dc.contributor | Rivera Rodríguez, Sergio Raúl | |
dc.contributor | Santamaría Piedrahita, Francisco | |
dc.contributor | Grupo de Investigación Emc-Un | |
dc.creator | Alarcon Villamil, Jorge Alexander | |
dc.date.accessioned | 2022-08-08T15:04:26Z | |
dc.date.available | 2022-08-08T15:04:26Z | |
dc.date.created | 2022-08-08T15:04:26Z | |
dc.date.issued | 2022-08-05 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81801 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Este trabajo investiga la manera de mejorar el planeamiento de las redes eléctricas de
distribución (REDis) en torno a su modernización, analizando aspectos como la integración
de recursos distribuidos, sistemas de almacenamiento de energía y la posible
implementación de estrategias de respuesta a la demanda. El trabajo analiza los modelos
matemáticos utilizados para representar cada uno de los dispositivos y estrategias
indicadas anteriormente, plantea modelos para la integración de estos dispositivos en el
planeamiento, y finalmente describe los procedimientos y métodos desarrollados para
ejecutar el planeamiento en algunos casos de prueba.
Los modelos planteados permiten la inclusión de aspectos técnicos, ambientales y
económicos en los objetivos de optimización del problema, con lo cual genera un aporte
interesante para esta área de la ingeniería, porque permite la evaluación simultánea (multiobjetivo) de los tres criterios de evaluación.
Dentro de los resultados y aportes del trabajo de investigación se incluyen los modelos
matemáticos desarrollados, índices para medir qué tan eficiente es el uso de los activos
del sistema de distribución, y los diagramas de flujo que describen los procedimientos
propuestos para el desarrollo del planeamiento. Adicionalmente se presentan resultados
de los casos de estudio evaluados con las metodologías y con los índices propuestos, en
los que se mide y compara cada uno de los aspectos evaluados (técnicos, económicos y
ambientales) mostrando las ventajas de los métodos desarrollados, respecto de métodos
propuestos por otros autores.
Los resultados permiten concluir que el uso de técnicas de optimización matemática
genera buenos resultados para el problema del planeamiento, y permite la valoración
simultánea de los tres criterios de evaluación. También se comprueba que las
metodologías propuestas y los modelos planteados funcionan de manera adecuada para
encontrar los resultados. Con los resultados obtenidos se cumple el objetivo propuesto en
esta tesis de Doctorado que es: “Desarrollar e implementar un modelo multi-objetivo para
el planeamiento de redes eléctricas de distribución que permita la integración simultánea
de generación distribuida, sistemas de almacenamiento de energía con baterías y
estrategias de respuesta a la demanda”.
También se cumple con los objetivos específicos propuestos que son: “Analizar el efecto
que tienen las tecnologías de generación distribuida, almacenamiento con baterías y
gestión de la demanda (DSM y DR) en la planificación de las redes de distribución primaria,
identificando los aspectos que deben ser incluidos en la metodología a desarrollar”,
“Desarrollar el modelo que representa el problema de planificación multi-objetivo
incluyendo los aspectos técnicos, económicos y ambientales, y determinar la técnica de
solución a utilizar”, y finalmente “Implementar el modelo de planificación desarrollado y
evaluar sus resultados mediante el análisis de al menos dos de los casos de prueba usados
para validar este tipo de problemas.” (Texto tomado de la fuente) | |
dc.description.abstract | This research work search new ways to improve the planning of power distribution
networks, having into account aspects as the integration of DERS, BESS, and demand
response strategies, into the planning models. The work analyze the mathematical models
used to represent the DERS, BESS and the DR strategies previously indicated, it also
propose the models to include the DER and BESS devices into the planning, and describe
the methods and procedures to implement the model to solve planning some test systems.
The proposed models allow the inclusion of technical, economic and environmental aspects
among the optimization objectives of the problem, which generates an important
contribution to this area of engineering, because it allows the simultaneous evaluation
(multi-objective) of the three optimization-criteria.
The results and contributions of this research work include the developed mathematical
models, the indices used to measure how efficiently the assets on the distribution system
are used, and the flow charts used to describe the procedures proposed for developing the
planning. Additionally, the results of the cases study evaluated with the proposed
methodologies and indices are presented, showing the advantages of the developed
methods concerning other conventional methods.
The results let us obtain good results for the planning problem by using mathematical
optimization techniques and allow the simultaneous evaluation of the three optimization-criteria. It also proved that the proposed methodologies and models work adequately to get
good planning results. With the obtained results, the main objective proposed in this
doctoral thesis is fulfilled, which is: "Develop and implement a multi-objective model for the
planning of electrical distribution networks that allows the simultaneous integration of
distributed generation, energy storage systems with batteries and demand response
strategies.
The proposed specific objectives, which are: "Analyze the effect of distributed generation,
battery storage, and demand management (DSM and DR) technologies in the planning of
primary distribution networks, identifying the aspects that should be included in the
methodology to be developed”, “Develop the model that represents the multi-objective
planning problem including technical, economic and environmental aspects, and determine
the solution technique to be used”, and finally “Implement the planning model developed
and evaluate its results by analyzing at least two of the test cases used to validate this type
of problem”, are also met. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | A. Pillay, S. Prabhakar Karthikeyan, and D. P. Kothari, “Congestion management in power systems - A review,” Int. J. Electr. Power Energy Syst., vol. 70, pp. 83–90, 2015, doi: 10.1016/j.ijepes.2015.01.022 | |
dc.relation | L. Gabriel and M. Díaz, “Comparación de métodos de asignación a redes para distintos volumenes de transito,” Rev. UIS Ing., vol. 9, no. 1, pp. 77–84, 2010 | |
dc.relation | M. Vaziri, K. Tomsovic, and T. Gonen, “Distribution expansion problem revisited. Part 1 Cateorical analysis and future directions,” Math. Program., 2000, [Online]. Available: http://web.eecs.utk.edu/~tomsovic/Vitae/Publications/VAZI00a.pdf. | |
dc.relation | A. J. Urdaneta, P. C. Paiva, H. Khodr, J. Dominguez-Navarro, and J. M. Yusta, “Integral planning of primary-secondary distribution systems using mixed integer linear programming,” IEEE Power Eng. Soc. Gen. Meet. 2005, vol. 20, no. 2, pp. 489–489, 2005, doi: 10.1109/PES.2005.1489185 | |
dc.relation | A. Klose and A. Drexl, “Facility location models for distribution system design,” Eur. J. Oper. Res., vol. 162, no. 1, pp. 4–29, 2005, doi: 10.1016/j.ejor.2003.10.031 | |
dc.relation | C. L. T. Borges and D. M. Falcão, “Optimal distributed generation allocation for reliability, losses, and voltage improvement,” Int. J. Electr. Power Energy Syst., vol. 28, no. 6, pp. 413–420, 2006, doi: 10.1016/j.ijepes.2006.02.003 | |
dc.relation | J. L. Morillo, J. F. Perez, N. Quijano, and A. Cadena, “Planning open and closed-loop feeders with efficiency analysis,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232656 | |
dc.relation | F. Voulgaris, D. Asteriou, and G. Agiomirgianakis, “Capital structure, asset utilization, profitability and growth in the Greek manufacturing sector,” Appl. Econ., vol. 34, no. 11, pp. 1379–1388, 2002, doi: 10.1080/00036840110096822 | |
dc.relation | Z. Fu-min, M. Li, L. Nian, and C. Jin-shan, “Assessment for Distribution Network Planning Schemes of Urban Electric Power System,” Energy Procedia, vol. 14, no. 2011, pp. 1067–1074, 2012, doi: 10.1016/j.egypro.2011.12.1056 | |
dc.relation | T. L. Lee and S. H. Hu, “An Active Filter with Resonant Current Control to Suppress Harmonic Resonance in a Distribution Power System,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 1, pp. 198–209, 2016, doi: 10.1109/JESTPE.2015.2478149 | |
dc.relation | M. S. Islam, N. A. Chowdhury, A. K. Sakil, A. Khandakar, A. Iqbal, and H. Abu-Rub, “Power quality effect of using incandescent, fluorescent, CFL and LED lamps on utility grid,” 2015 1st Work. Smart Grid Renew. Energy, SGRE 2015, no. Sgre, pp. 3–7, 2015, doi: 10.1109/SGRE.2015.7208731 | |
dc.relation | M. Arends and P. H. J. Hendriks, “Smart grids, smart network companies,” Util. Policy, vol. 28, pp. 1–11, Mar. 2014, doi: 10.1016/j.jup.2013.10.003 | |
dc.relation | R. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011 | |
dc.relation | R. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011 | |
dc.relation | R. F. Arritt and R. C. Dugan, “Distribution system analysis and the future smart grid,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2343–2350, 2011. Power Syst. Res., vol. 121, pp. 89–100, Apr. 2015, doi: 10.1016/j.epsr.2014.12.010 | |
dc.relation | I. T. Papaioannou, A. Purvins, and E. Tzimas, “Demand shifting analysis at high penetration of distributed generation in low voltage grids,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 540–546, 2013, doi: 10.1016/j.ijepes.2012.07.054 | |
dc.relation | S. C. E. Jupe and P. C. Taylor, “Distributed generation output control for network power flow management,” IET Renew. Power Gener., vol. 3, no. 4, p. 371, 2009, doi: 10.1049/iet-rpg.2008.0029 | |
dc.relation | M. Nick, R. Cherkaoui, and M. Paolone, “Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers,” Int. J. Electr. Power Energy Syst., Mar. 2015, doi: 10.1016/j.ijepes.2015.02.008 | |
dc.relation | J. A. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, “Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1189–1203, Jul. 2007, doi: 10.1016/j.epsr.2006.08.016 | |
dc.relation | A. Rezaee Jordehi, “Allocation of distributed generation units in electric power systems: A review,” Renew. Sustain. Energy Rev., vol. 56, pp. 893–905, Apr. 2016, doi: 10.1016/j.rser.2015.11.086 | |
dc.relation | C. L. T. Borges and D. M. Falcão, “Optimal distributed generation allocation for reliability, losses, and voltage improvement,” Int. J. Electr. Power Energy Syst., vol. 28, no. 6, pp. 413–420, Jul. 2006, doi: 10.1016/j.ijepes.2006.02.003 | |
dc.relation | A. Colmenar-Santos, C. Reino-Rio, D. Borge-Diez, and E. Collado-Fernández, “Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks,” Renew. Sustain. Energy Rev., vol. 59, pp. 1130–1148, Jun. 2016, doi: 10.1016/j.rser.2016.01.023 | |
dc.relation | R. E. Brown, “Impact of Smart Grid on Distribution System design,” 2008 | |
dc.relation | C. Brivio, S. Mandelli, and M. Merlo, “Battery energy storage system for primary control reserve and energy arbitrage,” Sustain. Energy, Grids Networks, vol. 6, pp. 152–165, 2016, doi: 10.1016/j.segan.2016.03.004 | |
dc.relation | P. D. Lund, J. Lindgren, J. Mikkola, and J. Salpakari, “Review of energy system flexibility measures to enable high levels of variable renewable electricity,” Renew. Sustain. Energy Rev., vol. 45, pp. 785–807, May 2015, doi: 10.1016/j.rser.2015.01.057 | |
dc.relation | H. Jiayi, J. Chuanwen, and X. Rong, “A review on distributed energy resources and MicroGrid,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2472–2483, Dec. 2008, doi: 10.1016/j.rser.2007.06.004 | |
dc.relation | X. Han, T. Ji, Z. Zhao, and H. Zhang, “Economic evaluation of batteries planning in energy storage power stations for load shifting,” Renew. Energy, vol. 78, pp. 643–647, Jun. 2015, doi: 10.1016/j.renene.2015.01.056 | |
dc.relation | C. Zhou et al., “Business model and economic analysis of user-side BESS in industrial parks in China,” IET Conf. Publ., vol. 2019, no. CP764, pp. 1–6, 2019, doi: 10.1049/cp.2019.0281 | |
dc.relation | Y. Y. Hsu and Y. Jwo-Hwu, “Planning of distribution substations, feeders and sectionalizing switches using heuristic algorithms,” Int. J. Electr. Power Energy Syst., vol. 18, no. 5, pp. 315–322, 1996, doi: 10.1016/0142-0615(95)00075-5 | |
dc.relation | C. M. Affonso and L. C. P. da Silva, “Potential benefits of implementing load management to improve power system security,” Int. J. Electr. Power Energy Syst., vol. 32, no. 6, pp. 704–710, Jul. 2010, doi: 10.1016/j.ijepes.2010.01.004 | |
dc.relation | L. Gelazanskas and K. A. A. Gamage, “Demand side management in smart grid: A review and proposals for future direction,” Sustain. Cities Soc., vol. 11, pp. 22–30, 2014, doi: 10.1016/j.scs.2013.11.001 | |
dc.relation | M. H. Albadi and E. F. El-Saadany, “Demand response in electricity markets: An overview,” 2007 | |
dc.relation | G. Gutiérrez-Alcaraz, J. H. Tovar-Hernández, and C. N. Lu, “Effects of demand response programs on distribution system operation,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 230–237, 2016, doi: 10.1016/j.ijepes.2015.07.018 | |
dc.relation | A. A. Eajal and M. E. El-Hawary, “Optimal capacitor placement and sizing in distorted radial distribution systems Part III: Numerical results,” ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010, doi: 10.1109/ICHQP.2010.5625474 | |
dc.relation | I. Ziari, G. Ledwich, A. Ghosh, and G. Platt, “Optimal distribution network reinforcement considering load growth, line loss, and reliability,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 587–597, 2013, doi: 10.1109/TPWRS.2012.2211626 | |
dc.relation | R. B. Hiremath, S. Shikha, and N. H. Ravindranath, “Decentralized energy planning; modeling and application—a review,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 729–752, Jun. 2007, doi: 10.1016/j.rser.2005.07.005 | |
dc.relation | R. H. Fletcher and K. Strunz, “Optimal Distribution System Horizon Planning-Part I: Formulation,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 791–799, 2007, doi: 10.1109/TPWRS.2007.895173 | |
dc.relation | R. H. Fletcher, S. Member, and K. Strunz, “Planning – Part II : Application,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 862–870, 2007 | |
dc.relation | D. Hongwei, Y. Yixin, and H. Chunhua, “Optimal planning of distribution substation locations and sizes - model and algorithm,” Electr. Power Energy Syst., vol. 18, no. 6, pp. 353–357, 1996, doi: http://dx.doi.org/10.1016/0140-6701(96)89794-3 | |
dc.relation | S. K. Khator and L. C. Leung, “Power distribution planning: a review of models and issues,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1151–1159, 1997, doi: 10.1109/59.630455 | |
dc.relation | H. K. Temraz and V. H. Quintana, “Distribution system expansion planning models: An overview,” Electr. Power Syst. Res., vol. 26, no. 1, pp. 61–70, 1993, doi: 10.1016/0378-7796(93)90069-Q | |
dc.relation | R. B. Hiremath, S. Shikha, and N. H. Ravindranath, “Decentralized energy planning; modeling and application-a review,” Renewable and Sustainable Energy Reviews, vol. 11, no. 5. pp. 729–752, 2007, doi: 10.1016/j.rser.2005.07.005 | |
dc.relation | S. Haffner, L. F. A. Pereira, L. A. Pereira, and L. S. Barreto, “Multistage Model for Distribution Expansion Planning with Distributed Generation - Part II: Numerical Results,” IEEE Trans. Power Deliv., vol. 23, no. 2, pp. 924–929, 2008, doi: 10.1109/TPWRD.2008.917911 | |
dc.relation | U. G. W. Knight, “The logical design of electrical networks using linear programming methods,” Proc. IEE-Part A Power Eng., vol. 107, no. 33, pp. 306–314, 1960 | |
dc.relation | J. V OLDFIELD and T. Lang, “The long-term design of electrical power distribution systems,” IEEE PICA, May, 1965 | |
dc.relation | T. Gorien, M. Sc, D. Ph, and I. E. E. E. Mem, “Distribution-system planning using mixed-integer programming,” Gener. Transm. Distrib. IEE Proc. C, vol. 128, no. 2, pp. 70–79, 1981, doi: 10.1049/ip-c:19810010 | |
dc.relation | D. M. Crawford and S. B. Holt, “A mathematical optimization technique for locating and sizing distribution substations, and deriving their optimal service areas,” IEEE Trans. power Apar. Syst., no. 2, pp. 2–7, 1975 | |
dc.relation | R.N. Adams M.A. Laughton, “Optimal planning of power networks using Mixed integer programming,” IEE Proc., no. 1, 1971 | |
dc.relation | B. N. Soares, A. Da Rosa Abaide, and D. Bernardon, “Methodology for prioritizing investments in distribution networks electricity focusing on operational efficiency and regulatory aspects,” Proc. Univ. Power Eng. Conf., pp. 1–6, 2014, doi: 10.1109/UPEC.2014.6934727 | |
dc.relation | A. M. Cossi, L. G. W. da Silva, R. a. R. Lázaro, and J. R. S. Mantovani, “Primary power distribution systems planning taking into account reliability, operation and expansion costs,” IET Gener. Transm. Distrib., vol. 6, no. 3, p. 274, 2012, doi: 10.1049/iet-gtd.2010.0666 | |
dc.relation | M. Tabarzadi and V. Vahidinasab, “A comprehensive expansion planning model for smart electric distribution networks,” 2015 3rd Int. Istanbul Smart Grid Congr. Fair, ICSG 2015, 2015, doi: 10.1109/SGCF.2015.7354916 | |
dc.relation | P. C. Paiva, H. M. Khodr, J. A. Dominguez-Navarro, J. M. Yusta, and A. J. Urdaneta, “Integral Planning of Primary–Secondary Distribution Systems Using Mixed Integer Linear Programming,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1134–1143, May 2005, doi: 10.1109/TPWRS.2005.846108 | |
dc.relation | R. D. Prasad, R. C. Bansal, and A. Raturi, “Multi-faceted energy planning: A review,” Renew. Sustain. Energy Rev., vol. 38, pp. 686–699, Oct. 2014, doi: 10.1016/j.rser.2014.07.021 | |
dc.relation | R. Siddaiah and R. P. Saini, “A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications,” Renew. Sustain. Energy Rev., vol. 58, pp. 376–396, May 2016, doi: 10.1016/j.rser.2015.12.281 | |
dc.relation | A. S. Bin Humayd and K. Bhattacharya, “Comprehensive multi-year distribution system planning using back-propagation approach,” IET Gener. Transm. Distrib., vol. 7, no. 12, pp. 1415–1425, 2013, doi: 10.1049/iet-gtd.2012.0706 | |
dc.relation | G. D. Ferreira and A. S. Bretas, “A nonlinear binary programming model for electric distribution systems reliability optimization,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 384–392, 2012, doi: DOI 10.1016/j.ijepes.2012.05.070 | |
dc.relation | H. Saboori, R. Hemmati, and V. Abbasi, “Multistage distribution network expansion planning considering the emerging energy storage systems,” Energy Convers. Manag., vol. 105, pp. 938–945, 2015, doi: 10.1016/j.enconman.2015.08.055 | |
dc.relation | N. C. Koutsoukis, Di. O. Siagkas, P. S. Georgilakis, and N. D. Hatziargyriou, “Online Reconfiguration of Active Distribution Networks for Maximum Integration of Distributed Generation,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 437–448, 2017, doi: 10.1109/TASE.2016.2628091 | |
dc.relation | K. Nara, T. Satoh, K. Kuwabara, K. Aoki, M. Kitagawa, and T. Ishihara, “Distribution Systems Expansion Planning by Multi-Stage Branch Exchange,” Trans. Power Syst., vol. 7, no. 1, pp. 208–214, 1992 | |
dc.relation | T. Gonen and I. J. Ramirez-Rosado, “Optimal Multi-Stage Planning of Power Distribution Systems,” IEEE Trans. Power Deliv., vol. 2, no. 2, pp. 512–519, 1987, doi: 10.1109/TPWRD.1987.4308135 | |
dc.relation | A. Soroudi and M. Ehsan, “A distribution network expansion planning model considering distributed generation options and techo-economical issues,” Energy, vol. 35, no. 8, pp. 3364–3374, Aug. 2010, doi: 10.1016/j.energy.2010.04.022 | |
dc.relation | S. N. Ravadanegh and R. G. Roshanagh, “On optimal multistage electric power distribution networks expansion planning,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 487–497, 2014, doi: 10.1016/j.ijepes.2013.07.008 | |
dc.relation | A. Zidan, M. F. Shaaban, and E. F. El-Saadany, “Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration,” Electr. Power Syst. Res., vol. 105, pp. 95–104, 2013, doi: 10.1016/j.epsr.2013.07.016 | |
dc.relation | H. Falaghi, C. Singh, M.-R. Haghifam, and M. Ramezani, “DG integrated multistage distribution system expansion planning,” Int. J. Electr. Power Energy Syst., vol. 33, no. 8, pp. 1489–1497, Oct. 2011, doi: 10.1016/j.ijepes.2011.06.031 | |
dc.relation | M. Gitizadeh, A. A. Vahed, and J. Aghaei, “Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms,” Appl. Energy, vol. 101, pp. 655–666, Jan. 2013, doi: 10.1016/j.apenergy.2012.07.010 | |
dc.relation | A. S. Al-Sumaiti, M. Salama, M. El-Moursi, T. S. Alsumaiti, and M. Marzband, “Enabling electricity access: A comprehensive energy efficient approach mitigating climate/weather variability – Part II,” IET Gener. Transm. Distrib., vol. 13, no. 12, pp. 2572–2583, 2019, doi: 10.1049/iet-gtd.2018.6413 | |
dc.relation | A. Arefi, A. Abeygunawardana, and G. Ledwich, “A new risk-managed planning of electric distribution network incorporating customer engagement and temporary solutions,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1646–1661, 2016, doi: 10.1109/TSTE.2016.2573290 | |
dc.relation | T. Baricevic, M. Skok, S. Zutobradic, and L. Wagmann, “Identifying energy efficiency improvements and savings potential in Croatian energy networks,” CIRED - Open Access Proc. J., vol. 2017, no. 1, pp. 2329–2333, 2017, doi: 10.1049/oap-cired.2017.0785 | |
dc.relation | S. H. Ibrahim, A. Baharun, and C. J. Chai, “Efficient Planning of Electrical Distribution System for Consumers in Sarawak, Malaysia,” vol. 1, pp. 103–109, 2015 | |
dc.relation | M. Zare, R. Azizipanah-Abarghooee, R. A. Hooshmand, and M. Malekpour, “Optimal reconfigurattion of distribution systems by considering switch and wind turbine placements to enhance reliability and efficiency,” IET Gener. Transm. Distrib., vol. 12, no. 6, pp. 1271–1284, 2018, doi: 10.1049/iet-gtd.2017.1011 | |
dc.relation | R. M. Vitorino, L. P. Neves, and H. M. Jorge, “Network reconfiguration to improve reliability and efficiency in distribution systems,” 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur., pp. 1–7, 2009, doi: 10.1109/PTC.2009.5281806 | |
dc.relation | R. Syahputra, I. Robandi, and M. Ashari, “Distribution Network Efficiency Improvement Based on Fuzzy Multi-objective Method,” vol. 1, pp. 224–229, 2014 | |
dc.relation | S. Lakshmi and S. Ganguly, “Modelling and allocation of open-UPQC-integrated PV generation system to improve the energy efficiency and power quality of radial distribution networks,” IET Renew. Power Gener., vol. 12, no. 5, pp. 605–613, 2018, doi: 10.1049/iet-rpg.2017.0525 | |
dc.relation | D. A. Quijano, J. Wang, M. R. Sarker, and A. Padilha-Feltrin, “Stochastic assessment of distributed generation hosting capacity and energy efficiency in active distribution networks,” IET Gener. Transm. Distrib., vol. 11, no. 18, pp. 4617–4625, 2017, doi: 10.1049/iet-gtd.2017.0557 | |
dc.relation | J. Zhao, Y. Wang, G. Song, P. Li, C. Wang, and J. Wu, “Congestion Management Method of Low-Voltage Active Distribution Networks Based on Distribution Locational Marginal Price,” IEEE Access, vol. 7, pp. 32240–32255, 2019, doi: 10.1109/ACCESS.2019.2903210 | |
dc.relation | I. A. Quadri, S. Bhowmick, and D. Joshi, “Multi-objective approach to maximise loadability of distribution networks by simultaneous reconfiguration and allocation of distributed energy resources,” IET Gener. Transm. Distrib., vol. 12, no. 21, pp. 5700–5712, 2018, doi: 10.1049/iet-gtd.2018.5618 | |
dc.relation | B. Kroposki, P. K. Sen, and K. Malmedal, “Selection of distribution feeders for implementing distributed generation and renewable energy applications,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2825–2834, 2013, doi: 10.1109/TIA.2013.2262091 | |
dc.relation | R. Dashti and S. Afsharnia, “Demand response regulation modeling based on distribution system asset efficiency,” Electr. Power Syst. Res., vol. 81, no. 2, pp. 667–676, 2011, doi: 10.1016/j.epsr.2010.10.031 | |
dc.relation | L. Ye et al., “The Reasonable Range of Life Cycle Utilization Rate of Distribution Network Equipment,” IEEE Access, vol. 6, pp. 23948–23959, 2018, doi: 10.1109/ACCESS.2018.2803840 | |
dc.relation | L. Ma, W. Liu, H. Chen, Y. Cui, Y. Wang, and S. Yuan, “Operation Efficiency Evaluation Frame and Its Criteria for Distribution Network Based on Annual Load Duration Curve,” Int. Conf. Innov. Smart Grid Technol. ISGT Asia 2018, pp. 373–378, 2018, doi: 10.1109/ISGT-Asia.2018.8467851 | |
dc.relation | J. F. Prada, “The Value of Reliability in Power Systems: Pricing Operating Reserves,” Mit El 99-005 Wp, no. June, p. 79p, 1999 | |
dc.relation | Z. A. Vale et al., “Comparison between deterministic and meta-heuristic methods applied to ancillary services dispatch,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6096 LNAI, no. PART 1, pp. 731–741, 2010, doi: 10.1007/978-3-642-13022-9_73 | |
dc.relation | R. Dashti, S. Afsharnia, B. Bayat, and A. Barband, “Energy efficiency based asset management infrastructures in electrical distribution system,” PECon2010 - 2010 IEEE Int. Conf. Power Energy, pp. 880–885, 2010, doi: 10.1109/PECON.2010.5697703 | |
dc.relation | L. Suganthi and A. A. Samuel, “Energy models for demand forecasting—A review,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223–1240, Feb. 2012, doi: 10.1016/j.rser.2011.08.014 | |
dc.relation | C. J. Bennett, R. A. Stewart, and J. W. Lu, “Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system,” Energy, vol. 67, pp. 200–212, Apr. 2014, doi: 10.1016/j.energy.2014.01.032 | |
dc.relation | A. Aref, M. Davoudi, F. Razavi, and M. Davoodi, “Optimal DG Placement in Distribution Networks Using Intelligent Systems,” vol. 2012, no. March, pp. 92–98, 2012 | |
dc.relation | M. Pesaran H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renew. Sustain. Energy Rev., vol. 75, no. October 2016, pp. 293–312, 2017, doi: 10.1016/j.rser.2016.10.071 | |
dc.relation | U. Sultana, A. B. Khairuddin, M. M. Aman, A. S. Mokhtar, and N. Zareen, “A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system,” Renew. Sustain. Energy Rev., vol. 63, pp. 363–378, 2016, doi: 10.1016/j.rser.2016.05.056 | |
dc.relation | P. Prakash and D. K. Khatod, “Optimal sizing and siting techniques for distributed generation in distribution systems: A review,” Renew. Sustain. Energy Rev., vol. 57, pp. 111–130, 2016, doi: 10.1016/j.rser.2015.12.099 | |
dc.relation | S. Gopiya Naik, D. K. Khatod, and M. P. Sharma, “Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 967–973, 2013, doi: 10.1016/j.ijepes.2013.06.008 | |
dc.relation | B. Pawar, S. Kaur, and G. B. Kumbhar, “An integrated approach for power loss reduction in primary distribution system,” in 2016 IEEE 6th International Conference on Power Systems (ICPS), Mar. 2016, pp. 1–6, doi: 10.1109/ICPES.2016.7584049 | |
dc.relation | M. Rahmani-andebili, “Simultaneous placement of DG and capacitor in distribution network,” Electr. Power Syst. Res., vol. 131, pp. 1–10, Feb. 2016, doi: 10.1016/J.EPSR.2015.09.014 | |
dc.relation | R. Viral and D. K. Khatod, “An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 191–201, May 2015, doi: 10.1016/J.IJEPES.2014.11.017 | |
dc.relation | N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach for DG allocation in primary distribution network,” Int. J. Electr. Power Energy Syst., vol. 28, no. 10, pp. 669–678, Dec. 2006, doi: 10.1016/J.IJEPES.2006.02.013 | |
dc.relation | K. Bhumkittipich and W. Phuangpornpitak, “Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction Using Particle Swarm Optimization,” Energy Procedia, vol. 34, pp. 307–317, Jan. 2013, doi: 10.1016/J.EGYPRO.2013.06.759 | |
dc.relation | S. Kansal, V. Kumar, and B. Tyagi, “Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 226–235, 2016, doi: 10.1016/j.ijepes.2015.09.002 | |
dc.relation | A. Ehsan and Q. Yang, “Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques,” Appl. Energy, vol. 210, no. July 2017, pp. 44–59, 2018, doi: 10.1016/j.apenergy.2017.10.106 | |
dc.relation | P. Paliwal, N. P. Patidar, and R. K. Nema, “Planning of grid integrated distributed generators: A review of technology, objectives and techniques,” Renew. Sustain. Energy Rev., vol. 40, pp. 557–570, 2014, doi: 10.1016/j.rser.2014.07.200 | |
dc.relation | H. Chen, Z. Wang, H. Yan, H. Zou, and B. Luo, “Integrated Planning of Distribution Systems with Distributed Generation and Demand Side Response,” Energy Procedia, vol. 75, no. 51322702, pp. 981–986, Aug. 2015, doi: 10.1016/j.egypro.2015.07.314 | |
dc.relation | M. A. Mejia, L. H. Macedo, G. Muñoz-Delgado, J. Contreras, and A. Padilha-Feltrin, “Medium-term planning of active distribution systems considering voltage-dependent loads, network reconfiguration, and CO2 emissions,” Int. J. Electr. Power Energy Syst., vol. 135, no. August 2021, 2022, doi: 10.1016/j.ijepes.2021.107541 | |
dc.relation | T. D. de Lima, A. Tabares, N. Bañol Arias, and J. F. Franco, “Investment & generation costs vs CO2 emissions in the distribution system expansion planning: A multi-objective stochastic programming approach,” Int. J. Electr. Power Energy Syst., vol. 131, no. January, 2021, doi: 10.1016/j.ijepes.2021.106925 | |
dc.relation | R. Hemmati, R. A. Hooshmand, and N. Taheri, “Distribution network expansion planning and DG placement in the presence of uncertainties,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 665–673, 2015, doi: 10.1016/j.ijepes.2015.05.024 | |
dc.relation | A. C. Rueda-Medina, J. F. Franco, M. J. Rider, A. Padilha-Feltrin, and R. Romero, “A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems,” Electr. Power Syst. Res., vol. 97, pp. 133–143, Apr. 2013, doi: 10.1016/j.epsr.2012.12.009 | |
dc.relation | Y. Li, B. Feng, G. Li, J. Qi, D. Zhao, and Y. Mu, “Optimal distributed generation planning in active distribution networks considering integration of energy storage,” Appl. Energy, vol. 210, no. April 2017, pp. 1073–1081, 2018, doi: 10.1016/j.apenergy.2017.08.008 | |
dc.relation | A. Chauhan and R. P. Saini, “A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control,” Renew. Sustain. Energy Rev., vol. 38, pp. 99–120, Oct. 2014, doi: 10.1016/j.rser.2014.05.079 | |
dc.relation | S. Roy Ghatak, S. Sannigrahi, and P. Acharjee, “Optimised planning of distribution network with photovoltaic system, battery storage, and DSTATCOM,” IET Renew. Power Gener., vol. 12, no. 15, pp. 1823–1832, 2018, doi: 10.1049/iet-rpg.2018.5088 | |
dc.relation | D. P. R. P., V. R. V.C., and G. M. T., “Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems,” J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 663–680, 2018, doi: 10.1016/j.jesit.2017.06.001 | |
dc.relation | M. T. Kuo, S. Der Lu, and M. C. Tsou, “Considering Carbon Emissions in Economic Dispatch Planning for Isolated Power Systems: A Case Study of the Taiwan Power System,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 987–997, 2018, doi: 10.1109/TIA.2017.2771338 | |
dc.relation | C. Jiang, Y. Xue, J. Huang, F. Xue, F. Wen, and K. Li, “Aggregated impact of allowance allocation and power dispatching on emission reduction,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 6, pp. 936–946, 2017, doi: 10.1007/s40565-017-0321-0 | |
dc.relation | S. Espinosa, D. Arias Cazco, and M. Yanez Salcedo, “Economic Dispatch hydrothermal system with CO2 Emissions Constraints,” IEEE Lat. Am. Trans., vol. 15, no. 11, pp. 2090–2096, 2017, doi: 10.1109/TLA.2017.8070413 | |
dc.relation | E. Arriagada, E. Lopez, M. Lopez, G. Lefranc, R. Lopez, and M. Poloujadoff, “A probabilistic economic/CO2eq emissions dispatch model: Real applications,” IEEE Lat. Am. Trans., vol. 16, no. 9, pp. 2362–2369, 2018, doi: 10.1109/TLA.2018.8789556 | |
dc.relation | L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution Locational Marginal Pricing (DLMP) for Congestion Management and Voltage Support,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4061–4073, 2018, doi: 10.1109/TPWRS.2017.2767632 | |
dc.relation | N. Zhang, Z. Hu, D. Dai, S. Dang, M. Yao, and Y. Zhou, “Unit commitment model in smart grid environment considering carbon emissions trading,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 420–427, 2016, doi: 10.1109/TSG.2015.2401337 | |
dc.relation | M. F. Tahir, C. Haoyong, A. Khan, M. S. Javed, N. A. Laraik, and K. Mehmood, “Optimizing size of variable renewable energy sources by incorporating energy storage and demand response,” IEEE Access, vol. 7, pp. 103115–103126, 2019, doi: 10.1109/ACCESS.2019.2929297 | |
dc.relation | H. Alharbi and K. Bhattacharya, “Optimal sizing of battery energy storage systems for microgrids,” Proc. - 2014 Electr. Power Energy Conf. EPEC 2014, pp. 275–280, 2014, doi: 10.1109/EPEC.2014.44 | |
dc.relation | Y. Zhang, Z. Y. Dong, F. Luo, Y. Zheng, K. Meng, and K. P. Wong, “Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration,” IET Renew. Power Gener., vol. 10, no. 8, pp. 1105–1113, 2016, doi: 10.1049/iet-rpg.2015.0542 | |
dc.relation | M. Sedghi, M. Aliakbar-Golkar, and M.-R. Haghifam, “Distribution network expansion considering distributed generation and storage units using modified PSO algorithm,” Int. J. Electr. Power Energy Syst., vol. 52, pp. 221–230, Nov. 2013, doi: 10.1016/j.ijepes.2013.03.041 | |
dc.relation | O. Babacan, W. Torre, and J. Kleissl, “Optimal allocation of battery energy storage systems in distribution networks considering high PV penetration,” IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741191 | |
dc.relation | Y. Zheng, Z. Y. Dong, F. J. Luo, K. Meng, J. Qiu, and K. P. Wong, “Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 212–220, 2014, doi: 10.1109/TPWRS.2013.2278850 | |
dc.relation | V. V. V. S. N. Murty and A. Kumar, “Optimal energy management and techno-economic analysis in microgrid with hybrid renewable energy sources,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 5, pp. 929–940, 2020, doi: 10.35833/MPCE.2020.000273 | |
dc.relation | B. Wang, C. Zhang, and Z. Y. Dong, “Interval Optimization Based Coordination of Demand Response and Battery Energy Storage System Considering SOC Management in a Microgrid,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2922–2931, 2020, doi: 10.1109/TSTE.2020.2982205 | |
dc.relation | C. Huang, H. Zhang, Y. Song, L. Wang, T. Ahmad, and X. Luo, “Demand Response for Industrial Micro-Grid Considering Photovoltaic Power Uncertainty and Battery Operational Cost,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3043–3055, 2021, doi: 10.1109/TSG.2021.3052515 | |
dc.relation | H. Alharbi and K. Bhattacharya, “Stochastic optimal planning of battery energy storage systems for isolated microgrids,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 211–227, 2018, doi: 10.1109/TSTE.2017.2724514 | |
dc.relation | W. Liu, S. Niu, and H. Xu, “Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 2, pp. 177–186, 2017, doi: 10.1007/s40565-016-0197-4 | |
dc.relation | L. F. Grisales, A. Grajales, O. D. Montoya, R. A. Hincapie, M. Granada, and C. A. Castro, “Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach,” IEEE Lat. Am. Trans., vol. 15, no. 6, pp. 1084–1090, 2017, doi: 10.1109/TLA.2017.7932696 | |
dc.relation | S. Ganguly, N. C. Sahoo, and D. Das, “Multi-objective planning of electrical distribution systems using dynamic programming,” Int. J. Electr. Power Energy Syst., vol. 46, pp. 65–78, Mar. 2013, doi: 10.1016/j.ijepes.2012.10.030 | |
dc.relation | A. Alarcon-Rodriguez, G. Ault, and S. Galloway, “Multi-objective planning of distributed energy resources: A review of the state-of-the-art,” Renew. Sustain. Energy Rev., vol. 14, no. 5, pp. 1353–1366, 2010, doi: 10.1016/j.rser.2010.01.006 | |
dc.relation | S. Ganguly, N. C. Sahoo, and D. Das, “Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation,” Fuzzy Sets Syst., vol. 213, pp. 47–73, Feb. 2013, doi: 10.1016/j.fss.2012.07.005 | |
dc.relation | M. Nayeripour, S. Hasanvand, and H. Fallahzadeh-Abarghouei, “Optimal expansion planning of distribution system capacity with respect to distributed generations,” Int. J. Renew. Energy Res., vol. 6, no. 3, pp. 817–824, 2016 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Planificación de redes eléctricas de distribución incluyendo generación distribuida, almacenamiento de energía y gestión de la demanda (DSM Y DR) | |
dc.type | Trabajo de grado - Doctorado | |