dc.contributorRestrepo Parra, Elisabeth
dc.contributorTorres Osorio, Javier Ignacio
dc.contributorPCM Computational Applications
dc.creatorBarrero Moreno, Maria Camila
dc.date.accessioned2020-03-05T19:06:53Z
dc.date.available2020-03-05T19:06:53Z
dc.date.created2020-03-05T19:06:53Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75889
dc.description.abstractEn el presente trabajo se modeló y simuló el transporte iónico a través de la membrana, se asume una célula aislada a la cual se le hace un corte transversal con una altura de 5A. Para desarrollar este trabajo se llevaron a cabo dos etapas, para la realización del modelo empleando métodos estocásticos para describir el transporte iónico a través de la membrana y la implementación del modelo. En la primera parte se consideraron las condiciones de una célula tales como: concentración iónica intracelular y extracelular, dimensiones del radio intracelular y radio celular, cinco especies iónicas K+, Cl-, Na+, Mg2+ y Ca2+ y la condición de que los iones deben estar altamente diluidos en el medio extracelular y en el medio intracelular. En la segunda parte, se incluyó el efecto del campo magnético en el modelo para determinar el efecto que tiene en el transporte iónico en la célula. Para generar el campo magnético al cual se sometió la célula se consideró una configuración de dos placas puestas cara a cara, generando gradientes magnéticos intensos. Para implementar el método Monte Carlo se desarrolló un hamiltoniano que incluye las contribuciones de la energía debido al campo eléctrico, la interacción entre los iones, la fuerza de rozamiento que se genera al mover el ión en el medio y la contribución que se produce al someter una célula a un campo magnético. La exposición de la célula a un gradiente magnético generó aumento en la concentración intracelular de los iones con un gradiente magnético de Gi = 30 Tm-1. Un aumento en la concentración intracelular provocó aumentos en el potencial de membrana, la corriente iónica y la presión osmótica. Adicionalmente, se encontró una relación lineal entre la corriente iónica y el potencial de membrana que corresponde a la ley de Ohm. Se encontró que los los iones que más afectan el comportamiento del potencial de membrana son K+, Cl- y Mg2+. De acuerdo al diagrama de fase entre el potencial de membrana y el gradiente magnético se obtuvo un acople entre la energía debida a la exposición al campo magnético y el potencial de membrana. Finalmente, se realizó una validación del modelo, usando el algoritmo de Gillespie obteniendo variaciones hasta del 3 % en el potencial de membrana. (Texto tomado de la fuente)
dc.description.abstractIn the present work, the ionic transport through the membrane was modeled and simulated, it starts from an isolated cell with a cross section with a height of 5A. To develop this work, two stages were carried out, for the realization of the model using stochastic methods to describe the ionic transport through the membrane and the implementation of the model. In the first part the conditions of a cell were considered such as: intracellular and extracellular ionic concentration, intracellular radius and cell radius dimensions, five ionic species K+, Na+, Cl-, Mg2+and Ca2+, and the condition that ions must be highly diluted in the extracellular medium and in the intracellular medium. In the second part, the effect of the magnetic field was included in the model to determine the effect it has on ionic transport in the cell. To generate the magnetic field to which the cell was subjected, a configuration of two plates placed face to face was considered, generating high magnetic field gradient (HGMF). To implement the Monte Carlo method, a Hamiltonian was developed that includes the contributions of energy due to the electric field, the interaction between the ions, the friction force that is generated when the ion moves in the medium and the contribution that is produced when subjecting a cell to a magnetic field. Exposure of the cell to a magnetic gradient generates an increase in the intracellular concentration of ions with a magnetic gradient of Gi = 30 Tm-1. An increase in intracellular concentration causes increases in membrane potential, ionic current and osmotic pressure. Additionally, a linear relationship was found between the ionic current and the membrane potential corresponding to Ohm's law. The ions that most affect the behavior of the membrane potential were found to be K+, Cl- and Mg2+. According to the phase diagram between the membrane potential and the magnetic gradient, a coupling between the energy due to exposure to the magnetic field and the membrane potential was obtained. Finally, a validation of the model was carried out, using the Gillespie algorithm obtaining variations up to 3 % in the membrane potential.
dc.languagespa
dc.publisherDepartamento de Física y Química
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relation[1] Bruce. Alberts and Silvia Cwi. Introducción a la biología celular. Médica Panamericana, 2005.
dc.relation[2] Rosalind Allen, Jean-Pierre Hansen, and Simone Melchionna. Electrostatic potential inside ionic solutions confined by dielectrics: a variational approach. Physical Chemistry Chemical Physics, 3(19):4177–4186, jan 2001.
dc.relation[3] O S Andersen. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophysical journal, 41(2):119–33, feb 1983.
dc.relation[4] Camilo Andrés Aponte, José Muñoz, and Ramon Fayad. Simulacion por dinamica browniana del transporte ionico a traves del canal gramicidina a. Revista de la Sociedad Colombiana de Física, 38(4):1639–1642, 2006.
dc.relation[5] Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, and Silvia Marconi. Monte Carlo study of gating and selection in potassium channels. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(2):1–13, 2011.
dc.relation[6] Johan Aqvist and Victor Luzhkov. Ion permeation mechanism of the potassium channel. Nature, 404(6780):881–884, apr 2000.
dc.relation[7] Teresa. Audesirk, Gerald Audesirk, and Bruce E. Byers. Biología : la vida en la tierra. Pearson Educación, 2003.
dc.relation[8] M. J. Azanza, B. H. Blott, A. del Moral, and M. T. Peg. Measurement of the red blood cell membrane magnetic susceptibility. Bioelectrochemistry and Bioenergetics, 30(C):43–53, 1993.
dc.relation[9] V. Barcilon, D-P. Chen, and R.S. Eisenberg. Ion flow through narrow membrane channels: Part II. Society for Industrial and Applied Mathematics, 52(5):1405–1425, 1992.
dc.relation[10] Jeremy M. (Jeremy Mark) Berg, John L. Tymoczko, and Lubert. Stryer. Bioquímica. Reverté, 2008.
dc.relation[11] RGS Bidwell. Plant Physiology. page 1338, 1979.
dc.relation[12] Dezso Boda, David D. Busath, Bob Eisenberg, Douglas Henderson, and Wolfgang Nonner. Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition. Physical Chemistry Chemical Physics, 4(20):5154–5160, 2002.
dc.relation[13] Dezso Boda. Monte carlo simulation of electrolyte solutions in biology: In and out of equilibrium, volume 10. Elsevier B.V., 1 edition, 2014.
dc.relation[14] Dezso Boda, Dirk Gillespie, Wolfgang Nonner, Douglas Henderson, and Bob Eisenberg. Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 69(4):10, 2004.
dc.relation[15] Dezsö Boda, Tibor Varga, Douglas Henderson, David D. Busath, Wolfgang Nonner, Dirk Gillespie, and Bob Eisenberg. Monte Carlo simulation study of a system With a dielectric boundary: Application to calcium channel selectivity. Molecular Simulation, 30(2-3):89–96, 2004.
dc.relation[16] Neil A. Campbell and Jane B. Reece. Biology. Pearson, Benjamin Cummings, 2005.
dc.relation[17] Cheng Chang Chen, Chunlei Cang, Stefanie Fenske, Elisabeth Butz, Yu Kai Chao, Martin Biel, Dejian Ren, Christian Wahl-Schott, and Christian Grimm. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nature Protocols, 12(8):1639–1658, 2017.
dc.relation[18] Duan Chen and Guowei Wei. A Review of Mathematical Modeling, Simulation and Analysis of Membrane Channel Charge Transport. sep 2016.
dc.relation[19] Om P. Choudhary, Rachna Ujwal, William Kowallis, Rob Coalson, Jeff Abramson, and Michael Grabe. The Electrostatics of VDAC: Implications for Selectivity and Gating. Journal of Molecular Biology, 396(3):580–592, feb 2010.
dc.relation[20] Geoffrey M. Cooper. The cell : a molecular approach. ASM Press, 2000.
dc.relation[21] José M.Ferrero Corral. Biolectronica Señales Bioelectricas, volume 1. 1994.
dc.relation[22] Helena. Curtis, N. Sue. Barnes, Adriana. Schnek, and Graciela. Flores. Biología. Editorial Médica Panamericana, 2000.
dc.relation[23] Robson Rodrigues da Silva, Daniel Gustavo Goroso, Donald M. Bers, and José Luis Puglisi. MarkoLAB: A simulator to study ionic channel’s stochastic behavior. Computers in Biology and Medicine, 87(May):258–270, 2017.
dc.relation[24] David P. Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics, Third Edition. CAMBRIDGE UNIVERSITY PRESS, third edition, 2009.
dc.relation[25] G.A. Eiceman, Z. Karpas, Herbert H. Hill, and Jr. Ion Mobility Spectrometry, Third Edition. 2013.
dc.relation[26] Bob Eisenberg, Yunkyong Hyon, and Chun Liu. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. The Journal of chemical physics, 133(10):104104, sep 2010.
dc.relation[27] Serafin Fraga and S.H.M Nilar. Theoretical simulation of ionic transport through a transmembrane channel. (2):1–4, 1983.
dc.relation[28] Razif R Gabdoulline and Rebecca C Wade. METHODS: A Companion to Methods in Brownian Dynamics Simulation of Protein–Protein Diffusional Encounter. Enzymology, 14:329–341, 1998.
dc.relation[29] Paul Galland and Alexander Pazur. Magnetoreception in plants. Journal of Plant Research, 118(6):371–389, 2005.
dc.relation[30] M. Geisler, B. Wang, and J. Zhu. Auxin transport during root gravitropism: transporters and techniques. Plant Biology, 16:50–57, jan 2014.
dc.relation[31] Robert E. Hausman Geoffrey M. Cooper. La célula. 2009.
dc.relation[32] Dirk Gillespie, Le Xu, Ying Wang, and Gerhard Meissner. (De)constructing the ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel. Journal of Physical Chemistry B, 109(32):15598–15610, 2005.
dc.relation[33] Astrid Gjelstad, Knut Einar Rasmussen, and Stig Pedersen-Bjergaard. Simulation of flux during electro-membrane extraction based on the Nernst–Planck equation. Journal of Chromatography A, 1174:104–111, 2007.
dc.relation[34] R. Glaser. Biophysics (4th edition), 2001.
dc.relation[35] J Gomulkiewicz, J Miekisz, and S Miekisz. Ion transport through cell membrane channels. Arxiv preprint arXiv:0706.0683, pages 1–21, 2007.
dc.relation[36] Peter Graf, Maria G Kurnikova, Rob D Coalson, and Abraham Nitzan. Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self- Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels.2003.
dc.relation[37] Ofelia. Grajales Muñiz. Apuntes de bioquímica vegetal : bases para su aplicación fisiológica. Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlan, 2005.
dc.relation[38] Eduard Alexis Hincapie, Javier Torres Osorio, Ingeniero Electricista, and M Sc. Efecto Del Campo Magnético Sobre La Germinación De La Leucaena Leucocephala. Scientia Et Technica, 16(44):337–341, 2010.
dc.relation[39] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, 1952.
dc.relation[40] Hyonseok Hwang, George C. Schatz, and Mark A. Ratner. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system. The Journal of Chemical Physics, 127(2):024706, jul 2007.
dc.relation[41] W. Im and B. Roux. Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry. Journal of Chemical Physics, 115(10):4850–4861, 2001.
dc.relation[42] Wonpil Im, Stefan Seefeld, and Benoît Roux. A Grand Canonical Monte Carlo– Brownian Dynamics Algorithm for Simulating Ion Channels. Biophysical Journal, 79(2):788–801, aug 2000.
dc.relation[43] Janhavi Giri. Study of Selectivity and Permeation in Voltage-Gated Ion Channels.
dc.relation[44] José M. Ferrero Corral. Bioelectronica Señales Bioelectricas. 1994.
dc.relation[45] Jovan Kamcev, Rahul Sujanani, Eui-Soung Jang, Ni Yan, Neil Moe, Donald R. Paul, and Benny D. Freeman. Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 547:123–133, feb 2018.
dc.relation[46] Gerald Karp. Biología Celular y Molecular Conceptos y Experimentos. 2009.
dc.relation[47] Kenneth Stewart Cole. Membranes, ions, and impulses. 1968.
dc.relation[48] Kyösti. Kontturi, Lasse. Murtomäki, and José A. Manzanares. Ionic transport processes : in electrochemistry and membrane science. Oxford University Press, 2008.
dc.relation[49] P Langevin. The theory of Brownian movement. CR Acad. Sci, 146(1908):530, 1908.
dc.relation[50] Ramón Latorre. Biofísica y fisiología celular. Universidad de Sevilla, 1996.
dc.relation[51] Jonathan Lombard. Once upon a time the cell membranes: 175 years of cell boundary research. Biology direct, 9:32, 2014.
dc.relation[52] Benzhuo Lu and Y.C. Zhou. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates. Biophysical Journal, 100(10):2475–2485, may 2011.
dc.relation[53] Massimo E. Maffei. Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 5(September):1–15, 2014.
dc.relation[54] C Maffeo, S Bhattacharya, J Yoo, D Wells, and a Aksimentiev. Modeling and simulation of ion channels. Chem Rev, 112(12):6250–6284, 2012.
dc.relation[55] Artem B Mamonov, Maria G Kurnikova, and Rob D Coalson. Diffusion constant of K+ inside Gramicidin A: a comparative study of four computational methods. Biophysical chemistry, 124(3):268–78, dec 2006.
dc.relation[56] Mauricio Carrillo Tripp. Selectividad ionica de canales biologicos. Simulaciones numuericas de sistemas simplificados usando potenciales refinado. PhD thesis, 2004.
dc.relation[57] C Millar, A Asenov, and S Roy. Brownian Ionic Channel Simulation. pages 257–262, 2003. [58] Julián. Monge-Nájera, Patricia. Gómez Figueroa, Marta. Rivas Rossi, and Universidad Estatal a Distancia (Costa Rica). Editorial. Biología general. EUNED, 2002.
dc.relation[59] Benjamin J. Morgan. Lattice-geometry effects in garnet solid electrolytes: A lattice-gas monte carlo simulation study. Royal Society Open Science, 4(11), nov 2017.
dc.relation[60] Fa Morrison. Data correlation for drag coefficient for sphere. Michigan Technology University, Houghton, MI, 6(April):1–2, 2010.
dc.relation[61] A. A. Moya. A Nernst-Planck analysis on the contributions of the ionic transport in permeable ion-exchange membranes to the open circuit voltage and the membrane resistance in reverse electrodialysis stacks. Electrochimica Acta, 238:134–141, 2017.
dc.relation[62] Minal P. Mujumdar. Monte Carlo simulations of ionic channel selectivity. Bioinformatics, 7(3):359–364, 1991.
dc.relation[63] Peter Hugo Nelson. A permeation theory for single-file ion channels: One- and two-step models. Journal of Chemical Physics, 134(16):1–14, 2011.
dc.relation[64] Philip. Nelson, Marko. Radosavljevic, and Sarina. Bromberg. Física biológica. Editorial Reverté, 2005.
dc.relation[65] The Nernst and Equilibrium Potential. 2.6 The Membrane Potential. pages 51–57, 1981.
dc.relation[66] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford, 1999.
dc.relation[67] Hiroshi Noguchi and Masako Takasu. Self-assembly of amphiphiles into vesicles: A Brownian dynamics simulation. Physical Review E, 64(4):041913, sep 2001.
dc.relation[68] Scott H Northrup and Stuart Anthony Allison. Brownian Dynamics Simulation of Diffusion-Influenced Bimolecular Reactions MD simulations of organophosphate pesticides with human acetylcholinesterace. View project. Article in The Journal of Chemical Physics, 1984.
dc.relation[69] O Hertwig, M Campbell and H J Campbell. The Cell: Outlines of General Anatomy and Physiology. Macmillan and Co, New York, 1985.
dc.relation[70] Hiroyuki Ozaki, Kentaro Kuratani, and Tetsu Kiyobayashi. Monte-Carlo Simulation of the Ionic Transport of Electrolyte Solutions at High Concentrations Based on the Pseudo-Lattice Model. Journal of The Electrochemical Society, 163(7):H576–H583, 2016.
dc.relation[71] Antonio. Peña. Las membranas de las células. FCE - Fondo de Cultura Económica,2010.
dc.relation[72] Jing Peng and Thomas A. Zawodzinski. Ion transport in phase-separated single ion conductors. Journal of Membrane Science, 555:38–44, jun 2018.
dc.relation[73] Patricio Ramirez, Vicente Gomez, Mubarak Ali, Wolfgang Ensinger, and Salvador Mafe. Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31:137–140, jun 2013.
dc.relation[74] Francisco Garc?a Reina and Luis Arza Pascual. Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22(8):589–595, dec 2001.
dc.relation[75] Pablo Marcelo Rodi. Estructura y función de dominios lípidicos de biomembranas. PhD thesis, Universidad Nacional de Litoral, 2010.
dc.relation[76] BenoÎt Roux. Computational Studies of the Gramicidin Channel. Accounts of Chemical Research, 35(6):366–375, jun 2002.
dc.relation[77] Benoît Roux, Toby Allen, Simon Bernèche, and Wonpil Im. Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics, 37(1):15–103, 2004.
dc.relation[78] S. J. Singer and Garth L. Nicolson. The Fluid Mosaic Model of the Structure of Cell Membranes. 1972.
dc.relation[79] Subin Sahu and Michael Zwolak. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. Nanoscale, 1(2), 2017.
dc.relation[80] V N Samofalov, D P Belozorov, and A G Ravlik. Strong stray fields in systems of giant magnetic anisotropy magnets. 269.
dc.relation[81] Olga N. Samoylova, Emvia I. Calixte, and Kevin L. Shuford. Molecular Dynamics Simulations of Ion Transport in Carbon Nanotube Channels. The Journal of Physical Chemistry C, 119(4):1659–1666, jan 2015.
dc.relation[82] a a Shvartsburg. Differential Ion Mobility Spectrometry. 2008.
dc.relation[83] Randall Q. Snurr, Alexis T. Bell, and Doros N. Theodorou. Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions. The Journal of Physical Chemistry, 97(51):13742–13752, dec 1993.
dc.relation[84] A. Socorro and F. García. Simulation of magnetic field effect on a seed embryo cell. International Agrophysics, 26(2):167–173, 2012.
dc.relation[85] Chen Song and Ben Corry. Testing the applicability of Nernst-Planck theory in ion channels: Comparisons with brownian dynamics simulations. PLoS ONE, 6(6), 2011.
dc.relation[86] B C Stange, R E Rowland, B I Rapley, and J V Podd. ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics, 23(5):347–54, jul 2002.
dc.relation[87] P.C. Stangeby, C.Farrell, S.Hoskins, and L.Wood. Monte Carlo modelling of impurity ion transport for a limiter source/sink. Nuclear Fusion, 1998.
dc.relation[88] John T. Stock and Mary Virginia Orna, editors. Electrochemistry, Past and Present, volume 390 of ACS Symposium Series. American Chemical Society, Washington, DC, jan 1989.
dc.relation[89] J. Torres, E. Hincapie, and F. Gilart. Characterization of magnetic flux density in passive sources used in magnetic stimulation. Journal of Magnetism and Magnetic Materials, 449:366–371, 2018.
dc.relation[90] Javier I. Torres-Osorio, Jainer E. Aranzazu-Osorio, and María V. Carbonell- Padrino. Efecto del campo magnético estático homogéneo en la germinación y absorción de agua en semillas de soja. TecnoLógicas, 18(35):11, 2015.
dc.relation[91] Shoogo Ueno and Tsukasa Shigemitsu. Biological effects of static magnetic fields. 2006.
dc.relation[92] Christian L. Vestergaard and Mathieu Génois. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks. PLoS Computational Biology, 11(10):1–28, 2015.
dc.relation[93] Mikhail Vladimirovich Volkenstein. General Biophysics 1, volume I. 1983.
dc.relation[94] Christian A. Yates and Guido Klingbeil. Recycling random numbers in the stochastic simulation algorithm. Journal of Chemical Physics, 138(9):24–29, 2013.
dc.relation[95] Vitalii Zablotskii, Tatyana Polyakova, and Alexandr Dejneka. Cells in the Non-Uniform Magnetic World: How Cells Respond to High-Gradient Magnetic Fields. BioEssays, 40(8):1–10, 2018.
dc.relation[96] Vitalii Zablotskii, Tatyana Polyakova, Oleg Lunov, and Alexandr Dejneka. How a High-Gradient Magnetic Field Could Affect Cell Life. Scientific Reports, 6(November):1–13, 2016.
dc.relation[97] Hristina R. Zhekova, Van Ngo, Mauricio Chagas da Silva, Dennis Salahub, and Sergei Noskov. Selective ion binding and transport by membrane proteins – A computational perspective. Coordination Chemistry Reviews, 345:108–136, aug 2017.
dc.relation[98] Zhong Zou, Noel A. Clark, and Mark A. Handschy. Ionic transport effects in ssflc cells. Ferroelectrics, 121(1):147–158, 1991.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleModelamiento y simulación del transporte iónico transmembrana en células por métodos estocásticos
dc.typeOtro


Este ítem pertenece a la siguiente institución