dc.relation | 1. Organization, W.H., Weekly epidemiological record Relevé épidémiologique hebdomadaire. 2017. 44(92): p. 661–680. 2. Burnett, E., et al., Estimated impact of rotavirus vaccine on hospitalizations and deaths from rotavirus diarrhea among children <5 in Asia. Expert review of vaccines, 2018. 17(5): p. 453-460. 3. Parashar, U.D., et al., Rotavirus and severe childhood diarrhea. Emerging infectious diseases, 2006. 12(2): p. 304-6. 4. Dennehy, P.H., Rotavirus vaccines: an overview. Clinical microbiology reviews, 2008. 21(1): p. 198-208. 5. Calderón, M.G., F. Acosta, O. Guerrero, C. A., Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection. Int J Pept Res Ther, 2012. 18(4): p. 373–382. 6. Rodriguez, A.V.H., Determinación del cambio en la expresión de las proteinas COX, PDI, Hsc70, Hsp70, ERp57 y PPARγ en células intestinales aisladas de ratones ICR lactantes infectados con Rotavirus ECwt y posteriormente tratados con N-Acetilcisteina, in Facultad de Medicina 2012, Universidad Nacional de Colombia: Bogotá. p. 67. 7. Guerrero, C.A., V.R. Paula Pardo, and O.A. Rafael Guerrero, Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors. Mem Inst Oswaldo Cruz, 2013. 108(6): p. 741-54. 8. Guerrero, C.A., A. Murillo, and O. Acosta, Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARgamma agonists and NSAIDs. Antiviral Res, 2012. 96(1): p. 1-12. 9. Santana, A.Y., C.A. Guerrero, and O. Acosta, Implication of Hsc70, PDI and integrin alphavbeta3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol, 2013. 158(6): p. 1323-36. 10. Santoro, M.G., A. Rossi, and C. Amici, NF-kappaB and virus infection: who controls whom. EMBO J, 2003. 22(11): p. 2552-60. 11. Barnes, P.J. and M. Karin, Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. The New England journal of medicine, 1997. 336(15): p. 1066-71. 12. Decramer, M., et al., Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet, 2005. 365(9470): p. 1552-60. 13. Ruffmann, R.W., A., GSH rescue by N-acetylcysteine. J Mol Med, 1991. 69(18): p. 857. 14. Gualtero, D.F., et al., Amino acid domains 280-297 of VP6 and 531-554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol, 2007. 152(12): p. 2183-96. 15. Calderon, M.N., et al., Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology, 2012. 55(6): p. 451-64. 16. Gómez, M.D.L., Evaluación de la expresión de las proteínas PPARγ Y NFκB en vellosidades intestinales de ratones adultos ICR infectados con Rotavirus ECwt y tratados con pioglitazona, in Facultad de Medicina2013, Universidad Nacional de Colombia 17. Gomez, D., et al., PPARgamma Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi. PPAR Res, 2016. 2016: p. 4049373. 18. Youssef, J. and M. Badr, Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. J Biomed Biotechnol, 2004. 2004(3): p. 156-166. 19. Buttery, J.P., et al., Intussusception following rotavirus vaccine administration: postmarketing surveillance in the National Immunization Program in Australia. Vaccine, 2011. 29(16): p. 3061-6. 20. Shui, I.M., et al., Risk of intussusception following administration of a pentavalent rotavirus vaccine in US infants. JAMA : the journal of the American Medical Association, 2012. 307(6): p. 598-604. 21. Weintraub, E.S., et al., Risk of intussusception after monovalent rotavirus vaccination. N Engl J Med, 2014. 370(6): p. 513-9. 22. Rossen, J.W., et al., Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step. J Virol, 2004. 78(18): p. 9721-30. 23. Hong, C. and P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev, 2008. 18(5): p. 461-7. 24. Romero, C.R., Microbiología y parasitología humana. 3ª ed, ed. Panamericana. 2007. 1727. 25. Pesavento, J.B., et al., Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol, 2006. 309: p. 189-219. 26. Estes, M.K. and J. Cohen, Rotavirus gene structure and function. Microbiol Rev, 1989. 53(4): p. 410-49. 27. McClain, B., et al., X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol, 2010. 397(2): p. 587-99. 28. Arnoldi, F., et al., Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. J Virol, 2007. 81(5): p. 2128-37. 29. Svensson, L., et al., Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly. J Virol, 1994. 68(8): p. 5204-15. 30. Lopez, S. and C.F. Arias, Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol, 2004. 12(6): p. 271-8. 31. Arias, C.F., et al., Trypsin activation pathway of rotavirus infectivity. J Virol, 1996. 70(9): p. 5832-9. 32. Ludert, J.E., et al., Cleavage of rotavirus VP4 in vivo. J Gen Virol, 1996. 77 ( Pt 3): p. 391-5. 33. Zarate, S., et al., The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol, 2000. 74(2): p. 593-9. 34. Benureau, Y., et al., Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins. J Gen Virol, 2005. 86(Pt 11): p. 3143-51. 35. Zarate, S., et al., VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol, 2004. 78(20): p. 10839-47. 36. Contin, R., Arnoldi F., Campagna M. and Burrone O. R, Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins. Journal of General Virology, 2010. 91(7): p. 1782–1793. 37. Crawford, S.E., et al., Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol, 2006. 80(10): p. 4820-32. 38. Pavel, I.G., M, Arias, C.F., López, S., Rotavirus cell entry. Future Virol, 2008. 3 (2): p. 135-146. 39. Estes, M.K., et al., Simian rotavirus SA11 replication in cell cultures. J Virol, 1979. 31(3): p. 810-5. 40. Crawford, S.E., et al., Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol, 2001. 75(13): p. 6052-61. 41. Guerrero, C.A., et al., Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol, 2002. 76(8): p. 4096-102. 42. Wilkinson, B. and H.F. Gilbert, Protein disulfide isomerase. Biochim Biophys Acta, 2004. 1699(1-2): p. 35-44. 43. Gutierrez, M., et al., Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol, 2010. 84(18): p. 9161-9. 44. Sanchez-San Martin, C., et al., Characterization of rotavirus cell entry. J Virol, 2004. 78(5): p. 2310-8. 45. Zarate, S., et al., Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol, 2003. 77(13): p. 7254-60. 46. Kim, I.S., et al., Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol, 2010. 84(12): p. 6200-7. 47. Fuentes-Panana, E.M., et al., Mapping the hemagglutination domain of rotaviruses. J Virol, 1995. 69(4): p. 2629-32. 48. Guerrero, C.A., et al., Biochemical characterization of rotavirus receptors in MA104 cells. J Virol, 2000. 74(20): p. 9362-71. 49. Estes, M.K., Graham, D.Y. Dimitrov, D.H., The molecular epidemiology of rotavirus gastroenteritis. . Prog Med Virol, 1984. 29: p. 1-22 50. Fernandes, J., et al., Binding of reovirus to receptor leads to conformational changes in viral capsid proteins that are reversible upon virus detachment. J Biol Chem, 1994. 269(25): p. 17043-7. 51. Gruber, C.W., et al., Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci, 2006. 31(8): p. 455-64. 52. Ellgaard, L. and L.W. Ruddock, The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep, 2005. 6(1): p. 28-32. 53. Maruri-Avidal, L., S. Lopez, and C.F. Arias, Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol, 2008. 82(11): p. 5368- 80. 54. Calderón, M.N., Acosta, O., Guzman, F., Guerrero, C. A, Protein disulfide isomerase activity is involved in rotavirus entry to MA104 cells. Intervirology, 2011. 31(70-81). 55. Sharma, D. and D.C. Masison, Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett, 2009. 16(6): p. 571-81. 56. de Jong, P.R., et al., Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones, 2009. 14(2): p. 117-31. 57. Pulido, D., Acosta O, Guerrero CA, Increase of heat shock cognate protein, HSC70, in MA104 cells following rotavirus infection. Rev.Fac.Med, 2007. 55: p. 224-239. 58. Guerrero, C.A., A.Y. Santana, and O. Acosta, Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods, 2010. 168(1-2): p. 22-30. 59. FitzGerald, G.A., COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov, 2003. 2(11): p. 879-90. 60. Mbonye, U.R. and I. Song, Posttranscriptional and posttranslational determinants of cyclooxygenase expression. BMB Rep, 2009. 42(9): p. 552-60. 61. Butterfield, D.A., B.J. Howard, and M.A. LaFontaine, Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem, 2001. 8(7): p. 815-28. 62. Krishnan, A., S.A. Nair, and M.R. Pillai, Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med, 2007. 7(6): p. 532-40. 63. Fajas, L., M.B. Debril, and J. Auwerx, Peroxisome proliferator-activated receptorgamma: from adipogenesis to carcinogenesis. J Mol Endocrinol, 2001. 27(1): p. 1-9. 64. Mangelsdorf, D.J., et al., The nuclear receptor superfamily: the second decade. Cell, 1995. 83(6): p. 835-9. 65. Kliewer, S.A., et al., A prostaglandin J2 metabolite binds peroxisome proliferatoractivated receptor gamma and promotes adipocyte differentiation. Cell, 1995. 83(5): p. 813- 9. 66. Lehmann, J.M., et al., Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem, 1997. 272(6): p. 3406-10. 67. Stumvoll, M. and H.U. Haring, Glitazones: clinical effects and molecular mechanisms. Ann Med, 2002. 34(3): p. 217-24. 68. Chinetti, G., J.C. Fruchart, and B. Staels, Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000. 49(10): p. 497-505. 69. Delerive, P., J.C. Fruchart, and B. Staels, Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol, 2001. 169(3): p. 453-9. 70. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16: p. 225-60. 71. Li, Q. and I.M. Verma, NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002. 2(10): p. 725-34. 72. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8. 73. Verma, I.M., et al., Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev, 1995. 9(22): p. 2723-35. 74. Memet, S., NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol, 2006. 72(9): p. 1180-95. 75. Echeverri, N.P.M., I, Factor nuclear kb (nf-kb): signalosoma y su importancia en enfermedades inflamatorias y cáncer. Revista Facultad de Medicina de la Universidad Nacional de Colombia, 2008. 56(2): p. 133-146. 76. Hayden, M.S. and S. Ghosh, Signaling to NF-kappaB. Genes Dev, 2004. 18(18): p. 2195-224. 77. Amir, R.E., K. Iwai, and A. Ciechanover, The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem, 2002. 277(26): p. 23253-9. 78. Mincheva, S., Estudio de la Función de la vía NF-kappaB en las motoneuronas espinales y su relación con la atrofia muscular espinal, in Departament de Ciencies2011, Universitat de Lleida: Tesis Doctoral. p. 226. 79. Beinke, S. and S.C. Ley, Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J, 2004. 382(Pt 2): p. 393-409. 80. Gilmore, T.D., Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006. 25(51): p. 6680-4. 81. Roman, J.A., Jiménez, S.A, El Factor Nuclear-kB como un blanco terapéutico en artrifis. Revista Peruana de Reumatología, 2004. 10(3): p. 43-48. 82. Sun, S.C., Non-canonical NF-kappaB signaling pathway. Cell Res, 2011. 21(1): p. 71-85. 83. Chen, F., et al., Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J Cell Biochem, 2003. 90(4): p. 732-44. 84. LaMonica, R., et al., VP4 differentially regulates TRAF2 signaling, disengaging JNK activation while directing NF-kappa B to effect rotavirus-specific cellular responses. J Biol Chem, 2001. 276(23): p. 19889-96. 85. Peiris, J.S., K.P. Hui, and H.L. Yen, Host response to influenza virus: protection versus immunopathology. Curr Opin Immunol, 2010. 22(4): p. 475-81. 86. Treitinger, A., et al., Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur J Clin Invest, 2000. 30(5): p. 454-9. 87. Boya, P., et al., Antioxidant status and glutathione metabolism in peripheral blood mononuclear cells from patients with chronic hepatitis C. J Hepatol, 1999. 31(5): p. 808-14. 88. Dikici, I., et al., Investigation of oxidative stress and some antioxidants in patients with acute and chronic viral hepatitis B and the effect of interferon-alpha treatment. Clin Biochem, 2005. 38(12): p. 1141-4. 89. Dobmeyer, T.S., et al., Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: role for lymphocyte loss in HIV infection. Free Radic Biol Med, 1997. 22(5): p. 775-85. 90. Knobil, K., et al., Role of oxidants in influenza virus-induced gene expression. Am J Physiol, 1998. 274(1 Pt 1): p. L134-42. 91. Korenaga, M., et al., Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem, 2005. 280(45): p. 37481-8. 92. Skulachev, V.P., Possible role of reactive oxygen species in antiviral defense. Biochemistry (Mosc), 1998. 63(12): p. 1438-40. 93. Prasad, S., A.K. Tyagi, and B.B. Aggarwal, Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat, 2014. 46(1): p. 2-18. 94. Anand, P., et al., Bioavailability of curcumin: problems and promises. Mol Pharm, 2007. 4(6): p. 807-18. 95. Gupta, S.C., et al., Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev, 2010. 29(3): p. 405-34. 96. Cheng, A.L., et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res, 2001. 21(4B): p. 2895-900. 97. Lao, C.D., et al., Dose escalation of a curcuminoid formulation. BMC Complement Altern Med, 2006. 6: p. 10. 98. Shoba, G., et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 1998. 64(4): p. 353-6. 99. Singh, S. and B.B. Aggarwal, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem, 1995. 270(42): p. 24995-5000. 100. (EMA), E.M.A., Assessment report on Curcuma xanthorrhiza Roxb. (C. xanthorrhiza D. Dietrich)., rhizoma European Medicines Agency (EMA), 2013. EMA/HMPC/604598/2012. 101. Eneanya, D.I., et al., The actions of metabolic fate of disulfiram. Annu Rev Pharmacol Toxicol, 1981. 21: p. 575-96. 102. Langeland, B.T. and J.S. McKinley-McKee, The effects of disulfiram on equine hepatic alcohol dehydrogenase and its efficiency against alcoholism: vinegar effect. Alcohol Alcohol, 1996. 31(1): p. 75-80. 103. Suh, J.J., et al., The status of disulfiram: a half of a century later. J Clin Psychopharmacol, 2006. 26(3): p. 290-302. 104. Schreck, R., et al., Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med, 1992. 175(5): p. 1181-94. 105. Matsuno, T., et al., Diethyldithiocarbamate induces apoptosis in HHV-8-infected primary effusion lymphoma cells via inhibition of the NF-kappaB pathway. Int J Oncol, 2012. 40(4): p. 1071-8. 106. Pang, H., et al., Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. Int J Mol Med, 2007. 19(5): p. 809-16. 107. Cvek, B. and Z. Dvorak, Targeting of nuclear factor-kappaB and proteasome by dithiocarbamate complexes with metals. Curr Pharm Des, 2007. 13(30): p. 3155-67. 108. Rahden-Staron, I., et al., The effects of sodium diethyldithiocarbamate in fibroblasts V79 cells in relation to cytotoxicity, antioxidative enzymes, glutathione, and apoptosis. Arch Toxicol, 2012. 86(12): p. 1841-50. 109. Korablev, M.V., [Toxicological characteristic of dithiocarbamic acid derivatives used in the national economy and medicine. (Review)]. Farmakol Toksikol, 1969. 32(3): p. 356- 62. 110. Craven, M.R., D.K. Luscombe, and P.J. Nicholls, Absorption, elimination and duration of action of diethyldithiocarbamate in animals [proceedings]. J Pharm Pharmacol, 1976. 28 Suppl: p. 38P. 111. Horton, N.D., et al., Acrolein causes inhibitor kappaB-independent decreases in nuclear factor kappaB activation in human lung adenocarcinoma (A549) cells. J Biol Chem, 1999. 274(14): p. 9200-6.112. Smyth, H.F., Jr., C.P. Carpenter, and C.S. Weil, Range-finding toxicity data; list III. J Ind Hyg Toxicol, 1949. 31(1): p. 60-2. 113. Instituto Nacional de Salud. INS. [Online] Available from: www.ins.gov.co., 2012. 114. Henrotin, Y., et al., Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage, 2010. 18(2): p. 141-9. 115. Shishodia, S., et al., Curcumin (diferuloylmethane) down-regulates cigarette smokeinduced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis, 2003. 24(7): p. 1269-79. 116. Srikoon, P., et al., Diethyldithiocarbamate suppresses an NF-kappaB dependent metastatic pathway in cholangiocarcinoma cells. Asian Pac J Cancer Prev, 2013. 14(7): p. 4441-6. 117. Khoo, J.P., et al., EPR quantification of vascular nitric oxide production in genetically modified mouse models. Nitric Oxide, 2004. 10(3): p. 156-61. 118. Du, H., et al., Inhibition of COX-2 expression by endocannabinoid 2- arachidonoylglycerol is mediated via PPAR-gamma. Br J Pharmacol, 2011. 163(7): p. 1533- 49. 119. Rodriguez-Diaz, J., et al., Role of nitric oxide during rotavirus infection. J Med Virol, 2006. 78(7): p. 979-85. 120. Guerrero, C.A. and O. Acosta, Inflammatory and oxidative stress in rotavirus infection. World J Virol, 2016. 5(2): p. 38-62. 121. Poligone, B. and A.S. Baldwin, Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem, 2001. 276(42): p. 38658-64. 122. Lugo-Martinez, V.H., et al., Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol, 2009. 296(2): p. G235-44. 123. Perkins, N.D. and T.D. Gilmore, Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ, 2006. 13(5): p. 759-72. 124. Teramoto, S., et al., Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn J Pharmacol, 1999. 79(1): p. 33-40. 125. Ginn-Pease, M.E. and R.L. Whisler, Optimal NF kappa B mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun, 1996. 226(3): p. 695-702. 126. Balasubramanyam, M., et al., Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci, 2003. 28(6): p. 715-21. 127. Liu, J., et al., Antioxidant activity of diethyldithiocarbamate. Free Radic Res, 1996. 24(6): p. 461-72. 128. Garcia, M.A., et al., Activation of NF-kB pathway by virus infection requires Rb expression. PLoS One, 2009. 4(7): p. e6422. 129. Wullaert, A., K. Heyninck, and R. Beyaert, Mechanisms of crosstalk between TNFinduced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol, 2006. 72(9): p. 1090-101. 130. Nakano, H., et al., Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ, 2006. 13(5): p. 730-7. 131. Papa, S., et al., The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ, 2006. 13(5): p. 712-29. 132. Graff, J.W., K. Ettayebi, and M.E. Hardy, Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog, 2009. 5(1): p. e1000280. 133. Arnold, M.M., M. Barro, and J.T. Patton, Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. J Virol, 2013. 87(17): p. 9813-21. 134. Hu, L., et al., Rotavirus non-structural proteins: structure and function. Curr Opin Virol, 2012. 2(4): p. 380-8. 135. Gac, M., J. Bigda, and T.W. Vahlenkamp, Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection. Virology, 2010. 404(2): p. 293-303. 136. Hwang, C., A.J. Sinskey, and H.F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum. Science, 1992. 257(5076): p. 1496-502. 137. Luo, K. and S.S. Cao, Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract, 2015. 2015: p. 328791. 138. Sharma, O.P., Antioxidant activity of curcumin and related compounds. Biochem Pharmacol, 1976. 25(15): p. 1811-2. 139. Surh, Y.J., et al., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res, 2001. 480-481: p. 243-68. 140. Zhu, Z., et al., Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation. J Clin Invest, 1996. 97(2): p. 421-30. 141. Kil, I.S., S.Y. Kim, and J.W. Park, Glutathionylation regulates IkappaB. Biochem Biophys Res Commun, 2008. 373(1): p. 169-73. 142. Shin, S.W., I.S. Kil, and J.W. Park, Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase by small interfering RNA enhances heat shock-induced apoptosis. Biochem Biophys Res Commun, 2008. 366(4): p. 1012-8. 143. Wu, M., et al., Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med, 2009. 46(1): p. 62-9. 144. Nowak, D.E., et al., RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol, 2008. 28(11): p. 3623-38. 145. Saito, Y., et al., Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res, 2006. 40(6): p. 619-30. | |