dc.contributorNarváez Cuenca, Carlos Eduardo
dc.contributorGRUPO DE INVESTIGACIÓN EN QUÍMICA DE ALIMENTOS
dc.creatorBeltrán Penagos, María Alejandra
dc.date.accessioned2020-12-16T15:48:48Z
dc.date.available2020-12-16T15:48:48Z
dc.date.created2020-12-16T15:48:48Z
dc.date.issued2020-07-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78726
dc.description.abstractLas papas del Grupo Phureja tienen una gran relevancia en términos de propiedades y aceptación del consumidor en los países andinos de América del Sur. Este trabajo tiene como objetivo realizar una propuesta de biorrefinería para la valorización de residuos de esta biomasa, proporcionando una visión general sobre sus características, a partir de la revisión de trabajos de investigación publicados entre 1993 y 2019. Se comparan los macro y micronutrientes en las papas crudas del Grupo Phureja con las del Grupo Tuberosum. Para el primer Grupo, la humedad se reporta entre 72,1 y 80,8 g/100 g en base húmeda (BH), el contenido de almidón está en un rango de 8,7 a 22,7 g/100 g BH, las proteínas están entre 1,7 y 2,8 g/100 g BH y la fibra cruda está entre 1,6 y 2,2 g/100 g BH. El contenido del sodio y el potasio es 18 y 563 mg/100 g BH respectivamente. Dentro del contenido de vitaminas, se informan valores de 12,8 a 32,0 mg/100 g BH para ácido ascórbico y de 2,4 a 2,5 mg/100 g BH para niacina. El contenido fenólico total está entre 161,6 y 442,7 mg de equivalentes de ácido gálico/100 g en base seca (BS). Los compuestos fenólicos más representativos son el ácido clorogénico, seguido por el ácido cripto-clorogénico, el ácido cafeico, el ácido neo-clorogénico y la cafeoil putrescina. Los carotenoides varían de 15,5 a 133,0 μg/g BS; siendo los más abundantes la violaxantina, la zeaxantina, la anteraxantina, la luteína y el β-caroteno. Los glicoalcaloides más importantes son la α-solanina y la α-chaconina. Los desechos de este grupo de papa pueden provenir de tubérculos que no cumplen con los parámetros de calidad o a partir del procesamiento de productos. En el documento se describe la posibilidad de obtener compuestos útiles para las industrias de alimentos, piensos, materiales, energía y química, mediante una estrategia de biorrefinería en tres rutas. La primera centrada en la valorización de una fracción sólida; la segunda en la producción de almidón; y la tercera en la producción de proteínas. Finalmente, se describen algunas perspectivas, tanto de la cadena productiva de la papa Grupo Phureja, como del enfoque de biorrefinería.
dc.description.abstractPotato tubers Group Phureja are important in terms of properties and consumer acceptance in the Andean countries of South America. This work aims to make a biorefinery proposal for the valorization of waste from this biomass, providing an overview of its characteristics, from a review of research papers published between 1993 and 2019. Macro- and micro-nutrients in raw potatoes of the Group Phureja are compared with those of the Group Tuberosum. For the first Group, the moisture content is reported between 72.1 and 80.8 g/100 g on a fresh weight (FW), the starch content is in a range of 8.7 to 22.7 g/100 g FW, the proteins are between 1.7 and 2.8 g/100 g FW, and the crude fiber is between 1.6 and 2.2 g/100 g FW. The sodium and potassium content are 18 and 563 mg/100 g FW respectively. Within the vitamin content, values of 12.8 to 32.0 mg/100 g FW are reported for ascorbic acid and 2.4 to 2.5 mg/100 g FW for niacin. The total phenolic content is between 161.6 and 442.7 mg of gallic acid equivalents/100 g on a dry weight (DW) basis. The most representative phenolic compounds are chlorogenic acid, followed by crypto-chlorogenic acid, caffeic acid, neo-chlorogenic acid, and caffeoyl putrescine. Carotenoids vary from 15.5 to 133.0 μg/g DW, the most abundant are violaxanthin, zeaxanthin, antheraxanthin, lutein, and β-carotene. The most important glycoalkaloids are α-solanine and α-chaconin. The waste from this group of potatoes may come from tubers that do not meet the quality parameters or from product processing. The document describes the possibility of obtaining useful compounds for the food, feed, materials, energy, and chemical industries, through a three-route biorefinery strategy. The first one focused on the recovery of a solid fraction; the second one in the production of starch; and the third one in protein production. Finally, some perspectives are described, both on the Group Phureja potato production chain and on the biorefinery approach.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAhokas, M., Välimaa, A., Lötjönen, T., Kankaala, A., Taskila, S., y Virtanen, E. (2014). Resource assessment for potato biorefinery: Side stream potential in Northern Ostrobothnia. Agronomy Research, 12(3), 695–704. Recuperado de https://agronomy.emu.ee/vol123/AR2014vol12nr3_689_834.pdf#page=7
dc.relationAjiaco. (s.f.). Recuperado de https://ajiacoblog.files.wordpress.com/2016/03/ajiaco1.jpg?w=620
dc.relationAkuffo, K., Nolan, J., Howard, A., Moran, R., Stack, J., Klein, R., … Beatty, S. (2015). Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye (Basingstoke), 29(7), 902–912. https://doi.org/10.1038/eye.2015.64
dc.relationAlbishi, T., John, J. A., Al-Khalifa, A. S., y Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5(2), 590–600. https://doi.org/10.1016/j.jff.2012.11.019
dc.relationAlt, V., Steinhof, R., Lotz, M., Ulber, R., Kasper, C., y Scheper, T. (2005). Optimization of Glycoalkaloid Analysis for Use in Industrial Potato Fruit Juice Downstreaming. Engineering in Life Sciences, 5(6), 562–567. https://doi.org/10.1002/elsc.200520107
dc.relationAmado, I. R., Franco, D., Sánchez, M., Zapata, C., y Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/j.foodchem.2014.05.103
dc.relationAndre, C. M., Ghislain, M., Bertin, P., Oufir, M., Herrera, M. D. R., Hoffmann, L., … Evers, D. (2007). Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry, 55(2), 366–378. https://doi.org/10.1021/jf062740i
dc.relationAndre, C. M., Oufir, M., Guignard, C., Hoffmann, L., Hausman, J. F., Evers, D., y Larondelle, Y. (2007). Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. Journal of Agricultural and Food Chemistry, 55(26), 10839–10849. https://doi.org/10.1021/jf0726583
dc.relationBarbosa, M. (2020). Replacing Fossil Fuel. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationBártová, V., Bárta, J., Brabcová, A., Zdráhal, Z., y Horáčková, V. (2015). Amino acid composition and nutritional value of four cultivated South American potato species. Journal of Food Composition and Analysis, 40, 78–85. https://doi.org/10.1016/J.JFCA.2014.12.006
dc.relationBártová, V., Bárta, J., Vlačihová, A., Šedo, O., Zdráhal, Z., Konečná, H., … Švajner, J. (2018). Proteomic characterization and antifungal activity of potato tuber proteins isolated from starch production waste under different temperature regimes. Applied Microbiology and Biotechnology, 102(24), 10551–10560. https://doi.org/10.1007/s00253-018-9373-y
dc.relationBauw, G., Nielsen, H. V., Emmersen, J., Nielsen, K. L., Jørgensen, M., y Welinder, K. G. (2006). Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBS Journal, 273(15), 3569–3584. https://doi.org/10.1111/j.1742-4658.2006.05364.x
dc.relationBeltrán-Penagos, M. A., Sánchez-Camargo, A. del P., y Narváez-Cuenca, C. E. (2020). Proximal composition, bioactive compounds and biorefinery approach in potato tubers of Solanum tuberosum Group Phureja: a review. International Journal of Food Science and Technology, Vol. 55, pp. 2282–2295. https://doi.org/10.1111/ijfs.14461
dc.relationBitter, H. (2020). Key Aspects of a Biobased Economy. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationBonilla, C., y Pérez, Y. (2010). Papa Criolla (Solanum phureja) Producción y manejo poscosecha. Bogotá: Corpoica.
dc.relationBrown, C. R. (2008). Breeding for phytonutrient enhancement of potato. American Journal of Potato Research, 85(4), 298–307. https://doi.org/10.1007/s12230-008-9028-0
dc.relationBub, A., Möseneder, J., Wenzel, G., Rechkemmer, G., y Briviba, K. (2008). Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. European Journal of Nutrition, 47(2), 99–103. https://doi.org/10.1007/s00394-008-0702-2
dc.relationBurgos, G., Amoros, W., Morote, M., Stangoulis, J., y Bonierbale, M. (2007). Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. Journal of the Science of Food and Agriculture, 87(4), 668–675. https://doi.org/10.1002/jsfa.2765
dc.relationBurgos, G., Amoros, W., Salas, E., Muñoa, L., Sosa, P., Díaz, C., y Bonierbale, M. (2012). Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chemistry, 133(4), 1131–1137. https://doi.org/10.1016/j.foodchem.2011.09.002
dc.relationBurgos, G., Salas, E., Amoros, W., Auqui, M., Muñoa, L., Kimura, M., y Bonierbale, M. (2009). Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis, 22(6), 503–508. https://doi.org/10.1016/j.jfca.2008.08.008
dc.relationBurlingame, B., Mouillé, B., y Charrondière, R. (2009). Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis, 22(6), 494–502. https://doi.org/10.1016/J.JFCA.2009.09.001
dc.relationBurmeister, A., Bondiek, S., Apel, L., Kühne, C., Hillebrand, S., y Fleischmann, P. (2011). Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. Journal of Food Composition and Analysis, 24(6), 865–872. https://doi.org/10.1016/j.jfca.2011.03.006
dc.relationCáceres, M., Mestres, C., Pons, B., Gibert, O., Amoros, W., Salas, E., … Pallet, D. (2012). Physico-chemical characterization of starches extracted from potatoes of the group Phureja. Starch - Stärke, 64(8), 621–630. https://doi.org/10.1002/star.201100166
dc.relationCamire, M. E., Kubow, S., y Donnelly, D. J. (2009). Potatoes and Human Health. Critical Reviews in Food Science and Nutrition, 49(10), 823–840. https://doi.org/10.1080/10408390903041996
dc.relationCañizares, C. A., y Forbes, G. A. (1995). Foliage resistance to Phytophthora infestans (Mont.) de Bary in the Ecuadorian natinal collection of Solanum phureja ssp. phureja Juz. y Buk. Potato Research, 38(1), 3–10. https://doi.org/10.1007/BF02358063
dc.relationCarmona-Cabello, M., Garcia, I. L., Leiva-Candia, D., y Dorado, M. P. (2018). Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry, 14, 67–79. https://doi.org/10.1016/J.COGSC.2018.06.011
dc.relationCerón-Lasso, M., Alzate-Arbeláez, A. F., Rojano, B. A., y Ñuztez-Lopez, C. E. (2018). Composición Fisicoquímica y Propiedades Antioxidantes de Genotipos Nativos de Papa Criolla (Solanum tuberosum Grupo Phureja). Información Tecnológica, 29(23), 205–216. https://doi.org/10.4067/S0718-07642018000300205
dc.relationCIP, Asociación Pataz, e INIA. (2015). Catalog of ancestral potato varieties from Chugay, La Libertad - Peru. https://doi.org/10.4160/9789290604679
dc.relationClaes, L., Matthessen, R., Rombouts, I., Stassen, I., De Baerdemaeker, T., Depla, D., … De Vos, D. E. (2015). Bio-Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids. ChemSusChem, 8(2), 345–352. https://doi.org/10.1002/cssc.201402801
dc.relationContreras, M. del M., Lama-Muñoz, A., Gutiérrez-Pérez, J. M., Espínola, F., Moya, M., y Castro, E. (2019, May 1). Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, Vol. 280, pp. 459–477. https://doi.org/10.1016/j.biortech.2019.02.040
dc.relationCooperstone, J. L., y Schwartz, S. J. (2016). Recent Insights Into Health Benefits of Carotenoids. Handbook on Natural Pigments in Food and Beverages, 473–497. https://doi.org/10.1016/B978-0-08-100371-8.00020-8
dc.relationCuéllar-Cepeda, F. A., Parra-Galindo, M. A., Urquijo, J., Restrepo-Sánchez, L. P., Mosquera-Vásquez, T., y Narváez-Cuenca, C. E. (2019). Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chemistry, 288, 127–138. https://doi.org/10.1016/j.foodchem.2019.03.015
dc.relationDe Maine, M. J., Carroll, C. P., Stewart, H. E., Solomon, R. M., y Wastie, R. L. (1993). Disease resistance in Solanum phureja and diploid and tetraploid S. tuberosum × S. phureja hybrids. Potato Research, 36(1), 21–28. https://doi.org/10.1007/BF02359830
dc.relationAgricultural University of Athens. (s.f.). Panacea. Recuperado de https://www.panacea-h2020.eu/es/home/
dc.relationAgronet. (2019). Estadísticas. Recuperado de https://www.agronet.gov.co/estadistica/Paginas/home.aspx
dc.relationAkyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., y Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, Vol. 17, p. 835. https://doi.org/10.3390/ijms17060835
dc.relationBio-based Industries Joint Undertaking. (2020). Bio-Based Industries - Public-Private Partnership. Recuperado de https://bbi-europe.eu/
dc.relationBiointropic. (2019). Portafolio Bio Minciencias | Mundobiotec. Recuperado de https://mundobiotec.com/portafolio-bio-minciencias/
dc.relationDepartamento Nacional de Planeación. (2018). Bioeconomía. Recuperado de https://www.dnp.gov.co/Crecimiento-Verde/Ejes-estrategicos/Paginas/Bioeconomía.aspx
dc.relationDevaux, A. (2018). Tecnología e innovaciones de papa como puente crítico para responder a los desafíos de seguridad alimentaria y promover los agronegocios en América Latina. Revista Latinoamericana de La Papa, 22(1), 5–9. https://doi.org/10.37066/ralap.v22i1.295
dc.relationDuarte-Delgado, D., Ñústez-López, C. E., Narváez-Cuenca, C. E., Restrepo-Sánchez, L. P., Melo, S. E., Sarmiento, F., … Mosquera-Vásquez, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. Journal of the Science of Food and Agriculture, 96(12), 4288–4294. https://doi.org/10.1002/jsfa.7783
dc.relationEmpanadas de la Cima. (s.f.). Empanada clásica de carne. Recuperado de https://empanadasdelacima.com/wp-content/uploads/2017/09/empanada-tradicional-de-carne-empanadas-de-la-cima.jpg
dc.relationEraso-Grisales, S., Mejía-España, D., y Hurtado-Benavides, A. (2019). Extracción de glicoalcaloides de papa nativa (Solanum phureja) variedad ratona morada con líquidos presurizados. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(1), 181–197. https://doi.org/10.15446/rcciquifa.v48n1.80074
dc.relationFahrngruber, B., Eichelter, J., Erhäusl, S., Seidl, B., Wimmer, R., y Mundigler, N. (2019). Potato-fiber modified thermoplastic starch: Effects of fiber content on material properties and compound characteristics. European Polymer Journal, 111, 170–177. https://doi.org/10.1016/j.eurpolymj.2018.10.050
dc.relationFAO. (2008). Nueva luz sobre un tesoro enterrado. Recuperado de http://www.fao.org/potato-2008/pdf/IYPbook-es.pdf
dc.relationFAO. (2017). FAO/INFOODS Food composition database for biodiversity Version 4.0 – BioFoodComp4.0. Rome: FAO.
dc.relationFAO. (2019). FAOSTAT. Recuperado de http://www.fao.org/faostat/en/#faq
dc.relationFedepapa. (2018). Boletín mensual Regional. Volumen 2/Número 8. Recuperado de https://fedepapa.com/wp-content/uploads/2017/01/BOLETINREGIONALNACIONAL-2018.pdf
dc.relationFeng, R., Lu, Y., Bowman, L. L., Qian, Y., Castranova, V., y Ding, M. (2005). Inhibition of Activator Protein-1, NF-κB, and MAPKs and Induction of Phase 2 Detoxifying Enzyme Activity by Chlorogenic Acid. Journal of Biological Chemistry, 280(30), 27888–27895. https://doi.org/10.1074/jbc.M503347200
dc.relationFernandez-Orozco, R., Gallardo-Guerrero, L., y Hornero-Méndez, D. (2013). Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: Accumulation of carotenoids mediated by xanthophyll esterification. Food Chemistry, 141(3), 2864–2872. https://doi.org/10.1016/j.foodchem.2013.05.016
dc.relationFriedman, M. (2006). Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. Journal of Agricultural and Food Chemistry, 54(23), 8655–8681. https://doi.org/10.1021/jf061471t
dc.relationFriedman, M., y Levin, C. E. (2016). Glycoalkaloids and Calystegine Alkaloids in Potatoes. Advances in Potato Chemistry and Technology, 167–194. https://doi.org/10.1016/B978-0-12-800002-1.00007-8
dc.relationFritsch, C., Staebler, A., Happel, A., Cubero Márquez, M., Aguiló-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 9(8), 1492. https://doi.org/10.3390/su9081492
dc.relationFrugy. (s.f.). Papa criolla. Recuperado de https://www.frugy.com/index.php/productos/otros-productos-congelados/papa-criolla
dc.relationGalhano dos Santos, R., Ventura, P., Bordado, J. C., y Mateus, M. M. (2016). Valorizing potato peel waste: an overview of the latest publications. Reviews in Environmental Science and Bio/Technology, 15(4), 585–592. https://doi.org/10.1007/s11157-016-9409-7
dc.relationGebrechristos, H. Y., y Chen, W. (2018). Utilization of potato peel as eco-friendly products: A review. Food Science & Nutrition, 6(6), 1352–1356. https://doi.org/10.1002/fsn3.691
dc.relationGhislain, M., Zhang, D., Fajardo, D., Huamán, Z., y Hijmans, R. J. (1999). Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution, 46(6), 547–555. https://doi.org/10.1023/A:1008724007888
dc.relationGolden, J. S., y Handfield, R. B. (2014). WHY BIOBASED? Opportunities in the Emerging Bioeconomy. Recuperado de http://scm.ncsu.edu
dc.relationGómez-Heincke, D., Martínez, I., Stading, M., Gallegos, C., y Partal, P. (2017). Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocolloids, 73, 21–29. https://doi.org/10.1016/j.foodhyd.2017.06.022
dc.relationGriffiths, D., y Dale, M. (2001). Effect of light exposure on the glycoalkaloid content of Solanum phureja tubers. Journal of Agricultural and Food Chemistry, 49(11), 5223–5227. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11714307
dc.relationGriffiths, D. W., Shepherd, T., y Stewart, D. (2008). Comparison of the calystegine composition and content of potato sprouts and tubers from Solanum tuberosum group phureja and Solanum tuberosum group tuberosum. Journal of Agricultural and Food Chemistry, 56(13), 5197–5204. https://doi.org/10.1021/jf8003306
dc.relationHejtmánková, K., Kotíková, Z., Hamouz, K., Pivec, V., Vacek, J., y Lachman, J. (2013). Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. Journal of Food Composition and Analysis, 32(1), 20–27. https://doi.org/10.1016/j.jfca.2013.07.001
dc.relationHerrera, A., y Rodríguez, L. (2011). TECNOLOGÍAS DE PRODUCCIÓN Y TRANSFORMACIÓN DE PAPA CRIOLLA. Universidad Nacional de Colombia.
dc.relationHerrero, M., y Ibañez, E. (2018). Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. The Journal of Supercritical Fluids, 134, 252–259. https://doi.org/10.1016/J.SUPFLU.2017.12.002
dc.relationICBF. (2015). Tabla de composicion de alimentos colombianos (TCAC). Recuperado de https://www.icbf.gov.co/sites/default/files/tcac_2015_final_para_imprimir.pdf
dc.relationICBF. (2018). Tabla de Composición de Alimentos Colombianos. Recuperado de https://www.icbf.gov.co/sites/default/files/tcac_web.pdf
dc.relationJi, L., Yogendra, K., Mosa, K., Kushalappa, A., Piñeros-Niño, C., Mosquera, T., y Narváez-Cuenca, C.-E. (2016). Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1138595
dc.relationJi, X., Rivers, L., Zielinski, Z., Xu, M., MacDougall, E., Stephen, J., … Zhang, J. (2012). Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 133(4), 1177–1187. https://doi.org/10.1016/j.foodchem.2011.08.065
dc.relationJin, Q., Yang, L., Poe, N., y Huang, H. (2018). Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends in Food Science & Technology, 74, 119–131. https://doi.org/10.1016/J.TIFS.2018.02.014
dc.relationJuyó, D., Sarmiento, F., Álvarez, M., Brochero, H., Gebhardt, C., y Mosquera, T. (2015). Genetic diversity and population structure in diploid potatoes of Solanum tuberosum group phureja. Crop Science, 55(2), 760–769. https://doi.org/10.2135/cropsci2014.07.0524
dc.relationKanatt, S. R., Chander, R., Radhakrishna, P., y Sharma, A. (2005). Potato peel extract - A natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. Journal of Agricultural and Food Chemistry, 53(5), 1499–1504. https://doi.org/10.1021/jf048270e
dc.relationKanellopoulos, A. (2020). Sustainability and Quantitative Analysis. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationKaspar, K. L., Park, J. S., Brown, C. R., Mathison, B. D., Navarre, D. A., y Chew, B. P. (2011). Pigmented Potato Consumption Alters Oxidative Stress and Inflammatory Damage in Men. The Journal of Nutrition, 141(1), 108–111. https://doi.org/10.3945/jn.110.128074
dc.relationKhoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., y Show, P. L. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606. https://doi.org/10.1016/J.BIORTECH.2019.121606
dc.relationKoduvayur Habeebullah, S. F., Nielsen, N. S., y Jacobsen, C. (2010). Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists’ Society, 87(11), 1319–1332. https://doi.org/10.1007/s11746-010-1611-0
dc.relationKotíková, Z., Šulc, M., Lachman, J., Pivec, V., Orsák, M., y Hamouz, K. (2016). Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chemistry, 197(Pt A), 992–1001. https://doi.org/10.1016/j.foodchem.2015.11.072
dc.relationKrushinsky, D. (2020). Scenarios for Biobased Logistics. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationKumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., y Brunton, N. P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432–1439. https://doi.org/10.1111/ijfs.13404
dc.relationLachman, J., Hamouz, K., Orsák, M., y Kotíková, Z. (2016). Carotenoids in potatoes - A short overview. Plant, Soil and Environment, 62(10), 474–481. https://doi.org/10.17221/459/2016-PSE
dc.relationLäufer, A. (2019). Starch biorefinery enzymes. In K. Wagemann y N. Tippkötter (Eds.), Biorefineries (Vol. 166, pp. 137–152). https://doi.org/10.1007/10_2016_60
dc.relationLeo, L., Leone, A., Longo, C., Lombardi, D. A., Raimo, F., y Zacheo, G. (2008). Antioxidant Compounds and Antioxidant Activity in “Early Potatoes.” Journal of Agricultural and Food Chemistry, 56(11), 4154–4163. https://doi.org/10.1021/jf073322w
dc.relationLerfall, J. (2016). Carotenoids: Occurrence, Properties and Determination. In B. Caballero, P. Fingkas, y F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 663–669). https://doi.org/10.1016/B978-0-12-384947-2.00119-7
dc.relationLeyton, G., Abdo, R., Prieto, L., Poveda-Pisco, J., y Ceron-Lasso, M. (2013). Carotenoids extracted from promising clones of criolla potato (Solanum Tuberosum Group Phureja) for food industry. Revista Latinoamericana de La Papa, 17(2), 103–116. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=5512101
dc.relationLiang, S., Han, Y., Wei, L., y McDonald, A. G. (2015). Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Conversion and Biorefinery, 5(3), 237–246. https://doi.org/10.1007/s13399-014-0130-x
dc.relationLigarreto, G., y Suárez, M. (2003). Evaluation of the potential of genetics resources of Creole potato (Solanum phureja) for industrial quality. Agronomía Colombiana, 21(1–2), 83–94. Recuperado de http://www.redalyc.org/articulo.oa?id=180317942009
dc.relationLiu, R. H. (2013). Health-Promoting Components of Fruits and Vegetables in the Diet. Advances in Nutrition, 4(3), 384S-392S. https://doi.org/10.3945/an.112.003517
dc.relationLu, W., Yu, M., Bai, Y., Li, W., y Xu, X. (2012). Crude Protein Content in Diploid Hybrid Potato Clones of Solanum phureja–S. stenotomum. Potato Research, 55(3–4), 315–322. https://doi.org/10.1007/s11540-012-9211-z
dc.relationMadiwale, G. P., Reddivari, L., Stone, M., Holm, D. G., y Vanamala, J. (2012). Combined Effects of Storage and Processing on the Bioactive Compounds and Pro-Apoptotic Properties of Color-Fleshed Potatoes in Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 60(44), 11088–11096. https://doi.org/10.1021/jf303528p
dc.relationMares, J. (2016). Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annual Review of Nutrition, 36(1), 571–602. https://doi.org/10.1146/annurev-nutr-071715-051110
dc.relationMartínez, P., Málaga, A., Betalleluz, I., Ibarz, A., y Velezmoro, C. (2015). Functional characterization on native starch of Peruvian native potatoes (Solanum phureja). Scientia Agropecuaria, 6(4), 291–301. https://doi.org/10.17268/sci.agropecu.2015.04.06
dc.relationMatharu, A. S., de Melo, E. M., y Houghton, J. A. (2016). Opportunity for high value-added chemicals from food supply chain wastes. Bioresource Technology, 215, 123–130. https://doi.org/10.1016/j.biortech.2016.03.039
dc.relationMinisterio de Agricultura y Desarrollo Rural. (2006). Apuesta Exportadora Agropecuaria 2006-2020. (946). Recuperado de http://bibliotecadigital.agronet.gov.co/handle/11348/6004
dc.relationMohdaly, A. A. A., Hassanien, M. F. R., Mahmoud, A., Sarhan, M. A., y Smetanska, I. (2013). Phenolics Extracted from Potato, Sugar Beet, and Sesame Processing By-Products. International Journal of Food Properties, 16(5), 1148–1168. https://doi.org/10.1080/10942912.2011.578318
dc.relationMoncada, J., Aristizábal, V., y Cardona, C. A. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116, 122–134. https://doi.org/10.1016/j.bej.2016.06.009
dc.relationMosquera Vásquez, T., Del Castillo, S., Gálvez, D. C., y Rodríguez, L. E. (2017). Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia. Potato Research, 60(3–4), 361–381. https://doi.org/10.1007/s11540-018-9389-9
dc.relationMulder, W., van der Peet-Schwering, C., Hua, N., y van Ree, R. (2016). Proteins for Food, Feed and Biobased Applications. Biorefining of protein containing biomass. Wageningen: IEA Bioenergy.
dc.relationNarváez-Cuenca, C.-E., Kuijpers, T. F. M., Vincken, J.-P., de Waard, P., y Gruppen, H. (2011). New Insights into an Ancient Antibrowning Agent: Formation of Sulfophenolics in Sodium Hydrogen Sulfite-Treated Potato Extracts. Journal of Agricultural and Food Chemistry, 59(18), 10247–10255. https://doi.org/10.1021/jf202624q
dc.relationNarváez-Cuenca, C. E., Peña, C., Restrepo-Sánchez, L.-P., Kushalappa, A., y Mosquera, T. (2018). Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. Journal of Food Composition and Analysis, 66, 179–184. https://doi.org/10.1016/j.jfca.2017.12.019
dc.relationNarváez-Cuenca, C. E., Vincken, J. P., Zheng, C., y Gruppen, H. (2013). Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chemistry, 139(1–4), 1087–1097. https://doi.org/10.1016/j.foodchem.2013.02.018
dc.relationNavas, G., y Díaz, C. (2012). Criterios de evaluación y producción de papa criolla para la industria. Recuperado de https://repository.agrosavia.co/bitstream/handle/20.500.12324/2254/44959_60377.pdf?sequence=1&isAllowed=y
dc.relationNayak, A., y Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352–370. https://doi.org/10.1016/J.JENVMAN.2018.12.041
dc.relationÑústez, C. (2011). Variedades colombianas de papa. Bogotá: Universidad Nacional de Colombia.
dc.relationOng, K. W., Hsu, A., y Tan, B. K. H. (2013). Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology, 85(9), 1341–1351. https://doi.org/10.1016/j.bcp.2013.02.008
dc.relationPardo, O. H., Castañeda, J. C., y Ortiz, C. A. (2013). Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronomica, 62(4), 289–295. Recuperado de https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/37126/45140
dc.relationParra-Galindo, M.-A., Piñeros-Niño, C., Soto-Sedano, J. C., Mosquera-Vasquez, T., Parra-Galindo, M.-A., Piñeros-Niño, C., … Mosquera-Vasquez, T. (2019). Chromosomes I and X Harbor Consistent Genetic Factors Associated with the Anthocyanin Variation in Potato. Agronomy, 9(7), 366. https://doi.org/10.3390/agronomy9070366
dc.relationPathak, P. D., Mandavgane, S. A., Puranik, N. M., Jambhulkar, S. J., y Kulkarni, B. D. (2018). Valorization of potato peel: a biorefinery approach. Critical Reviews in Biotechnology, 38(2), 218–230. https://doi.org/10.1080/07388551.2017.1331337
dc.relationPeña, C., Restrepo-Sánchez, L.-P., Kushalappa, A., Rodríguez-Molano, L.-E., Mosquera, T., y Narváez-Cuenca, C.-E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT - Food Science and Technology, 62(1), 76–82. https://doi.org/10.1016/J.LWT.2015.01.038
dc.relationPillai, S. S., Navarre, D. A., y Bamberg, J. (2013). Analysis of Polyphenols, Anthocyanins and Carotenoids in Tubers from Solanum tuberosum Group Phureja, Stenotomum and Andigena. American Journal of Potato Research, 90(5), 440–450. https://doi.org/10.1007/s12230-013-9318-z
dc.relationPiñeros-Niño, C. (2009). Recopilación de la investigación del sistema productivo Papa Criolla. Secretaría de Agricultura y Desarrollo Económico (Gobernación de Cundinamarca). Fedepapa.
dc.relationPiñeros-Niño, C., Narváez-Cuenca, C. E., Kushalappa, A. C., y Mosquera, T. (2017). Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja. Food Science and Nutrition, 5(3), 380–389. https://doi.org/10.1002/fsn3.403
dc.relationPłaza, G. A., y Wandzich, D. (2018). Biorefineries – New Green Strategy For Development Of Smart And Innovative Industry. Management Systems in Production Engineering, 23(3), 150–155. https://doi.org/10.2478/mspe-02-03-2016
dc.relationPorras, P. D., y Herrera, C. A. (2015). Modelo productivo de la papa criolla para los departamentos de Cundinamarca y Boyacá. Recuperado de https://repository.agrosavia.co/handle/20.500.12324/13752
dc.relationPots, A. M., Gruppen, H., van Diepenbeek, R., van der Lee, J. J., van Boekel, M. A., Wijngaards, G., y Voragen, A. G. (1999). The effect of storage of whole potatoes of three cultivars on the patatin and protease inhibitor content; a study using capillary electrophoresis and MALDI-TOF mass spectrometry. Journal of the Science of Food and Agriculture, 79(12), 1557–1564. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1557::AID-JSFA375>3.0.CO;2-K
dc.relationPriedniece, V., Spalvins, K., Ivanovs, K., Pubule, J., y Blumberga, D. (2017). Bioproducts from Potatoes. A Review. Environmental and Climate Technologies, 21, 18–27. https://doi.org/10.1515/rtuect-2017-0013
dc.relationRitter, E., Barandalla, L., López, R., y De Galarreta, J. I. R. (2008). Exploitation of exotic, cultivated Solanum germplasm for breeding and commercial purposes. Potato Research, 51(3–4), 301–311. https://doi.org/10.1007/s11540-008-9109-y
dc.relationRivera, J., Herrera, A., y Rodríguez, L. (2006). Evaluación sensorial en productos procesados de papa criolla (Solanum phureja) y su importancia para el fitomejoramiento. Fitotecnia Colombiana, 6(2), 9–25. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_nlinks&ref=000185&pid=S0120-548X201300030000400058&lng=en
dc.relationRivera, J., Herrera, A., y Rodríguez, L. (2011). Assessment of the processing profile of six “creole potato” genotypes (Solanum tuberosum Phureja Group). Agronomia Colombiana, 29(1), 73–81. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652011000100010
dc.relationRodriguez, A., Mondaini, A., y Hitschfeld, M. (2018). Bioeconomía en América Latina y el Caribe. Contexto global y regional y perspectivas. Memoria Del Seminario Regional Realizado En Santiago, Los Días 24 y 25 de Enero de 2018, 72. Recuperado de https://repositorio.cepal.org//handle/11362/42427
dc.relationRodríguez, D., Ñústez, C., Cotes, J., y Rodríguez, L. (2011). Heredabilidad del contenido de proteína total en papa diploide Solanum tuberosum grupo Phureja. Bragantia, 4, 759–766. Recuperado de http://www.redalyc.org/articulo.oa?id=90821058005
dc.relationRodríguez, L., y Moreno, P. (2010). Factores y mecanismos relacionados con la dormancia en tubérculos de papa . Una revisión. Agronomia Colombiana, 28(2), 189–197. Recuperado de https://revistas.unal.edu.co/index.php/agrocol/article/view/18022
dc.relationRojas, L., y Seminario, J. (2014). Productividad de diez cultivares promisorios de papa chaucha (Solanum tuberosum, grupo Phureja) de la región Cajamarca. Scientia Agropecuaria, 5, 165–175. Recuperado de www.sci-agropecu.unitru.edu.pe
dc.relationRömer, S., Lübeck, J., Kauder, F., Steiger, S., Adomat, C., y Sandmann, G. (2002). Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabolic Engineering, 4(4), 263–272. https://doi.org/10.1006/mben.2002.0234
dc.relationScharf, R., Wang, R., Maycock, J., Ho, P., Chen, S., y Orfila, C. (2018). Valorisation of Potato (Solanum tuberosum) Peel Waste: Extraction of Fibre, Monosaccharides and Uronic Acids. Waste and Biomass Valorization, 1–6. https://doi.org/10.1007/s12649-018-0532-2
dc.relationSchieber, A., y Saldaña, M. (2009). Potato Peels : A Source of Nutritionally and Pharmacologically Interesting Compounds – A Review. Food, 3, 23–29. https://doi.org/10.7939/R33T9DM0H
dc.relationScott, E., Peter, F., y Sanders, J. (2007). Biomass in the manufacture of industrial products-the use of proteins and amino acids. Applied Microbiology and Biotechnology, Vol. 75, pp. 751–762. https://doi.org/10.1007/s00253-007-0932-x
dc.relationSepelev, I., y Galoburda, R. (2015). Industrial potato peel waste application in food production: a review. Annual 21st International Scientific Conference: “Research for Rural Development” Volume 1, Jelgava, Latvia, 13-15 May 2015, 130–136.
dc.relationSingh, A., Sabally, K., Kubow, S., Donnelly, D. J., Gariepy, Y., Orsat, V., … Raghavan, G. S. V. (2011). Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules, 16(3), 2218–2232. https://doi.org/10.3390/molecules16032218
dc.relationSingh, B., Singh, J., Singh, J. P., Kaur, A., y Singh, N. (2019). Phenolic compounds in potato (Solanum tuberosum L.) peel and their health‐promoting activities. International Journal of Food Science & Technology, ijfs.14361. https://doi.org/10.1111/ijfs.14361
dc.relationSingh, N., y Rajini, P. S. (2008). Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chemico-Biological Interactions, 173(2), 97–104. https://doi.org/10.1016/j.cbi.2008.03.008
dc.relationSingh, P. P., y Saldaña, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44(8), 2452–2458. https://doi.org/10.1016/J.FOODRES.2011.02.006
dc.relationStringham, J. M., Bovier, E. R., Wong, J. C., y Hammond, B. R. (2010). The influence of dietary lutein and zeaxanthin on visual performance. Journal of Food Science, 75(1), R24–R29. https://doi.org/10.1111/j.1750-3841.2009.01447.x
dc.relationStushnoff, C., Holm, D., Thompson, M. D., Jiang, W., Thompson, H. J., Joyce, N. I., y Wilson, P. (2008). Antioxidant Properties of Cultivars and Selections from the Colorado Potato Breeding Program. American Journal of Potato Research, 85(4), 267–276. https://doi.org/10.1007/s12230-008-9032-4
dc.relationSulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., y Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS ONE, 12(9), e0184143. https://doi.org/10.1371/journal.pone.0184143
dc.relationTakagaki, A., Ohara, M., Nishimura, S., y Ebitani, K. (2009). A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications, (41), 6276. https://doi.org/10.1039/b914087e
dc.relationToro, M. D. C. (2016). Evaluación del efecto de 3 inhibidores de brotación en papa criolla (Solanum Phureja) variedad criolla Colombia aplicados en el proceso de poscosecha. Recuperado de http://www.bdigital.unal.edu.co/52671/
dc.relationUNESCO. (2017). Educación para los Objetivos de Desarrollo Sostenible: objetivos de aprendizaje - UNESCO Biblioteca Digital. Recuperado de https://unesdoc.unesco.org/ark:/48223/pf0000252423?locale=es
dc.relationValencia-Flórez, L., Trejo-Escobar, D., Latorre-Vásquez, L., Mejía-España, D., y Hurtado, A. (2019). Influence of storage conditions on the quality of two varieties of native potato (Solanum Tuberosum group phureja). Revista DYNA, 86(209), 56–62. https://doi.org/10.15446/dyna.v86n209.72958
dc.relationVelásquez-Herrera, J. D., Lucas-Aguirre, J. C., y Quintero-Castaño, V. D. (2017). Physical-chemical characteristics determination of potato (Solanum phureja Juz. &amp; Bukasov) starch. Acta Agronómica, 66(3), 323–330. https://doi.org/10.15446/acag.v66n3.52419
dc.relationVelderrain-Rodríguez, G. R., Palafox-Carlos, H., Wall-Medrano, A., Ayala-Zavala, J. F., Chen, C.-Y. O., Robles-Sánchez, M., … González-Aguilar, G. A. (2014). Phenolic compounds: their journey after intake. Food & Function, 5(2), 189–197. https://doi.org/10.1039/c3fo60361j
dc.relationWageningen University & Research. (2019a). Biorefinery: From Biomass to Building Blocks of Biobased Products. Recuperado de edX courses website: https://www.edx.org/course/biorefinery-from-biomass-to-building-blocks-of-bio
dc.relationWageningen University & Research. (2019b). From Fossil Resources to Biomass: A Business and Economics Perspective. Recuperado de edX courses website: https://www.edx.org/es/course/from-fossil-resources-to-biomass-a-chemistry-persp
dc.relationWageningen University & Research. (2020). Course Overview. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationWaglay, A., Karboune, S., y Alli, I. (2014). Potato protein isolates: Recovery and characterization of their properties. Food Chemistry, 142, 373–382. https://doi.org/10.1016/j.foodchem.2013.07.060
dc.relationWijngaard, H. H., Ballay, M., y Brunton, N. (2012). The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chemistry, 133(4), 1123–1130. https://doi.org/10.1016/J.FOODCHEM.2011.01.136
dc.relationWubben, E. (2020a). Factors affecting Biobased Investments. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationWubben, E. (2020b). Global Investment Patterns. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationWubben, E. (2020c). TRL: Levels in New Business Development. In From Fossil Resources to Biomass: A Business and Economics Perspective. WageningenX.
dc.relationZárate-Polanco, L., Ramírez-Suárez, L., Otálora-Santamaría, N., Prieto, L., Garnica-Holguín, A., Cerón-Lasso, M., y Argüelles, J. (2014). Extracción y caracterización de almidón nativo de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana de La Papa, 18(1), 1–24. Recuperado de http://ojs.papaslatinas.org/index.php/rev-alap/article/view/206
dc.relationZhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., y Lei, L. (2015). A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. Journal of the Taiwan Institute of Chemical Engineers, 49, 206–211. https://doi.org/10.1016/j.jtice.2014.11.024
dc.rightsReconocimiento 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleComposición en nutrientes y bioactivos y propuesta de biorrefinería de papa Solanum tuberosum Grupo Phureja
dc.typeOtro


Este ítem pertenece a la siguiente institución