), 1375-1379.
dc.relationCrotty, S., Cameron, C. E. y Andino, R. (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci. USA. 98(12), 6895-6900.
dc.relationDaza, P., Rodríguez, P. y Forero, M. (2011). Enfermedades de origen viral en cultivos de uchuva (Physalis peruviana L.) ubicados en el departamento de Cundinamarca. Fitopatología Colombiana. 35(1),128
dc.relationDawson, W. O. y Lozoya, S. H. (1984). Examination of the mode of action of ribavirin against tobacco mosaic virus. Intervirology. 22, 77-84.
dc.relationDerrick, K. (1973). Quantitative assay for plant viruses using serologically specific electron microscopy. Virology. 56(2),652-653. https://doi.org/10.1016/0042-6822(73)90068-8
dc.relationDellaporta, S., Wood, J. y Hicks, J. (1983). A plant DNA minipreparation: Version II. Plant Mol Biol Reporter. 1,19-21. https://doi.org/10.1007/BF02712670
dc.relationDoyle, J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1-15.
dc.relationEiras, M., Costa, I. F. D, Chaves, A. L. R., Colariccio, A., Harakava, R., Tanaka, F. A. O, Garcêz, R. M. y Silva, L. A. (2012). First report of a tospovirus in a commercial crop of Cape gooseberry in Brazil. New Diase Report. 25, 25. https://doi.org/10.5197/j.2044-0588.2012.025.025
dc.relationFang, Y. y Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors. 5(3), 537-561. https://doi.org/10.3390/bios5030537
dc.relationFAO. (2019). Food and Agriculture Organization of the United Nations. Recuperado el 30 de octubre del 2019 de http://www.fao.org/3/a-au173s.pdf
dc.relationFariña, A. E., Gorayeb, E. S., Camelo-García, V. M., Bonin, J., Nagata, T., Silva, J. M., Bogo, A., MARQUEZ, J. A., Nascimento da Silva, F. y Kitajima, E. W. (2019). Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana. Arch Virol. 164(11), 2805-2810. https://doi.org/10.1007/s00705-019-04374-y
dc.relationFASTX tooltkit. (2013). FASTX-Toolkit Recueperado el 13 de marzo del 2020 de http://hannonlab.cshl.edu/fastx_toolkit/index.html
dc.relationFASTQC. (2019). Braham Bioinformatics. Recuperado el 13 de marzo del 2020 de http://www.bioinformatics.babraham.ac.uk/projects/fastqc
dc.relationFischer, G. y Lüddew, P. (1998). Efecto de la termeratura de la rizosfera sobre la distribución de la materia seca en uchuva (Physalis peruviana L.). Agron Colomb. 15(2), 153-162
dc.relationFischer, G., Herrera, A. y Almanza-Merchan, P. (2011). Cape gooseberry (Physalis peruviana L.). Yahia, E. M, (Ed), Postharvest biology and technology of tropical and subtropical fruits (pp. 374-396). Oxford, U.K: Woodhead Publishing
dc.relationFischer, G. y Miranda, D. (2012). Uchuva (Physalis peruviana L.). Fisher, G. (Ed), Manual para el cultivo de frutales en el trópico (pp. 851-873). Bogotá: Produmedios.
dc.relationFisher, G., Almanza-Merchán, P. J. y Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev Bra Frutic. 36(1), 1-15. https://doi.org/10.1590/0100-2945-441/13
dc.relationFletcher, P. y Fletcher, J. (2001). In vitro virus elimination in three Andean root crops: Oca (Oxalis tuberosa), ulluco (Ullucus tuberosus), and arracacha (Arracacia xanthorrhiza). New Zeal J Crop Hort. 29(1), 23-27. https://doi.org/10.1080/01140671.2001.9514156
dc.relationFlorez, V., Fisher, G. y Sora, A. (2000). Crecimiento y Desarrollo. En: Florez V, Fisher G, Sora A, editor(es). Producción, Poscosecha y Exportación de la Uchuva. Bogotá: Universidad Nacional de Colombia. (p. 9-26).
dc.relationGarcia, N., Gutierrez, P. y Marin, M. (2013). Detección y cuantificación del Potato mop-top virus (PMTV) en Colombia mediante qRT-PCR. Acta agron. 62(2), 120-128.
dc.relationGallo Y. (2012). Generación de antígenos derivados de la proteína de la cápside de PVY, TaLMV y PMTV, para la producción de anticuerpos útiles en el desarrollo de pruebas serológicas (Tesis de Maestría). Bogota: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia
dc.relationGallo-García, Y. (2020) Caracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquia (Tesis de Doctorado). Medellín: Facultad de Ciencias, Universidad Nacional de Colombia
dc.relationGallo-García, Y., Jaramillo-Mesa, H., Toro-Fernández, L. F., Marín-Montoya, M. y Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Arch Virol. 163(6), 1713-1716. https://doi.org/10.1007/s00705-018-3796-8
dc.relationGallo-García, Y., Marín, M. y Gutiérrez, P. A. Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. (2020). Arch Phytopathol Pflanzenschutz. 53:9-10, 395-413. https://doi.org/10.1080/03235408.2020.1748368
dc.relationGaray-Arroyo, A., Sánchez, M., García-Ponce, B., Álvarez-Buylla, E. R. y Gutiérrez, C. (2014). La Homeostasis de las Auxinas y su Importancia en el Desarrollo de Arabidopsis Thaliana. Rev Educ Bioquím. 33(1), 13-22.
dc.relationGella, R. y Errea, P. (1998). Application of In Vitro Therapy for Ilarvirus Elimination in Three Prunus Species. J Phytopathol. 146(8-9), 445-449. https://doi.org/10.1111/j.1439-0434.1998.tb04779.x
dc.relationGhafoor, A., Shah, G. B. y Waseem, K. (2003). In vitro response of potato (Solanum tuberosum L.) to various growth regulators. Biotecth. 2(3), 191-197.
dc.relationGil, J., Cortez, J. y Marin, M. (2013). Detección serológica y caracterización molecular de Potato virus S (PVS, Carlavirus) en cultivos de papa de Colombia. Rev Bio Trop. 61(2), 565-575
dc.relationGitHub. Github-Seqtk. Recuperado el 15 de marzo del 2020 de https://github.com/lh3/seqtk
dc.relationGrabherr, M., Haas, B., Yassour, M., Levin, J., Thompson, D., Amit, I., Adiconis, X., Fan, L., Radchowdhury, R.,Zeng, Q.,Chen, Z., Mauceli, E., Hacohen, N. Gnirke, A., Rhind, N.,Palma, F.,Birren, B. W., Nusbaum, C., Friedman, K. L. T. y Regev, A. (2013). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 29(7), 644-652.
dc.relationGray, D. y Benton, C. (1991). In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tiss Org Cult. 27, 7-14. https://doi.org/10.1007/BF00048199
dc.relationGreen, K. J., Chikh-Ali, M., Hamasaki, R. T., Melzer, M. J. y Karasev, A. V. (2017). Potato virus Y (PVY) Isolates from Physalis peruviana are Unable to Systemically Infect Potato or Pepper and Form a Distinct New Lineage Within the PVYC Strain Group. Phytopathology. 107(11), 1433-1439. https://doi.org/10.1094/PHYTO-04-17-0147-R
dc.relationGutierrez, P., Alzate, J. F. y Marin, M. (2015). Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia. Virus Genes. 50(3), 518-522. https://doi.org/10.1007/s11262-015-1181-1
dc.relationHao, D., Sun, X., Ma, B., Zhang, J. S. y Guo, H. (2017). Ethylene. Li, J., Li, C. y Smith, S. M. (Ed). Hormone Metabolism and Signaling in Plants. (pp. 203-241). Elsevier: Academic Press.
dc.relationHamasaki, R. T., Motomura, S. A, Melzer, M. J. y Bushe, B. C. (2015). Potato virus Y: A pathogen associated with an emerging disease of poha in Hawaii. Plant Dis. 109.
dc.relationHanley-Bowdoin, L., Settage, S. B., Orozco, B. M., Nagar, S. y Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol. 35(2), 105-40.
dc.relationHeather, J. M. y Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics. 107(1), 1-8. https://doi.org/10.1016/j.ygeno.2015.11.003
dc.relationHenson, J. y French, R. (1993). The Polymerase chain reaction and plant disease diagnosis. Annu Rev Phytopathol. 31, 81-109. https://doi.org/10.1146/annurev.py.31.090193.000501
dc.relationHo, T. y Tzanetakis, L. (2014). Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 471-473, 54-60. https://doi.org/10.1016/j.virol.2014.09.019
dc.relationHull, R. (2014). Plant Virology. (pp. 1118). Academic Press.
dc.relationHunt, M., Gall, A., Ong, S. H., Brener, J., Ferns, B., Goulder, P., Nastouli, E., Keane, J. A., Kellam, P. y Otto, T. D. (2015). IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics. 31(14), 2374-2376. https://doi.org/10.1093/bioinformatics/btv120
dc.relationICTV. (2019). Bromoviridae. Recuperado el 20 de enero del 2020 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/251/bromoviridae
dc.relationICTV. (2020). Betaflexiviridae. Recuperado el 14 septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/241/betaflexiviridae
dc.relationICTV. (2018). Closteroviridae. Recuperado el 21 de enero de 2020 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/255/closteroviridae
dc.relationICTV. (2020). Caulimoviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/reverse-transcribing-dna-and-rna-viruses-2011/w/rt_viruses/153/caulimoviridae
dc.relationICTV. (2018). Geminiviridae. Recuperado el 15 de abril de 2020 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/geminiviridae
dc.relationICTV. (2020). Secoviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/secoviridae
dc.relationICTV. (2020). Virgaviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/virgaviridae
dc.relationJain, M., Olsen, H. E., Paten, B. y Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17(1), 239. https://doi.org/10.1186/s13059-016-1103-0
dc.relationJaramillo, J. L. y Zuluaga, J. S. (2015).Cartilla para el manejo integrado de plagas en cultivos de uchuva y gulupa. Secretaría de Agricultura y Desarrollo Rural de Antioquia, Corporación para Investigaciones Biológicas. Medellín, Colombia. http://fedepasifloras.org/es/wp-content/uploads/2018/01/Cartilla-uchuva-y-gulupa_FINAL.pdf
dc.relationJaramillo-Mesa, H. (2017). Análisis del transcriptoma y viroma de Passiflora edulis f. edulis en cultivos de Antioquia utilizando métodos de secuenciación de nueva generación (Tesis de Maestría). Medellín: Facultad de Ciencias, Universidad Nacional de Colombia.
dc.relationJoo-jin, J., Ho-jong, J. y Jeaejong, N. (2014). A Review of Detection Methods for the Plant Viruses. Res Plant Dis. 20, 173-181. http://dx.doi.org/10.5423/RPD.2014.20.3.173
dc.relationKamenova, I. y Adkins, S. (2004). Comparison of Detection Methods for a Novel Tobamovirus Isolated from Florida Hibiscus. Plant Dis. 88(1), 34-40. https://doi.org/10.1094/PDIS.2004.88.1.34
dc.relationKarasev, A. V. y Gray, S. M. (2013). Continuous and emerging challenges of Potato virus Y in potato. Annu Rev Phytopathol. 51, 571-586. https://doi.org/10.1146/annurev-phyto-082712-102332
dc.relationKasibhatla, S., Waman, V., Kale, M. y Kulkarni-Kale, U. (2016). Analysis of Next-generation Sequencing Data in Virology - Opportunities and Challenges. http://dx.doi.org/10.5772/61610
dc.relationKerlan, C. (2006). Potato virus Y. Descriptions of Plant Viruses. Recuperado el 24 de marzo marzo de 2020 de http://www.dpvweb.net/dpv/showdpv.php?dpvno=414
dc.relationKing, A., Adams, M. y Lefkowitz, E. (2011). Family- Betaflexiviridae. King, A., Adams, M., Carstens, E. y Lefkowitz, E. (Ed), Virus Taxonomy. (pp. 920-941). Elsevier Inc.
dc.relationKreuze, J., Hammond, J., Pearson, M., Martelli, G. P., Adams, M. J., Ryu, K. H., Namba, S., Candrese, T. y Vaira, A. M. (2012). Family-Alphaflexiviridae. King, A., Adams, M., Carstens, E., Lefkowitz, E. (Ed), Virus Taxonomy. (pp. 904-919). Elsevier Academic Press
dc.relationKreuze, J., Vaira, A. M., Mezel, W., Candresse, T., Zavriev, S. K., Hammond, J. y Ryu, H. (2020). ICTV virus taxonomy profile: Alphaflexiviridae. J Gen Virol. 101, 699-700.
dc.relationLaimer, M. y Barba, M. (2011). Elimination of systemic pathogens by thermo‐ therapy, tissue culture, or in vitro micrografting. Hadidi, A., Barba, M., Candresse, T. y Jelkmann, W. (Ed), Virus and Virus-like diseases of pome and stone fruits. (pp. 389-393). APS. 10.1094/9780890545010.065.
dc.relationLe Gall, O., Christian, P., Fauquet, C. M., King, A. M., Knowles, N. J., Nakashima, N., Stanway, G. y Gorbalenya, A. E. (2007). Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol. 153(4), 715-727. https://doi.org/10.1007/s00705-008-0041-x
dc.relationLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Mather, G., Abecasis, G. y Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics. 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
dc.relationLi, L., Feng, H., Hu, L., Wang, M. y Wang, Q. (2015). Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Annal Appl Biol. 168(1), 142–150. https://doi.org/10.1111/aab.12250
dc.relationLi, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Z, Hang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B. y Fan, W. (2012). Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-brujin-graph. Brief Funt Genomics. 11(1), 25-37. https://doi.org/10.1093/bfgp/elr035
dc.relationLima, J. A., Nascimento, A. K, Radaelli, P., Purcifull, D. E. y Al-Moslih, Y. (2012). Serology Applied to Plant Virology. Intech open. https://doi.org/10.5772/38038
dc.relationLim, S. T., Wong, S. M. y Goh, C. J. (1993). Elimination of Cymbidium mosaic virus and Odontoglossum ringspot virus from orchids by meristem culture and thin section culture with chemotherapy. Ann appl. Biol. 122(2), 289-297.
dc.relationLuo, C., Tsementzi, D., Kyrpides, N., Read, T. y Konstantinidis, K. (2012). Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. 7(2), e30087 https://doi.org/10.1371/journal.pone.0030087
dc.relationMarín, M. y Gutiérrez, P. A. (2016). Principios de virología molecular de plantas tropicales. Colombia: Corpoica
dc.relationMarston, D., McElhinney, L., Ellis, R., Horton, D., Wise, E., Leech, S., David, D., Lamballerie, X. y Fooks, A. R. (2013). Next generation sequencing of viral RNA genomes. BMC Genomics. 14, 444. https://doi.org/10.1186/1471-2164-14-444
dc.relationMartinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E. y Dandekar, A. M. (2015). Advanced methods of plant disease detection. Agron Sustain Dev. 35, 1–25. https://doi.org/10.1007/s13593-014-0246-1
dc.relationMedford, J. (1992). Vegetative Apical Meristems. Plant Cell. 4, 1029–1039.
dc.relationMedina, H., Gutiérrez, P. y Marín, M. (2015). Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2), 83-92.
dc.relationMendoza, J. H., Aida, R. y Millán, P. (2012). Caracterización físico química de la Uchuva (Physalis peruviana) en la región de Silvia Cauca. Biotec Sec Agro. 10(2), 188-196.
dc.relationMontiel-Martinez, O., Pastelín-Solano, M., Ventura-Zapata, E., Castañeda-Castro, O., Gonzalez-Arnao, M. y Guevara-Valencia, M. (2011). Trop Subtrop Agroecosyst13(3), 537-542.
dc.relationMorel, G. y Martin, C. (1952). Guerison de dahlias atteints d’une maladie A virus. C R Acad Sci. 235, 1324-1325.
dc.relationMoury, A. (2010). A new lineage sheds light on the evolutionary history of Potato virus Y. Mol Plant Pathol. 11(1), 161-168. https://doi.org/10.1111/j.1364-3703.2009.00573.x
dc.relationMurat, G., Salih, K., Sina, K., Elmira, M., Yusa, T., Sezai, E. y Kafkas, E. (2016). In vitro propagation of Physalis peruviana (L.) using apical shoot explants. Acta Sci Pol-Hortoru. 15(5), 109-118.
dc.relationNie, X. y Singh, R. (2001). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J Virol Methods. 91(1), 37-49.
dc.relationOlspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P. y Firth, A. E. (2015). Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 16(8), 995-1004. https://doi.org/10.15252/embr.201540509
dc.relationOkali, O., Sumberg, J. y Farrington, J. (1994). Farmer Participatory Research: Rhetoric and Reality. https://doi.org/10.3362/9781780444932
dc.relationO'Herlihy, E. A, Croke, J. T. y Cassells, A. C. (2003). Influence of in vitro factors on titre and elimination of model fruit tree viruses. Plant Cell Tiss Org. 72(1), 33-42. https://doi.org/10.1023/A%3A1021260202876
dc.relationPacheco, R. y Salamanca, R. (2010). Propagación de especies nativas de la región andina. Bogotá: Jardín botanico de Bogota Jose Celestino Mutís.
dc.relationPanattoni, A., Luvisi, A. y Triolo, E. (2013). Review: Elimination of viruses in plants: twenty years of progress. Span J Agric Res. 11(1), 173–188. http://dx.doi.org/10.5424/sjar/2013111-3201
dc.relationPeña, H., Vázquez-Juárez, R., Mejia, H. y Garzon-Tiznado, J. (2004). Geminivirus en Tomate (Lycopersicon esculentum Mill.) y Rango de Hospedantes en Baja California Sur, México. Rev Mex Fitopatol. 22(1),107-116.
dc.relationPerea, M. y Fischer, G. (2010). Uchuva Physalis peruviana L. (Solanaceae). Perea, M., Matallana, L. P., Tirado, A., (Ed). Biotecnología aplicada al mejoramiento de los cultivos de frutales tropicales. Bogotá: Universidad Nacional de Colombia. (pp. 466-490).
dc.relationPlant List. (2013). The Plant list a workinglist of all plants species. Recuperado el 18 de enero de 2020 de http://www.theplantlist.org/tpl1.1/search?q=physalis
dc.relationPorter, K. G. y Kuehnle, A. R. (1997). Using Dithiouracil and Ribavirin to eliminate Cymbidium mosaic virus during micropropagation of ‘Uniwai mist’ Dendrobium orchid. HortTechnology. 7, 161-164. https://doi.org/10.21273/HORTTECH.7.2.161
dc.relationPrakash, O., Misra, A. K., Singh, S. J. y Srivastava, K. M. (1988). Isolation, purification and electron microscopy of mosaic virus of cape gooseberry. Int J Trop Plant Diseases. 6(1), 85-87.
dc.relationProexport. (2018). Informe frutas exóticas, mermeladas y frutas deshidratadas. Recuperado el 10 de noviembre de 2019 de http://antiguo.proexport.com.co/vbecontent/library/documents/DocNewsNo10050D
dc.relationProColombia. (2021). Aumentan los pedidos de frutas colombianas en Europa. Recuperado el 15 de septiembre de 2021 de https://procolombia.co/noticias/aumentan-los-pedidos-de-frutas-colombianas-en-europa
dc.relationPurcifull, D. E., Hiebert, E., Petersen, M. y Webb, S. (2001). Virus detection – Serology. Maloy, O. C., Murray, T. D., (Ed). Encyclopedia of Plant Pathology. (pp. 1100-1109). John Wiley & Sons Inc.
dc.relationQiaochun, W. y Valkonen, J. P. (2009). Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci. 14(3), 119-122. https://doi.org/10.1016/j.tplants.2008.11.010
dc.relationQuenouille, J., Vassilakos, N. y Moury, B. (2013). Potato virus Y: A major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Mol Plant Pathol. 14(5), 439-452. https://doi.org/10.1111/mpp.12024
dc.relationQuinche, R. C. (2009). Aplicación de tiempos y movimientos a la distribución física internacinal (DFI) de uchuva con destino a Holanda vía marítima. Bogotá: Universidad de la Salle Recupera el 15 de abril del 2020 de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1089&context=administracion_agronegocios
dc.relationRadford, A. D, Chapman, D., Dixon, L., Chantrey, J., Darby, A. C. y Hall, N. (2012). Application of next-generation sequencing technologies in virology. J Gen Virol. 93(9),1853-1868. https://doi.org/10.1099/vir.0.043182-0
dc.relationRaven P, Evert R, Eicchorn S. Biology of plants. 6 ed. New York: Freeman and Company Worth Publishers;1999.
dc.relationRojas, M., Gilbertson, R., Russell, D. R., Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis. 77(4), 340-347. http://dx.doi.org/10.1094/PD-77-0340
dc.relationRoumagnac, P., Granier, M.m Bernardo, P., Maëlle, D., Ferdinand, R., Galzi, S., Fernandez, E., Julian, C., Abt, I. Filloux, D, Mesléard, F., Varsani, A., Blanc, S., Martin, D. P. y Peterschmitt, M. (2015). Alfalfa leaf curl virus: An Aphid -transmitted Geminivirus. J Virol. 86(18), 9683-9688. https://doi.org/10.1128/jvi.00453-15
dc.relationRuby, J., Bellare, P. y Derisi, J. (2013). Price: software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda). 3(5), 865-880. https://doi.org/10.1534/g3.113.005967
dc.relationRuíz, X. (2009). Desarrollo de estrategias para la obtención de material de siembra de lulo (Solanum quitoense L.) (Trabajo de grado). Popayán: Facultad Ciencias Agropecuarias, Universidad del Cauca.
dc.relationSalamon, P. y Palkovics, L. (2005). Occurrence of Colombia Datura Virus in Brugmansia Hybrids, Physalis peruviana L. and Solanum muricatum AIT in Hungary. Acta Virol. 49(2), 117-122.
dc.relationSandhu, A., Singh, S., Minhas, P. y Grewal, G. (1989). Rhizogenesis of Shoot Cuttings of Raspberry (Physalis Peruviana L.). Indian J Hortic. 46(3), 376-378.
dc.relationSanger, F., Brownlee, G. y Barrell, B. (1965). A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 13(2), 373-398. https://doi.org/10.1016/S0022-2836(65)80104-8
dc.relationScholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., saunders, K., Candresse, T., Alquist, P., Hemenway, C. y Foster, G. (2011). Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 12(9), 938-954. https://doi.org/10.1111/j.1364-3703.2011.00752.x
dc.relationSchulze, S. y Kluge, S. (1994). The mode of inhibition of TMV and PVX-induced RNA-dependent RNA polymerase by some antiphytoviral drugs. J Phytopathol. 141, 77–85.
dc.relationShamsadden-Saeed, F., Massumi, H., Moradi, S., Maddahian, M., Heydarnejad, J., Pour, A. H. y Varsani, A. (2014). Incidence and characterization of Potato virus V infections in Iran. Virus Dis. 25(1), 78-84. https://doi.org/10.1007/s13337-013-0178-4
dc.relationSimpkins, I., Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Ann Appl Biol. 99, 161-169.
dc.relationSingh, R., Valkonen, J., Gray, S., Boonham, N., Jones, R., Kerlan, C. y Schubert, J. (2007). Discussion paper: The naming of Potato virus Y strains infecting potato. Archi Virol. 153, 1-13. https://doi.org/10.1007/s00705-007-1059-1
dc.relationSkiada, F., Grigoriadou, K., Maliogka, V., Katis, N. y Eleftheriou, E. (2009). Elimination of Grapevine leafroll associated virus 1 and Grapevine Rupestris pitting‐associated virus from grapevine cv. Agiorgitiko and a micropropagation of protocol for mass production of virus-free plantlets. J Plant Pathol. 91(1), 177-184. 10.4454/jpp.v91i1.639
dc.relationSmith, G. R., Fletcher, J. D., Marroni, V., Kean, J. M., Stringer, L. D. y Vereijssen, J. (2017). Plant pathogen eradication: determinants of successful programs. Australasian Plant Pathol. 46, 277-284. http://dx.doi.org/10.1007/s13313-017-0489-9
dc.relationSohn, J. y Nam, J. (2018). The present and future de novo whole-genome assembly. Brief Bioinform. 19(1), 23-40. https://doi.org/10.1093/bib/bbw096
dc.relationSrivastava, L. M. (2002). Abscisic Acid. Srivastava, L. M. (Ed), Plant Growth and Development: Hormones and Environment (pp. 217-231). Department of Biological Sciences, Simon Fraser University, Burnay, British Columbia, Canada.
dc.relationThompson, J., Dasgupta, I., Fuchs, M., Iwanami, T., Karasev, A., Petrzik, K ., Sanfaçon, H.,Tzanetakis, I.,Van der glut, R., Wetzel, T., Yoshiwaka, N. e ICTV Report Consortium. (2017). Perfil de taxonomía de virus ICTV: Secoviridae . J Gen Virol. 529-531. https://doi.org/10.1099/jgv.0.000779
dc.relationThompson, J. R., Kamath, N. y Perry, K. L. (2014). An Evolutionary Analysis of the Secoviridae Family of Viruses. PLoS One. 9(9). https://doi.org/10.1371/journal.pone.0106305
dc.relationToussaint, A., Kummert, J., Maroquin, C., Lebrun, A. y Roggemans, J. (1993). Use of Virazole® to eradicate Odontoglossum ringspot virus from in vitro cultures of Cymbidium Sw. Plant Cell, Tissue an Organ Culture. 32(3), 303-309. https://doi.org/10.1007/BF00042293
dc.relationTrenado, H., Fortes, I., Louro, D. y Navas‐Castillo, J. (2007). Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur J Plant Pathol. 118, 193-196. https://doi.org/10.1007/s10658-007-9129-5
dc.relationUgarte, C., Villarroel, C., Aguirre, G. y State, M. (2016). Capítulo 6: Medios de cultivo. Aguirre, G., Pierre, J. y Ligue, L. (Ed), Aplicación del cultivo de tejidos en la multiplicación y conservación de los recursos fitogenéticos de Cochambamba (pp. 77-88). Bolivia: Universidad Mayor de San Simón.
dc.relationVallejo, D., Gutiérrez, P. A. y Marín, M. (2016). Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agron Colomb. 34, 51-60.
dc.relationValli, A., López-Moya, J. y García, J. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol. 88(3), 1016-1028.
dc.relationValverde, R., Nameth, S. y Jordan, R. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis. 74(93), 255-258
dc.relationVerhoeven, J., Botermans, M., Roenhorst, J., Westerhof, J. y Meekes, E. (2009). First Report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) from Turkey and Germany. Plant Disease. 93, 316. https://doi.org/10.1094/PDIS-93-3-0316A
dc.relationWan, Y., Renner, D., Albert, I. y Szpara, M. (2015). VirAmp: a galaxy-based viral genome assembly pipeline. Gigascience. 28(4),19. Doi: https://doi.org/10.1186/s13742-015-0060-y
dc.relationWang, Q., Mawassi, M., Li, P., Gafny, R., Sela, I. y Tanne, E. (2003). Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci. 165(2), 321-327. https://doi.org/10.1016/S0168-9452(03)00091-8
dc.relationWang, Q. y Valkonen, J. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J Virol Methods. 154(1-2), 135-145. https://doi.org/10.1016/j.jviromet.2008.08.006
dc.relationWang, Q., Cuellar, W., Rajamäki, M., Hirata, Y. y Valkonen, J. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol. 9(2), 237-250. https://bsppjournals.onlinelibrary.wiley.com/journal/13643703
dc.relationWang Q, Panis B, Engelmann F, Lambardi M, Valkonen J. Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation.Trends Plant Sci. 2009;14(3):351-363. Doi: 10.1016/j.tplants.2008.11.010.
dc.relationWang, M. R., Chen, L., Hamborg, Z. y Blystad, D. R. (2018). Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species. Loyola-Vargas, V., Ochoa-Alejo, N. (Ed), Plant Cell Culture Protocols. (Vol. 1815, pp. 257-268). Methods Mol Biol. https://doi.org/10.1007/978-1-4939-8594-4_17
dc.relationWang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L. y Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plants Method. 14(87). https://doi.org/10.1186/s13007-018-0355-y
dc.relationWard, L., Tang, J., Veerakone, S., Quinn, B., Harper, S., Delmiglio, C. y Clover, G. R. (2010). First Report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) in New Zealand. Plant Dis. 94(4), 479. https://doi.org/10.1094/pdis-94-4-0479a
dc.relationWetzel, T., Candresse, T., Macquaire, G., Ravelonandro, M. y Dunez, J. (1992). A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J Virol Methods. 39(1-2), 27-37. https://doi.org/10.1016/0166-0934(92)90122-T
dc.relationWyatt, S. D. y Brown, J.K. (1996). Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology. 86, 1288-1293. T
dc.relationWylie, S., Adams, M., Chalam, C., Kreuze, J., López-Moya, J., Ohshima, K., et al. ICTV Virus Taxonomy Profile: Potyviridae. J Gen Virol. 2017;98(3):352-354. https://doi.org/10.1099/jgv.0.000740
dc.relationXi, Z., Zhang, R., Yu, Z. y Ouyang, D. (2006). The interaction between tylophorine B and TMV next term RNA. Bioorg Med Chem Lett. 16, 4300-4304.
dc.relationXia, Y., Fan, Z., Yao, J., Liao, Q., Li, W., Qua, F. y Peng, L. (2006). Discovery of bitriazolyl compounds as novel antiviral candidates for combating the Tobacco mosaic virus. Bioorg Med Chem Lett. 16, 2693-2698.
dc.relationYang, X., Charlebois, P., Gnerre, S., Coole, M., Lennon, N., Levin, J., Qu, J., Ryan, E. M., Zody, M. C. y Henn, M. R. (2012). De novo assembly of highly diverse viral populations. BMC Genomics. 13(1), 475. https://doi.org/10.1186/1471-2164-13-475
dc.relationYang, X., Charlebois, P., Macalalad, A., Henn, M. y Zody, M. (2013). V-Phaser 2: variant inference for viral populations. BMC Genomics. 14(674). https://doi.org/10.1186/1471-2164-14-674
dc.relationZapata, C., Creighton, M. y Smith, R. (1995). An in vitro procedure to eradicate Potato viruses X, Y, and S from Russet Norkotah and two of its strains. In Vitro Cellular & Developmental Biology. Plant. 31(3), 153-159.
dc.relationZapata, J. L., Saldarriaga, A., Londoño, M. y Díaz, C. (2002). Manejo del cultivo de la uchuva en Colombia. Corpoica.
dc.relationZerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P, Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P. y Varsani, A. (2017). ICTV virus Taxonomy profile: Geminiviridae. J Gen Virol. 98, 131-133. https://doi.org/10.1099/jgv.0.000738
dc.relationZerbino, D. y Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using Brujin graphs. Genome Res. 18(5), 821-829. https://dx.doi.org/10.1101%2Fgr.074492.107
dc.relationZhao, G., Krishnamuth, S., Cai, Z. y Popov, V. L., Travassos da Rosa, A. P., Guzman, H.,Cao, S.,Viirgin, H. W.,Tesh, R. B. y Wang, D. (2013). Identification of novel viruses using VirusHunter –an automated data analysis pipeline. PlosOne. 8, e78470. https://doi.org/10.1371/journal.pone.0078470
dc.relationZhao, G., Wu, G., Lim, E. S., Droit, L., Krishnamuthy, S., Barouch, D. H., Virgin, H. W. y Wang, D. (2017). VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology. 503, 1-30. https://doi.org/10.1016/j.virol.2017.01.005
dc.relationTamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752
dc.relationZapata, J.L., A. Saldarriaga, M. Londoño, C. Díaz. 2005. Las enfermedades limitantes en cultivo y poscosecha de la uchuva y su control. pp. 97-110. In: Fischer, G., D. Miranda, W. Piedrahita, J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogotá, Colombia.
dc.relationSavi, A., E. Silva, S. Campos, C. Bolson, T. Vinícius, A. Nhani, A. Bogo, R. Trezzi, F. Nascimento. 2021. Near-complete genome sequence and seed transmission evaluation of Physalis rugose mosaic virus from southern Brazil. Ciencia Rural 51(4): 1-8. https:// 10.1590/0103-8478cr20200702
dc.relationSastry, K.S. 2013. Seed-borne plant virus diseases. Springer, New Delhi. 349 p.
dc.relationSaitou, N., M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://10.1093/oxfordjournals.molbev.a040454
dc.relationProcolombia. 2020. Uchuva (Goldenberry). https://docs.procolombia.co/int-procolombia/es/exportaciones/ficha_uchuva_final.pdf (accessed 20 October 2020)
dc.relationPallas, V., F. Aparicio, M.C. Herranz, K. Amari, M.A. Sanchez-Pina, A. Myrta, J.A. Sanchez-Navarro. 2012. Ilarviruses of Prunus spp.: a continued concern for fruit trees. Phytopathology 102(12): 1108-20. https://10.1094/PHYTO-02-12-0023-RVW
dc.relationMuñoz, D., P. Gutiérrez, M. Marín. 2016. Detection and genome characterization of Potato virus Y isolates infecting potato (Solanum tuberosum L.) in La Union Antioquia, Colombia. Agronomía Colombiana 34(3): 317-328. https://dx.doi.org/10.15446/agron.colomb.v34n3.59014
dc.relationMohamed, E.F. 2010. Interaction between some viruses which attack tomato (Lycopersicon esculentum Mill.) plants and their effect on growth and yield of tomato plants. Journal of American Science 6(8): 311-320.
dc.relationMistry, J., S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn, A. Bateman. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1): D412-D419. https://doi.org/10.1093/nar/gkaa913
dc.relationKumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi: 10.1093/molbev/msy096.
dc.relationKreuze, J., A.M. Vaira, W. Menzel, T. Candresse, S. Zavriev, J. Hammond, H. Ryu. 2020. Report Consortium I ICTV Virus Taxonomy Profile: Alphaflexiviridae. Journal of General Virology 101(7): 699-700. https://10.1099/jgv.0.001436
dc.relationKitajima, E.W. 2020. An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica 20(2): e20190932. https://doi.org/10.1590/1676-0611-BN-2019-0932.
dc.relationJohansen, E., M.C. Edwards, R.O. Hampton. 1994. Seed transmission of viruses: Current Perspectives. Annual Review of Phytopathology 32: 363-386.
dc.relationHameed, A., Z. Iqbal, S. Asad, S. Mansoor. 2014. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. Plant Pathology Journal 30(4): 407–415. https://doi.org/10.5423/PPJ.OA.05.2014.0039
dc.relationGutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604
dc.relationGutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja, Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.
dc.relationGutiérrez, P.A., J.F. Alzate, M.M. Montoya. 2015. Complete genome sequence of an isolate of Potato virus X (PVX) infecting cape gooseberry (Physalis peruviana) in Colombia. Virus Genes 50(3): 518-522. https://10.1007/s11262-015-1181-1
dc.relationGutiérrez, P.A., J.F. Alzate, M.A. Marín-Montoya. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.
dc.relationGómez, J.E., F. Morales, J. Arroyave. 1997. Mosaic disease of Physalis peruviana in Colombia. ASCOLFI Informa. 23:52.
dc.relationGarcía, A. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). MSc thesis Biotechnology. Universidad Nacional de Colombia sede Medellín.
dc.relationGallo, Y., M. Marín, P.A. Gutiérrez. 2021. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://10.1016/j.pmpp.2020.101570
dc.relationFuchs, M., C. Schmitt-Keichinger, H. Sanfaçon. 2017. A renaissance in Nepovirus research provides new insights into their molecular interface with hosts and vectors. Advances in Virus Research 97: 61-105. doi: 10.1016/bs.aivir.2016.08.009
dc.relationFerriol, I., M. Vallino, M. Ciuffo, J.C. Nigg, E.J. Zamora-Macorra, B.W. Falk, M. Turina. 2018. The Torradovirus-specific RNA2-ORF1 protein is necessary for plant systemic infection. Molecular Plant Pathology 19(6): 1319-1331. https://10.1111/mpp.12615
dc.relationFariña, A.E., E.S. Gorayeb, V.M. Camelo-García, J. Bonin, T. Nagata, J.M.F. Silva, A. Bogo, J.A.M. Rezende, F.N. da Silva, E.W. Kitajima. 2019. Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana. Archives of Virology 164(11): 2805–2810. https://10.1007/s00705-019-04374-y
dc.relationEdgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.
dc.relationDaza, P.A., P.A. Rodríguez. 2006. Enfermedades de origen viral en plantas de uchuva (Physalis peruviana L.) en el Departamento de Cundinamarca. Biology Thesis. Pontificia Universidad Javeriana, Bogotá, Colombia.
dc.relationCutler, J., J. Langer, S. Von Bargen, O. Acosta-Losada, F. Casierra-Posada, A. Castañeda-Cárdenas, M. Betancourt-Vásquez, W. Cuellar, E. Arvydas-Stasiukynas, D. Altenbach, C. Büttner. 2018. Preliminary evaluation of associated viruses in production systems of cape gooseberry, purple passion fruit, and rose. Revista Colombiana de Ciencias Hortícolas 12(2): 390-396. https://10.17584/rcch.2018v12i2.7799
dc.relationBushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100
dc.relationBarker, H., M.F.B. Dale. 2006. Resistance to Viruses in Potato. In: Loebenstein G., J.P. Carr (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_15
dc.relationÁlvarez, D., P. Gutiérrez-Sánchez, M. Marín-Montoya. 2017. Genome sequencing of Potato yellow vein virus (PYVV) and development of a molecular test for its detection. Bioagro 29: 3–14.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCaracterización genómica de los virus que infectan los cultivos de uchuva (Physalis peruviana) en Antioquia para el apoyo de los programas de certificación de semilla
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución