dc.contributorGuerrero Díaz, Javier
dc.creatorCastrillón Peña, Andrés
dc.date.accessioned2021-02-03T18:06:42Z
dc.date.available2021-02-03T18:06:42Z
dc.date.created2021-02-03T18:06:42Z
dc.date.issued2019-09-23
dc.identifierCastrillón A. (2019). Carbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos. Thesis Doctoral. Universidad Nacional de Colombia. 213p.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79059
dc.description.abstractLa mineralogía, difractometría de rayos X y los valores disminuidos de isotópos de δ13C y δ18O de las arcillas y carbonatos que conforman el sustrato fosilífero en una parte del Pit-1 de Cerro Matoso-CM, indican que los filosilicatos y la siderita precipitaron en ambientes oceánicos. El carácter autigénico de los filosilicatos y las temperaturas registradas por estos y la siderita diagenética, permiten reportar la primera comunidad de ventilas hidrotermales en Colombia. Esta comunidad fósil, compuesta de gusanos siboglinidae, bivalvos y gasterópodos, entre otros, hace parte de una sucesión de sedimentos marinos que sobreyacen localmente las peridotitas de CM. Con estos resultados se propone un modelo más preciso para el desarrollo del depósito laterítico de níquel en CM, que incluye la influencia de un sistema hidrotermal Tipo II (Kelley & Shank, 2010), que se hospedó en las rocas ultramáficas cuando se exhumaron en el fondo oceánico, a través de fallas de transformación, formando lo que sería un oceanic core complex -OCC en la antigua dorsal meso-oceánica del Pacífico. Los sedimentos marinos, conformaron un perfil laterítico atípico en el Pit-1, que contenía las mayores concentraciones de níquel en el yacimiento (>8%). Al sur de la mina o Pit-2, las peridotitas desarrollaron, producto de la meteorización, un perfil laterítico típico, con concentraciones de níquel que no exceden el 4%. Filosilicatos de Fe (greenalita, berthierina, nontronita) y siderita, reconocidos en sección delgada e identificados por medio de XRD estándar, XRF y BSE-EDX, constituyen las principales asociaciones minerales en la sucesión de sedimentos en CM. Estos se distinguen en: sedimentos hidrotermales, conformados de base a tope por las facies: lodolitas fisuradas y brechadas (fb-M), arcillolitas fosilíferas verdes (gf-C) con abundantes concreciones de siderita (sC) y arcillolitas oxidadas cafés (bo-C). Lateralmente adyacentes o sobreyaciendo esta sucesión, se encuentran sedimentos metalíferos, conformados de base a tope por las facies: lodolitas conglomeráticas negras, con sus dos variedades (BCM I & BCM II), las cuales contienen intraclastos rojos y verdes bien cementados (gr-CC), además, fósiles y fragmentos serpentinizados de peridotitas; sobre estas rocas se encuentra a facies de arcillolitas rojas (RC) y la facies de arcillolitas naranjas con láminas de hierro (oil-C). Berthierina, greenalita, nontronita, goethita, y nimita se consideran de origen autigénico y de acuerdo con el Full Width at Half Maximum -FWMH, reflejan un alto grado de madurez ¨alta cristalinidad¨ asociados a temperaturas elevadas durante su precipitación. Debido a la influencia de la temperatura, siderita y magnetita tendrían un origen biogénico, en la que participan bacterias termófilas (>45°C) reductoras de hierro, que son usuales en los sistemas hidrotermales. Las condiciones propicias para la precipitación de los sedimentos marinos en CM, se dió en ambientes reductores, alcalinos, ricos en Fe y a temperaturas entre 20o y 160o C. Los valores disminuidos de δ13C (-27.1 to -5.57‰) y δ18O (-11.01‰ to -1.88‰), tienen la firma isotópica del metano - CH4 del sistema hidrotermal del que provienen, y están relacionados a eventos de oxidación de metano y/o una mezcla de CH4 con carbón inorgánico disuelto -DIC en el fondo del mar, los cuales favorecen el crecimiento de filosilicatos y carbonatos de Fe. La relación de dependencia del fraccionamiento de δ18O con la temperatura, descrita por Zhang et al. (2001) en la ecuación: 103 lnsid-wt = 2.56 * 106 T-2 (K) +1.69, proporciona una buena correlación lineal en los datos obtenidos en los sedimentos marinos de CM. Anomalías positivas de Eu y negativas de Ce en la facies lodolitas conglomeráticas negras, indican un origen asociado a la precipitación de plumas hidrotermales y registran la firma de la dilución de estos elementos en el fondo marino. Los procesos de serpentinización de rocas ultramáficas a profundidades abisales, generan cantidaes importantes de H2, que favorecen la síntesis de CH4 mediante la reacción tipo Fischer-Tropsch (FTT) (4H2 + CO2 => CH4 + 2H2O), y generan ambientes geoquímicos propicios para la instalación de comunidades extremófilas, en donde procesos de oxidación anaerobia de metano AOM son realzados por organismos oxidantes y/o reductores de sulfato, que intervienen en los procesos de precipitación mineral. El sistema hidrotermal Tipo II hospedado en las peridotitas de CM, alcanzó temperaturas alrededor de 150°C, en lugar de 300°C, lo que impidió que la energía del sistema fuese suficiente para generar cantidades importantes de sulfuros de Ni, como millerita o eventualmente pentlandita, por lo tanto, su aporte en Ni, es menor, comparado con el níquel encontrado en las particulas orgánicas fracción arcilla, en las arcillas (nimita) y en carbonatos. Una evidencia adicional de sistemas hidrotermales son la listvenitas usualmente infrayaciendo la facies de lodolitas conglomeráticas negras. Las concentaciones adicionales de Ni en CM provienen por lo tanto de los sedimentos metalíferos generados por el sistema hidrotermal Tipo II hospedado en la peridotitas, lo que hizo al depósito de CM especial, al compararlo con las cantidades habituales de níquel, que presentan rocas ultramáficas similares al ser sometidas a procesos de meteorización y lixiviación en condiciones supergénicas. Durante el Cretácico, todo el conjunto de rocas (ultramáficas y sedimentarias), se adosó al continente, para exhumarse finalmente durante la última fase de la Orogenia Andina. Esto expuso las peridotitas y rocas sedimentarias asociadas, al ambiente húmedo tropical, permitiendo que los procesos de enriquecimiento de Ni supergénico, conformaran el perfil de lateritas de CM como se conoce hoy en día, con sus extraordinariamente altos contenidos de Ni.
dc.description.abstractThe mineralogy, X-ray diffractometry and depleted isotope values of δ13C and δ18O of clays and carbonates forming the fossiliferous substrate at Pit-1 of Cerro Matoso -CM, indicate that phyllosilicates and siderite precipitated in oceanic environments. The authigenic phyllosilicates and diagenetic siderite record temperatures that allows to report the first hydrothermal vents community in Colombia. This fossil community, formed by siboglinidae, bivalves and gastropods, among others is part of a succession of marine sediments overlying locally the CM peridotites. With these results, a more precise model is proposed for the genesis of the nickel laterites of CM, which includes the influence of a hydrothermal system Type II (Kelley & Shank, 2010), hosted in the ultramafic rocks when were exhumed in the ocean deep through transformation faults, forming what would be an oceanic core complex -OCC at the ancient mid-oceanic Pacific Ridge. The marine sediments formed an atypical lateritic profile at Pit-1, with the highest concentrations of nickel in the mine (> 8%). To the south of the mine or Pit-2, the peridotites weathered developed a typical lateritic profile with nickel concentrations that do not exceed 4%. Fe_phyllosilicates (greenalite, berthierine, nontronite) and siderite recognized in thin section and identified by XRD, XRF and BSE-EDX, form up the mineral associations in the sedimentary sucession of CM. The sediments are described as: hydrothermal, formed from base to top by the facies: fissured and brecciated mudstone (fb-M), green fossiliferous claystone (gf-C), with abundant siderite (sC) concretions, brown oxidized claystone (bo-C). Laterally adjacent or overlaying this succession, metalliferous sediments are composed from base to top by the facies: black conglomeratic mudstone, with two varieties (BCM I & BCM II), which contain well-cemented red and green intraclasts (gr-CC), together with fossils and serpentinized fragments of peridotites; overlaying these facies, are the facies of red claystone (RC) and orange iron laminated claystone (oil-C). Berthierine, greenalite, nontronite, goethite, nimite, are considered authigenic in origin and according with the Full Width at Half Maximum -FWMH, reflect a high degree of maturity "high crystallinity" associated with high temperatures during their precipitation, due to the participation of thermophilic (> 45 ° C) bacteria that reduce iron, which are common in hydrothermal systems. The favorable conditions for the precipitation of marine sediments in CM, occurred in reducing, alkaline, Fe-rich environments at temperatures between 20o y 160o C. Depleted isotope values of δ13C (-27.1 to -5.57 ‰) and δ18O (-11.01 ‰ to -1.88 ‰), have the CH4 isotopic sign of an ancient hydrothermal system in CM and are related to methane oxidation events and/or a mixed with dissolved inorganic carbon -DIC at the deep sea, which favor the growth of Fe_phyllosilicates and carbonates. The dependence relationship of δ18O fractionation with the temperature described by Zhang et al. (2001) in the equation: 103 lnsid-wt = 2.56 * 106 T-2 (K) +1.69 provides a good linear correlation in the marine sediments of CM. Positive anomalies of Eu and negative of Ce, in the black conglomeratic mudstone facies, indicate an origin associated with the precipitation of hydrothermal plumes, signing the dilution of these elements on the seawater. The serpentinization processes in abyssal ultramafic rocks, produce important amounts of H2, favoring the CH4 synthesis according with Fischer-Tropsch (FTT) (4H2 + CO2 => CH4 + 2H2O) reactions, generating a geochemical environment, appropriated to installation of extremophilic communities, anaerobic oxidants methane -AOM or sulfate reducers organisms, which are involved in the mineral precipitation. The hydrothermal system Type II hosted in the CM peridotites, reach temperatures about 150 ° C instead 300 ° C, that block the necessary energy to generate significant amounts of Ni sulfides such as millerite or eventually pentlandite, therefore, its contribution in Ni is less, compared to the nickel found in organic agglomerates clay fraction, in clays (nimite) and carbonates. An additional evidence of a hydrothermal system are listvenites usually underlaying the black conglomeratic mudstone facies. The additional concentrations of Ni in CM come from the metalliferous sediments generated by hydrothermal system Type II hosted in the peridotites, which made the CM deposit special, when compared to the usual amounts of nickel that present similar ultramafic rocks, when are exposed to weathering and leaching processes under supergenic conditions. During Cretaceous, the whole rocks set (ultramafic and sediments) was accreted to the continent, to finally be exhumed during the last phase of the Andean Orogeny. This exposed the peridotites and associated sedimentary rocks, to the tropical humid environment, allowing the supergene Ni enrichment processes to form the laterite profile of CM as it is known today, with its extraordinarily high Ni content.
dc.languagespa
dc.publisherBogotá - Ciencias - Doctorado en Geociencias
dc.publisherDepartamento de Geociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbuamarah, B.A. (2020). Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia. International Geology Review, V.62, No.5, p.630-648.
dc.relationAharon, P. (1994). Geology and biology of modern an ancient submarine hydrocarbons seep and vents: an introduction. Geo Marine Letter(14), 69-73.
dc.relationAharon, P., Graber, E.R., Roberts, H.H. (1992). Dissolved carbon and δ13C anomalies in the water column caused by hydrocarbon seep on the northwestern Gulf of Mexico slope. Geo-Mar. Lett. 12, 33-40.
dc.relationAhm A. -S. C., Bjerrum, C.J., Blättler, C.L., Swart, P.K., Higgins, J.S. (2018). Quantifying early marine diagenesis in shallow-water carbonate sediments. Geo- chim. Cosmochim. Acta
dc.relationAlperin, M., Reeburgh, W., & Whiticar, M. (1988). Carbon and hydrogen fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles(2), 279-288.
dc.relationAlt, J., Muehlenbachs K, Honnorez, J. (1986). An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504 B. Earth Planet Sci Lett 80:217–229
dc.relationAlt, J., Bach, W., Klein, F., & McCaig, A. (2009). Drillilng in Sepentine Sea. White Paper Serpentine Sea, 23-25.
dc.relationAlt, J., & Shank, W. (1998). Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. Journal Geophys, 9917-9929.
dc.relationAlt, J., & Shanks, W. (2003). Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reacion modeling. Geochim. Cosmochim Acta(67), 641-653.
dc.relationAloisi, G., Wallmann, K., Bollwerk, S., Derkachev, A., Bohrmann, G., & Suess, E. (2004). The effect of dissolved barium on biogeochemical processes at cold seeps. Geochim. Cosmochim. Acta(68), 1735-1748.
dc.relationAmaral, I. M. (2013). Genesis of the brecciated rocks from Mid-Atlantic Ridge hydrothermal systems: Lucky Strike (37º20´N) and Menez Gwen (37º50´N). Universidad de Lisboa.
dc.relationAnderson, T., & Arthur, M. (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. En M. In: Arthur, T. Anderson, I. Kaplan, J. Veizer, & L. (. Land, Stable Isotopes in Sedimentary Geology. Soc. Econ. Paleont. Min., Short Course (Vol. No 10). Dallas.
dc.relationAsh, C., & Arksey, R. (1990-1991). The listwaenites-lode gold association in British Columbia. Geological Fieldwork.
dc.relationÁrnason, B., Fontes, J.Ch., Fritz, P., Gat, J.R., Gonfiantini, R., Margaritz, M., Panichi, C., Payne, B.R & Yurtsever, Y (1981). Stable Isotope Hydrology, Deuterium and Oxygen-18 in the water cycle, Technical Report Series No.210. International Atomic Energy Agency Vienna.
dc.relationAydal, D. (1989). Gold-bearing listwanites in Arac Massif, Kastamonu, Turkey. Terra Nova, 2:43-52.
dc.relationAzami, K., Hirano, N., Machida, S., Yasukawa, K., & Kato, Y. (2018). Rare earth elements and yttrium (REY) variability with watr depth in hydrogenetic ferromanganese crust. Chemical Geology(493), 224-233.
dc.relationBach, W., Garrido, J., Paulick, H., Harvey, J., & Rosner, M. (2004). Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15ºN. Geochem. Geophys, Geosys(5).
dc.relationBach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., & Humphris, S. E. (2006). Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15ºN (ODP Leg 209, Site 1274). Geophysical Research Letters, 33, 1-4.
dc.relationBach, W., & Fruh-Green, G. (2010). Alteration of the oceanic lithosphere and implications for seafloor processes. Elements(6), 173-178.
dc.relationBailey, S. (1988). Structures and compositions of other trioctahedral 1:1 phyllosilicates. En S. Bailey, Hydrous Phyllosilicates (Exclusive of Micas) (Vol. 19, págs. 169-188). Rev Mineral.
dc.relationBailey, S. (1988a). Polytypism of 1:1 layer silicates. En S. Bailey, Hydrous Phyllosilicates (Exclusive of Micas) (págs. 9-27). Washington, DC: Mineralogial Society of America.
dc.relationBanerjee, N.R., Simonetti, A., Furnes, H., Muehlenbachs, K., Staudigel, H., Heaman, L., Van Kranendork, M.J. (2007). Geology 2007, 35, 487.
dc.relationBarnes, I., O’Neil, J.R., Rapp, J.B., White, D.E., (1973). Silica- carbonate alteration of serpentine: wall rock alterations in mercury deposits of the California Coast Ranges. Econ. Geol. 68, 388–398.
dc.relationBates, R., & Jackson, J. (1987). Glossary of Geology (Vol. Third Ed.). Alexandria, VA, USA: American Geological Institute.
dc.relationBatuev, B., Krotov, A., Markov, V., Cherkashev, G., Krasnov, S., & Lisitzin, Y. (1994). Massive sulfide deposits discovered at 14ºN45´, Mid-Atlantic Ridge. Bridge Newsletter(6), 6-10.
dc.relationBau, M. & Möller, P. (1992). Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral. Petrol. 45, 231–246.
dc.relationBau, M., Koschinsky, A., Dulski, P., & Hein, J. (1996). Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanum between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta, 60(10), 1709-1725.
dc.relationBau, M., Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37–55.
dc.relationBau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 63, 67–77.
dc.relationBazylinski, D., Frankel, R., & Jannasch, H. (1988). Milimeter-scale variations of stable isotope abundances in carbonates from Banden Iron-Formation in the Hamersley Group of Western Australia. Economic Geology(80), 270-282.
dc.relationBeauchamp, B., & von Bitter, P. (eds., 1992): Chemosynthesis: geological processes and products. – Palaios, 7, 337-484 (with papers on modern and ancient chemosynthetic carbonates)
dc.relationBecker, R., & Clayton, R. (1976). Oxygen isotope study of a Precambrian banden iron-formation, Hamersley, Western Australia. Geochim. Cosmochim Acta(40), 1153-1165.
dc.relationBell, P., Mills, A., & Herman, J. (1987). Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Appl. Environ. Microbiol(53), 2610-2616.
dc.relationBerndt, M., Allen, D., & Seyfried, W. (1996). Reduction of CO2 during serpentinization processes and microbial sulfate reduction. Geology(24), 351-354.
dc.relationBeukes, N., & Klein, C. (1990). Geochemistry and sedimentology of a facies transition from microbanded to granular iron formartion in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res, 99-139.
dc.relationBignell, R., Cronan, D., & Tooms, J. (1976). Metal dispersion in the Red Sea as an aid to marine geochemical exploration. Transactions Institution of Mining and Metallurgy Applied Earth Science Series B(85), 274-278.
dc.relationBlackman, D., Cann, J., Jensen, B., & Smith, D. (1998). Origin of extensional core complexes: Evidences from Mid-Atlantic Ridge at Atlantis Fracture Zone. J. Geophys. Res(103), 21315-21333.
dc.relationBlair, N., & Aller, R. (1995). Anaerobic methane oxidation on the Amazon shelf. Geochimica et Cosmochimica Acta(59), 3707-3715.
dc.relationBlakemore, R. (1982). Magnetotactic bacteria. Science(190), 377-379.
dc.relationBrazelton, W., Schrenk, M., Kelley, D., & Baross, J. (2006). Methane and sulfur metabolizing microbial communities dominate in the Lost City Hydrothermal vent ecosystem. Applied and Environmental Microbiology, 72(6), 257-270.
dc.relationBrindley, G. (1982). Chemical compositions of berthierines: a review. Clays Clay Minerals(30), 153-155.
dc.relationBoetius, A., Ravenschlag, K., Scubert, C., Rickert, D., Widdel, F., Gieseke, A., . . . Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature(407), 623-626.
dc.relationBogdanov, Y. A., Sagalevitch, A. M., Chernyaev, E. S., Ashadze, A. M., Gurvich, E. G., Lukashin, V. N., Ivanov, G. V.,& Peresypkin, V. N. (1995). Hydrothermal field at 14°45′N on the Mid‐Atlantic Ridge, Dokl. Akad. Nauk, 343, 353–357.
dc.relationBohrmann, G., Greinert, J., Suess, E., & Torres, M. (1998). Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Chem. Geol(26), 647-650.
dc.relationBorowski, W., Paull, C., & Ussler III, W. (1997). Carbon cycling within the upper methanogenic zone of continental rise sediments: an example from methane-rich sediments overlaying the Blake Ridge gas hydrate deposits. Marine Chemistry(57), 299-311.
dc.relationBorowski, W., Paull, C., & Ussler III, W. (1999). Global and local variations of intersititial sulfate gradients in deep-water, continental margins sediments: senitivity to underlaying methane and gas hydrates. Marine Geology(159), 131-154.
dc.relationBöstrom, K. (1973). The origin and fate of ferromanganoan active ridge sediments. Stockh. Contrib. Geol.(27), 149-243.
dc.relationBöstrom, K., & Peterson, M. (1969). The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar. Geol.(7), 427-447.
dc.relationBrazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. (2006). Methane and sulfur-metabolizing microbial communities dominate in the Lost City hydrothermal field ecosystem, Appl. Environ. Microbiol., 72, 6257–6270.
dc.relationBrooks, J. M., Kennicutt II, M. C., Fay, R. R., McDonald, T. J. and Sassen, R. (1984). Thermogenic gas hydrates in the Gulf of Mexico, Science, 226, 965–967.
dc.relationBucher, K., & Stober, I. (2019). Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, V.30, No.6, p.1084-1094.
dc.relationBuisson, G., & Leblanc, M. (1987). Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology(82), 2092-2097.
dc.relationCampbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology(232), 362-407.
dc.relationCampbell, B., Engel, A., Porter, M., & Takai, K. (2006). The versatile e-proteobacteria: Key players and sulphidic habitas. Nature Reviews Microbiology, 4, 458-468.
dc.relationCanet, C., Anadón, P., Alfonso, P., Prol-Ledesma, R., Villanueva-Estrada, R., & García-Vallès, M. (2013). Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of California. Marine and Petroleum Geology(43), 147-165.
dc.relationCarothers, W., Adami, L., & Rosenbauer, R. (1988). Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim. Cosmochim Acta(52), 2445-2450.
dc.relationCastrillon, A., & Cramer, T. (2013). Carbonatos autigénicos y depósitos hidrotermales en las lateritas niquelíferas de Cerro Matoso. XIV Congreso Colombiano de Geologia, (p. 361). Bogotá.
dc.relationCastrillon, A. (2012). Determinacion de las estructuras tubulares presentes en el Pit 6 en el depósito laterítico de níquel de Cerro Matoso. Tesis Maestria. Univeridad Nacional de Colombia.
dc.relationCastrillón et al., (2010) Informe de GeologÍa, resultados análisis campañas de perforación áreas ¨brownfield¨. Unidad de Exploración. Cerro Matoso S.A.
dc.relationCampbell, A., Palmer, M., Klinkhammer, G., Bowers, T., Edmond, J., Lawrence, J. C., . . . Karson, J. (1988). Chemistry of hot springs on the Mid-Atlantic Ridge. Nature, 335(6190), 514-519.
dc.relationCampbell, K. (1992). Recognition of a Mio-Pliocene cold seep setting from the northeast Pacific convergetn margin. Palaios(7), 422-433.
dc.relationCampbell, K., & Bottjer, D. (1993). Fossil cold seeps (Jurassic-Pliocene) along the convergent margin of western North America. National Geographic Research and Exploration(9), 326-434.
dc.relationCampbell, A. R. & Larson, P. B. (1998). Introduction to stable isotope applications in hydrothermal systems. In Techniques in Hydrothermal Ore Deposits Geology (eds. J. P. Richards and A. R. Larson). Society of Economic Geologists, Littleton.
dc.relationCampbell, B. J., Engel A. S., Porter M. L. & Takai K. (2006). The versatile e-proteobacteria: key players in sulfidic habitats. Nature Reviews Microbiology 4, 458–468.
dc.relationCavagna, S., Clari, P., & Martire, L. (1999). The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology, 126, 253-270.
dc.relationChacko, T., Mayeda, T., Clayton, R., & Goldsmith, J. (1991). Oxygen and carbon isotope fractionation between CO2 and calcite. Geochim. Cosmochim Acta(55), 2867-2882.
dc.relationClaypool, G., & Kaplan, I. (1974). The origin and distribution of methane in marine sediments. In I. Kaplan (Ed.), Natural Gases in Marine Sediments (pp. 99-139).
dc.relationClaypool, G., Lorenson, T., & Jhonson, C. (2003). Authigenic carbonates, methane generation, and oxidation in continental rise and shelf sediments, ODP Leg 188, Sites 1165 and 1166, offshore Antarctica (Prydz Bay). En A. Cooper, P. O´Brien, & C. Richter, Proceedings of the Ocean Drilling Progam Scientific Results (Vol. 188). New York.
dc.relationCoey, J., Ballet, O., Moukarika, A., & Soubeyroux, J. (1981). Magnetic properties of sheet silicates: 1:1 layer minerals. Phys. Chem. Miner.(7), 141-148.
dc.relationColeman, R. (1971). Petrologic and Geophysical nature of serpentinites. Soc. Am. Bull.(82), 897-917.
dc.relationColeman, R. (1977). Ophiolites: ancient oceanic lithosphere? New York: Springer-Verlag.
dc.relationColeman, M., & Raiswell, R. (1993). Microbial mineralization of organic matter: Mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals. Phil. Trans. R. Soc. Lond(A344), 69-87.
dc.relationCoplen, TB., Kendall, C., Hopple, J. (1983) Comparison of stable isotope reference samples. Nature 302:236–238
dc.relationCorliss, J., Dymond, J., Gordon, L., Edmond, J., Von Herzen, R., Ballard, R., . . . Van Andel, T. (1979). Submarine thernal spriings on the Galápagos Rift. Science(203), 1073-1083.
dc.relationCraig, H. (1965). The measurement of oxygen isotope paletemperatures. Stable Isotopes in Oceanographic Studies and Palaeotemperatures, 3, 1-16.
dc.relationCurtis, C., & Spears, D. (1968). The formation of sedimentary iron minerals. Economic Geology(24), 257-270.
dc.relationCurtis, C. (1985). Clay mineral precipitation and transformation during burial diagenesis. Phil Trans Roy Soc Lond(A315), 91-105.
dc.relationCurtis, C., Coleman, M., & Love, L. (1986). Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite. Geochim. Cosmichim Acta(50), 2321-2334.
dc.relationChang, S., & Kirschvink, J. (1989). Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann. Rev. Earth Planet. Sci(17), 169-195.
dc.relationCharlou, J., Fouquet, Y., Bougault, H., Donval, J., Etoubleau, J., Jean-Baptiste, P., . . . Rona, P. (1998). Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15º20´N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta(62), 2323-2333.
dc.relationCharlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P., & Holm, N. (2002). Geochemistry of H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow Hydrothermal Field (36 14´N, MAR). Chem Geol(191), 345-359.
dc.relationCharlou, J. L., Donval, J. P., Konn, C., Ondreas, H., Fouquet,Y., Jean‐Baptiste, P. and Fourre, E. (2010). High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic‐hosted hydrother- mal systems on the Mid‐Atlantic Ridge, in Diversity of Hydrothermal Systems on Slow‐Spreading Ocean Ridges, Geophys. Monogr. Ser., vol. 188, edited by P. Rona et al., AGU, Washington, D. C.
dc.relationChavagnac, V., German, C., Milton, J., & Palmer, M. (2005). Source of REE in sediment cores from the Rainbow vent site (36º14´N, MAR). Chemical Geology(216), 329-352.
dc.relationDaesslé, L., & Cronan, D. (2001). Hydrothermal input in recent sediments proximal to the eastern Lau Spreading Centre, Lau Basin, SW Pacific. Ciencias Marinas, 27(1), 635-659.
dc.relationDamyanov, Z., & Vassileva, M. (2001). Authigenic Phyllosilicates in the Middle Triassic Kremikovtsi Sedimentary Exhalative Siderite Iron Formation, Western Balkan, Bulgaria. Clays & Clay Minerals, 49(6), 559-585.
dc.relationDavies, P. (2001). The origin of the life I: when and where did it began? Scientific Progress(84), 1-16.
dc.relationDekov, V., Petersen, S., Garbe-Schonberg, C.-D., Kamenov, G., Perner, M., Ernó, K., & Mark, S. (2010). Fe-Si-oxihydroxide deposits al slow-spreading centre with thickened oceanic crust: the Lililput hydrothermal field (9 33´S, Mid-Atlantic Ridge). Chemical Geology(278), 186-200.
dc.relationDelacour, A., Fruh-Green, G., & M.Bernasconi, S. (2008). Sulfur mineralogy and geochemistry of serpentinites and gabbro of the Atlantis Massif (IODP Site U1309). Geochimica et Cosmochimica Acta(72), 5111-5127.
dc.relationDelaney, J., Kelley, D., Lilley, M., Butterfield, D., Baross, J., Wilcock, W., . . . Summit, M. 1. (1998). The quantum event of oceanic crustal accretion: Impact of diking at Mid Oceanic Ridges. Science, 281, 222-230.
dc.relationDennis K. J., Affek, H.P., Passey, B.H., Schrag, D.P. & Eiler, J.M. (2011). Defining an absolute reference frame for “clumped” isotope studies of CO2. Geochim. Cosmochim. Acta 75, 7117– 7131.
dc.relationDesbruyères, D., Almeida, A., Biscoito, M., Comtet,T., Khripounoff, A., Le Bris, N., Sarradin, P.M. & Segonzac, M. (2000). A re- view of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: Dispersal vs. environmental controls, Hydrobiologia, 440, 201–216.
dc.relationDiaz del Rio, V., Somoza, L., Martinez-Frías, J., Mata, M., Delgado, A., Hernandez-Molina, F., . . . Vázquez, J. (2003). Vast fields of hydrocarbon-derives carbonate chimneys related to the accretionary wedge/olistostroma of the Gulf of Cádiz. Marine Geology(195), 177-200.
dc.relationDias, À., & Barriga, F. (2006). Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36º34´N; 33º26´W) at MAR. Marine Geology, 225((1-4)), 157-175.
dc.relationDias, Á., Früh-Green, G., Bernasconi, S., & Barriga, F. (2011). Geochemistry and stable isotopes constrains on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Marine Geology(279), 128-140.
dc.relationDick, H., & Schouten, H. (2003). An ultraslow spreading class of ocean ridge. Nature(426), 405-411.
dc.relationDouville, E., Bienvenu, P., Charlou, J., Donval, J., Fouquet, Y., Appriou, P., & Gamo, T. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimi. Cosmochim Acta(63), 627-643.
dc.relationDouville, E., Charlou, J., Oelkers, E., Bienvenu, P., Colon, C., Donval, J., . . . Appriou, P. (2002). The Rainbow vent fluids (26º14`N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Rodge hydrothermal fluids. Chemical Geology, 184(1-2), 37-48.
dc.relationDubinin, A. (2004). Geochemistry of rare earth elements in the ocean. Lithol. Mineral. Resources(39), 289-307.
dc.relationDymond, J., & Roth, S. (1988). Plume dispersed hydrothermal particles: A time-series record of settling flux from the Endeavour Ridge using moored sensors. Geochim. Cosmochim Acta(52), 2525-2536.
dc.relationEagle R. A., Schauble, E. A., Tripati, A. K., Tu ̈tken, T., Hulbert, R. C., & Eiler John, M. (2010). Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. Proc. Nat. Acad. Sci. U.S.A. 107, 10377–10382.
dc.relationEdmond, J., Messures, C., Magnum, B., Grant, B., F.R, S., Coller, R. H., . . . Corliss, J. (1979). On the formation of metal-rich deposits at ridge crests. Earth Planetary Science Letters(46), 19-30.
dc.relationEdmond, J., von Damm, K., McDuff, R., & Mesures, C. (1982). Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature(297), 187-191.
dc.relationEdmonds, H., Michael, P., Baker, E., Connelly, D., Snow, J., Langmuir, C., . . . Graham, D. (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature(421), 252-256.
dc.relationEickmannn, B., Bach, W., & Peckmann, J. (2009a). Authigenesis of carbonate minerals in modern and Devonian ocean floor hard rocks. The Journal of Geology, 117(3), 307-323.
dc.relationEickmann, B., Bach, W., Rosner, M., & Peckmann, J. (2009b). Geochemical constraints on the modes of carbonate precipitation in peridotites from Logatchev Hydrothermal Vent Field and Gakkel Ridge. Chemical Geology, 268(1-2), 97-106.
dc.relationElderfield, H. (1988). The oceanic chemistry of the rare earth elements. Philos. Trans. R. Soc. Lond.(A325), 105-126.
dc.relationEscartín, J., & Cannat, M. (1999). Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen Twenty Fracture Zone (Mid Atlantic Ridge, 14-16.5N). Earth Planter Science Letters(171), 411-424.
dc.relationEvans, B., Hattori, K., & Baronnet, A. (2013). Serpentinite: what, why, where? Elements(9), 99-106.
dc.relationFanale, F., & Cannon, W. (1979). Mars: carbon dioxide adsorption and capillary condensation on clays - Significance for volatile storage and atmospheric history. J. Geophys. Res(84), 8404-8414.
dc.relationFarmer, J. (2000). Hydrothermal Systems: doorways of the early biosphere evolution. GSA Today(10), 1-9.
dc.relationFaure, G., & Mensing, T. (2005). Isotopes Principles and Applications (Third ed.). Wiley Ed.
dc.relationFeely, R., Massoth, G., Trefry, J., Baker, E., Paulson, A., & Lebon, G. (1994). Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge. J. Geophys. Res(97), 4985-5006.
dc.relationFernandez, Alvaro., Tang, J., Rosenheim, B.E. (2014). Siderite ‘clumped’ isotope thermometry: A new paleoclimate proxy for humid continental environments Geochimica et Cosmochimica Acta 126, 411–421
dc.relationFerrel Jr, R., & Aharon, P. (1994). Mineral assemblages ocurring around hydrocarbon vents in the northern Gulf of Mexico. Geo-Marine Letters(14), 74-80.
dc.relationFisher, C., Roberts, H., Cordes, E., & Bernard, B. (2007). Cold Seeps and Associated Communities of the Gulf of Mexico. Oceanography, 20(4), 3-5.
dc.relationFlores, G. E., & Reysenbach, A.-L. (2010). Hydrothermal Environments, Marine. Portland, OR, USA: Porrtland State University.
dc.relationFouquet, Y., et al. (1997). Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N), Eos Trans. AGU, 78, 832.
dc.relationFouquet, Y., G. Cherkashov, J. L. Charlou, H. Ondreas, M. Cannat, N. Bortnikov, S. Silantiev, & Etoubleau, J. (2007). Diversity of ultramafic hosted hydrothermal deposits on the Mid Atlantic Ridge: First submersible studies on Ashadze, Logatchev 2 and Krasnov vent fields during the Serpentine cruise, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract T51F‐03.
dc.relationFrankel, R., Blakemore, R., & Wolfe, R. (1979). Magnetite in freshwater magnetotactic bacteria. Science(203), 1355-1356.
dc.relationFredrickson, J., Zachara, J., Kennedy, D., Dong, H., Onstott, T., Hinman, N., & Li, S.-M. (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta(62), 3239-3257.
dc.relationFroehlich, P., Bender, M., Luedtke, N., Heath, G., & DeVries, T. (1982). The marine phosphorous cycle. American Journal of Science(282), 474-511.
dc.relationFrüh-Green, G., Connolly, J., Plas, A., Kelley, D., & Grobety, B. (2004). Serpentinization of oceanic peridotites: implication for geochemical cycles and biological activity. (W. Wilcock, J. Baross, D. Kelley, E. Delong, & C. Cary, Eds.) Whasington DC: In the subseafloor biosphere at Mid Atlantic Ridge, Geophysycal Monograph Series.
dc.relationFrüh-Green, G., Kelley, D., Bernasconi, S., Karson, J., Ludwig, K., & Butterfield, D. (2003). 30000 years of hydrothermal activity at the Lost City Vent Field. Science(301), 495-498.
dc.relationFry, B. (2008). Stable Isotope Ecology. New York: Springer.
dc.relationFu, Q., Socki, R. A., & Niles, P. B. (2015). Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes. Geochimica et Cosmochimica Acta(154), 1-17.
dc.relationFügel, E. (2010). Microfacies of Carbonate Rocks. New York: Springer.
dc.relationFurnes, H., Muehlenbachs, K., Torsvik, T., Tumyr, O., Shi, L. (2002). Bio-signatures in metabasaltic glass of a Caledonian ophiolite, West Norway. Geol. Mag. 139 (6), 2002, pp. 601–608.
dc.relationGablina, I., Demina, L., Dmitrenko, O., Os´kina, N., Popova, E., Khusid, T., & Shilov, V. (2011). Composition and Secondary Alterations of Microfossils in Sediments of the Ashadze_1 Hydrothermal Field (Tropical Mid_Atlantic Ridge). (P. P. Inc, Ed.) Oceanology, 51(3), 476-490.
dc.relationGaillard C, Rio M, Rolin Y, Roux M (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7:451-465
dc.relationGangas, N., van Wonterghem, J., Moerup, S., & Koch, C. (1985). Magentic bridging in nontronite by intercalated iron. J. Phys. C: Solid State Phys(18), 1011-1015.
dc.relationGaudin, A., Decarreau, A., Noack, Y., Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia . Australian Journal of Earth Sciences (2005) 52, (231 – 241).
dc.relationGebruk, A. V., P. Chevaldonne, T., Shank, R. A., Lutz, & Vrijenhoek, R.C. (2000). Deep-sea hydrothermal vent communities of the Logatchev area (14°45’N, Mid-Atlantic Ridge): Diverse biotopes and high biomass, J. Mar. Biol. Assoc. U. K., 80, 383– 393.
dc.relationGehring, A.U. (1990). Diagenesis of ferriferous phases in the Northampton ironstone in the Cowthick quarry near Corby (England). Geol Mag 127:169-176.
dc.relationGerman, C.R, Holliday, B.P, and Elderfield, H. (1991). Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta 55: 3553–3558.
dc.relationGerman, C., Parson, L., & Mills, R. (1996). Mid-Ocean Ridges and Hydrothermal Activity . En C. Summehayes, & S. Thorpe, Oceanography and Illustrated Guide (págs. 152-164). London, United Kingdom: Manson Publishing.
dc.relationGerman, C. R., et al. (1999). A segment scale study of fluxes through the Rainbow hydrothermal plume, 36°N Mid-Atlan- tic Ridge, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F957– F958.
dc.relationGeske, A., Zorlu, J., Richter, D. K., Buhl, D., Niedermayr, A. and Immenhauser, A. (2012). Impact of diagenesis and low grade metamorphosis on isotope (δ 26Mg, δ 13C, δ 18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem. Geol. 332, 45–64. https://doi.org/ 10.1016/j.chemgeo.2012.09.014.
dc.relationGhosh, P., Adkins, J., Affek, H., Balta, B., Weifu, Guo., Schauble, E. A., Schrag, D. & Eiler John, M. (2006). 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456.
dc.relationGiggenbach, W. (1980). Geothermal gas equilibria. Geochim. Cosmochim. Acta(44), 2021-2032.
dc.relationGleeson, S., Herrington, R., Durango, J., & Velazquez, C. (2004). The Mineralogy and Geochemistry of the Cerro Matoso S.A Ni Laterite Deposit, Montelibano, Córdoba. Economic Geology, 99, 1197-1213.
dc.relationGregory, R., & Taylor, H. (1981). An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for d18O buffering of the oceans by deep (> 5km) seawater-hydrothermal circulation at Mid-Ocean Ridges. J. Geophys. Res(86), 2737-2755.
dc.relationGreinert, J., Bohrmann, G., & Suess, E. (2001). Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of autihigenic lithologies. Geophysical Monograph(124), 99-113.
dc.relationHalls, C., & Zhao, R. (1995). Listwaenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Creggan Baun, Co. Mayo, Republic of Ireland. Mineral Deposita(30), 303-313.
dc.relationHan, X., Suess, E., Sahling, H., & Wallmann, K. (2004). Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. International Journal Earth Science(93), 596-661.
dc.relationHaskin, M., & Haskin, L. (1966). Rare earths in European shales: a redetermination. Science(154), 507-509.
dc.relationHannington, M., Jonasson, I., Herzig, P., & Peterson, S. (1995). Physical and chemical processes of seafloor minealization at Mid-Ocean Ridges. In S. Humphris, R. Zierenberg, L. Mullineaux, & R. Thompson, Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Geophysical Monograph, (Vol. 91, pp. 115-157). American Geophysical Union.
dc.relationHaymon, R., Koski, R., & Sinclair, C. (1984). Fossilss of hydrothermal vent worms from Cretaceous sulfide of the Samail Ophiolite Oman. Science(223), 1407-1409.
dc.relationHarder, H. (1976). Nontronite synthesis at low temperatures. Chemical Geology(18), 169-180.
dc.relationHarder, H. (1978). Synthesis of iron layer silicate minerals under natural conditions. Clay and Clay Minerals, 26(1), 65-72.
dc.relationHekinian, R., Fevrier, M., Bischoff, J., Picot, P., & Shanks, W. (1999). Sulfide Deposits from the East Pacific Rise near 21N. Sicene(207), 1433-1444.
dc.relationHein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J.-K., Lubick, N., (1997). Iron and manganese oxide mineralization in the Paci¢c. In: Nicholson, K., Hein, J.R., Bu«hn, B., Dasgupta, S. (Eds.), Manganese Min- eralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geol. Soc. London Spec. Publ. 119, 123-138.
dc.relationHessler, R. R., & Smithey, W. M. (1983). The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents, in Hydrothermal Processes at Seafloor Spreading Centers, edited by P. A. Rona et al., pp. 735– 770, Plenum, New York.
dc.relationHicks, K., Compton, J., McCracken, S., & Vecsei, A. (1996). Origin of diagenetic carbonate minerals recovered from New Jersey continental slope. En G. Mountain, K. Miller, P. Blum, C. Poag, & D. Twichell, Proceedings of the Ocean Driling Project Scientific Results (Vol. 50, págs. 311-323). College Station, TX.
dc.relationHirth, G., Escartin, J., & Lin, J. (1998). The rheology of the lower oceanic crust: Implications for lithospheric deformation at mid-ocean ridges, in Faulting and Magatism at Mid-Ocean Ridges. En W. Buck, P. Delaney, J. Karson, & Y. Lagabrielle.
dc.relationHoefs, J. (1980). Stable Isopote Geochemistry. Heidelberg: Springel-Verlag.
dc.relationHoefs, J., Sywall, M. (1997). Lithium isotope composition of quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690
dc.relationHoefs, J. (2015). Stable Isotope Geochemistry (Vol. Seventh Edition). Springer.
dc.relationHensen, C., Wallmann, K., Ranero, C., Sahling, H., & Suess, E. (2004). Fluid expulsion related to mud volcanism at Costa Rica continental margin, a window to the subducting slab. Geology, 32(2), 201-204.
dc.relationHongo, Y., Obata, H., Gamo, T., Nakaseama, M., Ishibashi, J., Konno, U., . . . Tsunogai, U. (2007). Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochemical Journal, 41, 1-15.
dc.relationHorita, J., & Berndt, M. (1999). Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science(285), 1055-1057.
dc.relationHorita, J., & Matthews, A. (2005). Introduction to ¨In search of isotope biosignatures¨. Chemical Geology, 218, 1-2.
dc.relationHornibrook, E., & Longstaffe, F. (1996). Berthierine from Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays & Clay Minerals, 44(1), 1-21.
dc.relationHovland, M., Talbot, M., Qvale, H., Olaussen, S., & Aasberg, L. (1987). Methane related carbonate cements in pockmarks of the North Sea. (57), 881-892.
dc.relationIldefonse, B., Rona, P., & Blackmann, D. (2007). Drilling the crust at Mid-Ocean Ridge. An in depth perspective. Oceanography, 20(1), 66-77.
dc.relationImamalipour, A., Karimlou, M., and Hajalilo, B. (2018). Geochemical zonality coefficients in the primary halo of Tavreh mercury prospect, northwestern Iran: implications for exploration of listwaenitic type mercury deposits. Geochemistry: Exploration, Environment, Analysis. V.19, p.347-357.
dc.relationIrwing, H., Curtis, C., & Coleman, M. (1977). Isotopic evidence for source of diagenetic carbonate forms durign burial of organic-rich sediments. Nature(269), 209-213.
dc.relationJakubowicz, M., Dopieralska, J. & Belka, Z. (2015). Tracing the composition and origin of fluids at an ancient hydrocarbon seep (Hollard Mound, Middle Devonian, Morocco): a Nd, REE and stable isotope study. Geochim. Cosmochim. Acta 156, 50–74.
dc.relationJames, H. (1966). Chemistry of the iron-rich sedimentary rocks. US Geol. Surv. Prof. Pap(440W), 1-60.
dc.relationJames, R., Elderfield, H., & Palmer, M. (1995). The chemistry of hydrothermal fluids from the Broken Spur Site, 29ºN Mid-Atlantic Ridge. Geochim. Cosmochim Acta, 59(4), 651-659.
dc.relationJohnson, C., Beard, B., Beukes, N., Klein, C., & O`Leary, J. (2003). Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib. Mineral. Petrol(144), 523-547.
dc.relationJorgensen, B., & Boetius, A. (2007). Feast and famine-microbial life in the deep-sea bed. Focus on Marine Microbiology(5), 770-781.
dc.relationJutras, J., & Geol, P. (2002). Ultramafic nickel-bearing magmas of the Nadaleen river area (106C/3) and associated listwaenites: new exploration targets in Mayo Mining District, Yukon. En D. Emond, & L. Lewis, Exploration and Geological Service Division, Yukon Region, Indian and Northerb Affairs, Canada (págs. 261-266). Alberta: Manson Creek Resources Ltda.
dc.relationKah, L.C. (2000). Depositional δ 18O signatures in Proterozoic dolostones: constraints on seawater chemistry and early diage- nesis. Spec. Publ. SEPM 67, 345–360.
dc.relationKarson, J. A., Früh-Green, G. L., Kelley, D. S., Williams, E. A., Yoerger,D. R., & Jakuba, M. (2006). Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N. Geochem. Geophys. Geosyst., 7, Q06016, doi:10.1029/2005GC001109.
dc.relationKashkai, M., & Allakverdiev, S. (1965). Listwaenites, their origin and classification. (U. G. Survey, Ed.) Baku, Izdat. Akad, Nauk Azerbaidzhanskoi: Translated by Vi-taliano, D.B.
dc.relationKaufman, A., Knoll, A., Semikhatov, M., Grotzinger, J., Jacobsen, S., & Adams, W. (1996). Isotopic chemostratigraphy of Precambrian-Cambrian boundary beds in the Western Anabar Region, North Siberia. Geol. Mag.(133), 509-533.
dc.relationKelemen, P.B. & Matter, J.M., (2008). In situ carbonation of peridotite for CO2 storage: Proc. Nat. Acad. Sci. USA,submitted.
dc.relationKelso, R., Richter, C., & Pariso, J. (1996). Rock magmatic properties, magnetic mineralogy, and paleomanetism of peridotites from Hess Deep. En C. Mèvel, K. Gillis, J. Allan, & P. Meyer, Proceedings of the Ocean Drilling Program Scientific Results (Vol. 147).
dc.relationKelts, K., & McKenzie, J. (1982). Diagenetic dolomite formation in Quaternary anoxic diatomaceous muds of Deep Sea Drilling Project, Leg 64, Gulf of California. En J. Curray, D. Moore, & e. al, Initial Reports Deep Sea Drilling Project (Vol. 64, págs. 553-569). Washington D.C.
dc.relationKelley, D., & Früh-Green, G. (1999). Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope analyses. J. Geophys. Res, 104(B5), 10439-10460.
dc.relationKelley, D., Karson, J., & Blackman, D. (2001). An off axis hydrothermal vent field near the Mid Atlantic Ridge at 30N. Nature(412), 145-148.
dc.relationKelley, D., Karson, J., Fruh-Green, G., Yoerger, D., Shank, T., & Butterfield, D. (2005). A serpentinite hosted ecosystem: The Lost City hydrothermal field. Science(307), 1428-1434.
dc.relationKelley, D., & Shank., T. (2010). Hydrothermal Systems: A Decade of Discovery. In: Slow Spreading Environments in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges Geophysical Monograph Series 188, 369-407.
dc.relationKennicutt, M. C., II, R. A. Burke, I. R. MacDonald, J. M. Brooks, G. J. Denoux, & S. A. Macko (1992). Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance, Chem. Geol., 101, 293–310.
dc.relationKim, S-T., Mucci, A., Taylor, B.E. (2007). Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C. Chem Geol 246:135–146
dc.relationKimberley, M. (1989). Exhalative origins of iron formations. Ore Geology Reviews(5), 13-145.
dc.relationKlein, C., & Beukes, N. (1989). Geochemistry and sedimentology of facies transition from limestone to iron-formation deposition in Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology(84), 1733-1774.
dc.relationKlein, F., Humphris, S. E., Guo, W., Chubotz, F., Schwarzenbach, E. M., & Orsi, W. D. (2015, September 29). Fluid mixing and the deep bisophere of a fossil Lost City-type hydrothermal system at the Iberia Margin. (D. M. Karl, Ed.) PNAS, 112(39), 12036-12041.
dc.relationKlinkhammer, G., Elderfield, H., Edmond, J., & Mitra, A. (1994). Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta, 58(23), 5105-5113.
dc.relationKoc, S & Kadioglu, Y.K. (1996). Mineralogy, geochemistry, and precious metal content of Karacakaya (Yunusemre-Eskisehir) Listeaenites. Ofioliti, 21 (2), 125-130.
dc.relationKonn, C. (2009). Origin of organic compounds in fluids from ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Stockholm, Sweden: US-AB, Stockholm.
dc.relationKuhn, T., Bau, M., Blum, N., Halbach, P. (1998). Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planet. Sci. Lett. 163 (1), 207–220. http://dx.doi.org/10.1016/S0012-821X(98) 00188-5.
dc.relationKulm, L., & Suess, E. (1990). Relationship between carbonate deposits and fluid ventig: Oregon accretionary prism. J. Geophys. Res., B6, 8899-8915.
dc.relationKuznetsov K, et al., (2006). 230 Th∕U dating of massive sulfides from the Logatchev and Rainbow hydrothermal fields (Mid-Atlantic Ridge). Geochronometria 25:51–55.
dc.relationLapierre, H., Bosch, D., Dupuis, V., Polvé, M., Maury, R., Hernandez, J., . . . Sénebier, F. (2000). Multiple plume events in the genesis of the peri-Caribbean Cretaceous oceanic plateau province. Journal of Geophysical Research, 105(B4), 8403-8421.
dc.relationLartaud, F., de Rafélis, Marc., Oliver, G., Krylova E., Dyment, J, et al., (2010).Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36 degrees 13 ´ N: Insight into the biogeography of vent fauna. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 11, pp.Q0AE01. 10.1029/2010GC003079 . hal-00523467
dc.relationLartaud, F., Little, C. T., Rafelis, M. d., Bayon, G., Dyment, J., Ildefonse, B., . . . Le Bris, N. (2011). Fossill evidence for serpentinization fluids fueling chemosynthetic assemblages. (N. H. Sleep, Ed.) PNAS, 108(19), 7698-7703.
dc.relationLavoie, D., & Chi, G. (2010). An Ordovician ¨Lost City¨ - venting serpentinite and life oases on lapetus seafloor. Can. J. Earth Science, 47, 199-207.
dc.relationLawrence, J.R. & Taylor, H. P. Jr. (1972). Hydrogen and oxygen isotope systematics in weathering profiles. Geochimica et Cosmochimica Acta 36, 1377 – 1393.
dc.relationLawrence, J., & Gieskes, J. (1981). Constraints on water transport and alteration in the oceanic crust from isotopic composition of the pore water. J. Geophys. Res(86), 7924-79-34.
dc.relationLawrence, J., & Taviani, M. (1988). Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from Norwegian Sea: methane and hydrogen from the mantle? Geochim Cosmochim Acta(52), 2077-2083.
dc.relationLeblanc, M. (1991). Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. En T. Peters, A. Nicolas, & R. Coleman, Ophiolite Genesis and Evolution of the Oceanic Lithosphere (págs. 231-260). Dordrecht: Kluwer Acad Publ.
dc.relationLein, A., Bogdanova, O., Bogdanov, Y., & Magazina, L. (2007). Mineralogical and Geochemical Features of Authigenic Carbonates on Seeping and Hydrothermal Fields (By the Examples of the Black Sea Refs and the Mounds of the Lost City Field). (I. Pleiades Publishing, Ed.) Oceanology, 47(4), 537-553.
dc.relationLeinfelder, R.R. and Schmid, D.U. (2000). Mesozoic Reefal Thrombolites and Other Microbolites. In Microbial Sediments. Robert E. Riding and Stanley M. Awramik (Eds.) 331p.
dc.relationLewis, J., Draper, G., Proenza, J., Epaillat, J., & Jiménez, J. (2006). Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of their ocurrence, composition, origin, emplacement and Ni-laterite soil formation. Geológica Acta, 4( 1-2), 237-263.
dc.relationLithospheric stretching and hydrothermal precesses in oceanic gabbros from slow spreading ridges . (1992). En Ophiolite Genesis and Evolution of the Oceanic Lithosphere (págs. 293-312). Kluwer Acad.
dc.relationLittle, C.T.S. (1997). Fossil hydrothermal vent communities: an update. Newsletter 13: 34–37.
dc.relationLittle, C.T.S., Can, J.R., Herrington, R.J., Morisseau, M. (1999). Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus. Geology 27: 1027-1030.
dc.relationLi, X., Jenkyns, H. C., Wang, C., Hu, X., Chen, X., Wei, Y., . . . Cui, J. (2006). Upper Cretaceous carbon and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society London, 163, 375-382.
dc.relationLiu, W., & Fei, P. (2006). Methane rich fluid inclusion from ophiolitic dunite and postcollisional mafic-ultramafic intrusion. The mantle dinamics underneath the Palaeo-Asian-ocean through to the posta-collisional period. Earth and Planetary Science Letters(42), 286-301.
dc.relationLonsdale, P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res., 24(9), 857-863.
dc.relationLópez-Rendón, J. (1986). Geology, Mineralogy and Geochemistry of the Cerro Matoso Nicheliferous Laterite, Córdoba, Colombia. Montelibano.
dc.relationLovley, D., & Phillips, E. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Env: Microbiol.(51), 683-689.
dc.relationLovley, D. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev(55), 259-287.
dc.relationLovley D. R. (1997) Microbial Fe(III) reduction in subsurface envi- ronments. FEMS Microbiology Reviews 20, 305–313.
dc.relationLuff, R., & Wallmann, K. (2003). Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochimica et Cosmochimica Acta(67), 3403-3421.
dc.relationLudvigson, G.A., González, L.A., Metzger, R.A., Witzke, B.J., Brenner, R.L., Murillo, A.P., White, T.S. (1998). Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology 26:1039–1042.
dc.relationLudvigson, G.A, Witzke, B.J., Joeckel, R.M., Ravn, R.L, Phillips, P.L., González, L.A., Brenner, R.L. (2010b). New insights on the sequence stratigraphic architecture of the Dakota Formation in Kansas–Nebraska–Iowa from a decade of sponsored research activity: Kansas Geological Survey, Current Research in Earth Sciences, Bulletin 258 part 2, Lawrence, Kansas.
dc.relationLudvigson, G.A., González, L.A., Fowle, D.A., Roberts, J.A., Driese, S.G., Villarreal, M.A., Smith, J.J., Suarez, M.B. (2013). Paleoclimatic applications and modern process studies of pedogenic siderite. New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication No. 104, SEPM (Society for Sedimentary Geology), ISBN 978-1-56576-322-7, p. 79–87. DOI: 10.2110/sepmsp.104.01
dc.relationLudwig, K., Kelley, D., Shen, C., Cheng, H., & Edwards, R. (2005). U/Th geochronology of carbonates chimneys at the Lost City Hydrothermal Field. Fall Meeting Supplement, 86 (52), pág. 1487.
dc.relationLudwig, K. A., Kelley, D. S. Butterfield, D. A. Nelson,B., & Früh-Green, G. (2006). Formation and evolution of carbonate chimneys at the Lost City hydrothermal field, Geochim Cosmochim. Acta, 70, 3625–3645.
dc.relationLutz, R. A., Shank, T. M., Fornari, D. J., Haymon, R. A., Lilley, M. D., von Damm, K. L. and Desbruyères, D. (1994b). Rapid growthat deep-sea vents. Nature 371: 663–664.
dc.relationMacfarlane, P.A., Doveton, J.H., Feldman, H.R., Butler, J.J, Combes, J.M., Collins, D.R. (1994). Aquifer/aquitard units of the Dakota aquifer system in Kansas: methods of delineation and sedimentary architecture effects on ground-water flow and flow properties. Journal of Sedimentary Research (4b) 64:464–480.
dc.relationMagnall, J.M., Gleeson, S.A., Blamey N.J.F., Paradis, S., Luo Y. (2016). The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada). Geochimica et Cosmochimica Acta 193, 251–273.
dc.relationMalone, M., Claypool, G., Martin, J., & Dickens, G. (2002). Variable methane fluxes in shallow marine systems over geological time: the composition of pore waters and authigenic carbonates on the New Jersey shelf. Marine Geology(189), 175-196.
dc.relationMartínez, L., Gutiérrez, R., & Guzmán, R. (2007). Caracterización de azufre en los minerales de Cerro Matoso. Reporte, Cerro Matos, Córdoba, Montelibano.
dc.relationMartin, W., Baross, J., Kelley, D., & Russell, M. (2008). Hydrotermal vents and the origin of the life:. Nature Review Microbiology, 6, 805-814.
dc.relationMatthews, R., & Poore, R. (1980). Tertiary d18O record and glacio-eustatic sea-level fluctuations. Geology(8), 501-504.
dc.relationMatsumoto, R. (1989). Isotopically heavy oxygen-containing siderite derived from descomposition of methane hydrate. Geology(17), 707-710.
dc.relationMaynard, J. (1983). Gechemistry of Sedimentary Ore Deposits. New York: Springer-Verlag.
dc.relationMazzini, A., Ivanov, M., Parnell, J., Stadnitskaia, A., Cronin, B., Poludetkina, E., . . . van Weering, T. (2004). Methane related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol, 212(1/4), 153-181.
dc.relationMazurenko, L., & Soloviev, V. (2003). Worlwide distribution of deep--water fluid veneting and potential ocurrences of gas hydrate accumulations. Geo-Mar-Lett(23), 162-176. doi:10.1007/s00367-003-0146-x
dc.relationMcConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: I Patterns. Geochim. Cosmochim Acta , 53, 151-162.
dc.relationMcConnaughey, T., Burdett, J., Whelan J. F., & Paull, C. K. (1997). Carbon isotopes in biological carbonates: Respiration and photosynthesis, Geochim. Cosmochim. Acta, 61, 611–622, doi:10.1016/S0016-7037(96)00361-4.
dc.relationMcConnaughey, T. A., and Gillikin, D.P. (2008). Carbon isotopes in mollusk shell carbonates, Geo‐Mar. Lett., 28, 287– 299, doi:10.1007/s00367-008-0116-4.
dc.relationMcCollom, T., & Seewald, J. (2001). A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta(65), 3769-3778.
dc.relationMeissner, R., Flueh, E., Stibane, F., & Berg, E. (1976). Dynamics of the active plate boundary in soutwest Colombia according to recent geophysical measurements. Tectonophysics(35), 115-136.
dc.relationMelchert, B., Devey, C., German, C., Lackshewitz, K., Seifert, R., Walter, M., . . . Nakamura, K. (2008). First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1-2), 61-69
dc.relationMèvel, C., & Stamoudi, C. (1996). Hydrothermal alteration of the upper-mantle section at Hess Deep. Proceedings, ODP, Scientific Results(147), 293-309.
dc.relationMejia, V., & Durango, J. (1981). Geologia de las lateritas niquelíferas de Cerro Matoso. Boletin de Geología, 15, 117-123.
dc.relationMeunier, A. (2005). Clays. New York: Springer.
dc.relationMeyers, P. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology(144), 289-302.
dc.relationMilkov, A., & Sassen, R. (2000). Thickness of the gas hydrate stability zone, Gulf of México continental slope. Mar. Pet. Geol(17), 981-991.
dc.relationMiller, D., Iturrino, G., & Chistensen, N. (1996). Geochimical and petrological constraints on the velocity behavior of lower crustal and upper mantle rocks from fast-spreading ridge at Hess Deep. En C. Mèvel, K. Gillis, J. Allan, & P. Meyer, Proceedings of the Ocean Drilling Program Scientific Results (Vol. 147, págs. 477-490).
dc.relationMills, R., Elderfield, H., & Thomson, J. (1993). A dual origin for the hdyrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge. J. Geophys. Res(98), 9671-9681.
dc.relationMills, R., & Elderfield, H. (1995). Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26ºN Mid-Atlantic Ridge. Geochim Cosmochim Acta, 59(17), 3511-3524.
dc.relationMills, R., & Elderfield, H. (1995). Hydrothermal Activity and the Geochemistry of Metalliferous Sediment. En R. Mills, & H. Elderfield, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (págs. 392-407). American Geophysical Union.
dc.relationMizutani, T., Fukushima, Y., Okada, A., Kamigaito, O., & Kobayashi, T. (1991). Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clays & Clay Minerals, 39(4), 381-386.
dc.relationMora-Bohórquez, J., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., & Serna, L. (2017). Structure and age of hte Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. Journal of South American Earth Sciences(74), 1-26.
dc.relationMortimer, R., & Coleman, M. (1997). Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochim. Cosmochim Acta(61), 1705-1711.
dc.relationMozley, P., & Carothers, W. (1992). Elemental and isotopic composition of siderite of the Kuparuk Formation, Alaska: Effect of microbial activity and water/sediment interaction on early porewater chemistry. J. Sediment. Petrolo(62), 681-692.
dc.relationMozley, P., & Wersin, P. (1992). Isotopic composition of siderite as an indicator of depositional environment. Geology(20), 817-820.
dc.relationMozley, P., & Burns, S. (1993). Oxygen and carbon isotope composition of marine carbonate concretions: an overview. Journal of Sedimentary Petrology(63), 73-83.
dc.relationMozgova, N., Trubkin, N., Borodaev, Y., Cherkashev, G., Stepanova, T., Semkova, T., & Upenskaya, T. (2008). Mineralogy of massive sulfides from the Ashade hydrothermal fiel, 13ºN, Mid-Atlantic Ridge. Canadian Mineralogist(46), 545-567.
dc.relationMoskowitz, B. (1989). A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett(16), 665-668.
dc.relationMuehlenbachs, K., & Clayton, R. (1976). Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res.(81), 4365-4369.
dc.relationMunsell. (2009). Geological Rock-Color Chart with genuine Munsell color chips. Springfield: Munsell Color.
dc.relationMurton, B., Klinkhammer, G., Becker, K., Briais, A., Edge, D., Hayward, N., . . . Parson, L. (1994). Direct evidence for the distribution and ocurrence of hydrothermal activity between 27ºN-30ºN on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 125(1-4), 119-128.
dc.relationNasir, S., Al Sayigh, A., Al Harthy, A., Al-Khirbash, S., Al-Jaaidi, O., Musllam, A., . . . Al-Bu`saidi, S. (2007). Mineralogical and geochimical characterization of listwaenite from the Semail Ophiolite, Oman. Chemie der Erde(67), 213-228.
dc.relationNeal, C., Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci. Lett. 66, 315–320.
dc.relationNeal, C., Stanger, G. (1984). Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentiniza- tion. Mineral. Mag. 48, 237–241.
dc.relationNeal, C., Stanger, G. (1985). Past and present serpentinization of ultramafic rocks; an example from the Semail ophiolite nappe of northern Oman. In: Drever, J.I. (Ed.), The Chemistry of Weathering. Reidel, Dordrecht, pp. 249–275.
dc.relationNealson, K., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Ann. Rev. Microbiol(48), 311-343.
dc.relationNiemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., . . . Boetius, A. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as methane sink. Nature, 443(7113), 854-858.
dc.relationNivia, A., Marriner, G., Kerr, A., & Tarney, J. (2006). The Quebradagrande Complex: a lower cretaceous ensialic marginal basin in the central cordillera of the colombian Andes. Journal of South American Earth Science(21), 423-436.
dc.relationNosouhian, N., Torabi, G., and Arai, S. (2016). Amphibole-bearing listwaenites from the Paleozoic Bayazeh ophiolite (Central Iran). Italian Journal of Geosciences, V.135, No.1, p.109-119.
dc.relationNosohuian, N., Torabi, G.,and Arai, S. (2019). Petrological aspects of the Bayazeh Paleozoic ophiolite (Central Iran); implications for Paleo-Tethys subduction. Periodico di Mineralogia, V.88, p.155-184.
dc.relationO`Neil, J., & Clayton, R. (1964). Oxygen isotope geothermometry. En H. Craig, & e. al, Isotopic and Cosmic Chemistry (págs. 157-168). North Holland.
dc.relationOrtiz, F. (2004). Guias para la localización de metales preciosos en ofiolitas colombianas. Ofiolitas: Características mineralógicas y petrográficas del yacimiento de níquel de Cerro Matoso. Dyna, 71(142), 11-23.
dc.relationPalmer, M. (1985). Rare earth elements in foraminifera. Earth Planetary Science Letters(73), 285-298.
dc.relationPaszkowski, M., Kusiak, M., Budzyn, B., Gmur, D., Kone`cn´y, P., & Y Wolkowicz, T. (2008). Application of EPMA dating of detrital monazite for age verification of the Carboniferous sandstone clases from the Carpathian flysch. Geophysical Research Abstracts, 10.
dc.relationPaull, C., Chanton, J., Neumann, A., Coston, J., & Martens, C. (1992). Indicators of methane-derived carbonates and chemo-synthetic organic carbon deposits: examples from the Florida escarpment. Palaios(7), 361-375.
dc.relationPaull, C. K., Ussler III, W., Peltzer, E. T., Brewer, P. G., Keaten, R., Mitts, P. J., . . . Perez, M. E. (2007). Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep-Sea Research II(54), 1240-1267.
dc.relationPaytan, A., Mearon, S., Cobb, K., & Kastner, M. (2002). Origin of marine barite deposits: Sr and S isotope characterization. Geology(30), 747-750.
dc.relationPechmann, J., Reimer, A., Luth, U., Hansen, B., Heinicke, C., Hoefs, J., & Reitner, J. (2001). Methane-derived carbonates and authigenic pyrite from the northwetern Black Sea. Mar. Geol(177), 129-150.
dc.relationPeckmann, J., & Thiel, V. (2004). Carbon Cycling at ancient methane-seeps. Chemical Geology(205), 443-467.
dc.relationPeckman, J. (2005). Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Paleozoic seep-related vestimentiferans? Palaeogeography, Palaeoclimatology, Palaeoecology(227), 242-257.
dc.relationPerry, E., Tan, F., & Morey, G. (1973). Geology and stable isotope geochemistry of Biwabik Iron Formation, northern Minnesota. Economic Geology and the Bulletin of the Society of Economic Geologist, 68, 1110-1125.
dc.relationPerry, E., Gieskes, J., & Lawrence, J. (1976). Mg, Ca adn 18O/16O exchange in the sediment-pore water system, Hole 149, DSDP. Geochim Cosmochim Acta(40), 413-423.
dc.relationPeterson, B., & Fry, B. (1987). Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst.(18), 293-320.
dc.relationPetersen, S., Kuhn, K., Kuhn, T., Augustin, N., Hékinian, L., Franz, L., & Borowski, C. (20019). The geological setting of the ultramafic-hosted Logatchev hydrothermal fiel (14º45´N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos.
dc.relationPindell, J., & Barrett, S. (1990). Geological evolution of the Caribbean region: a plate tectonic perspective. In J. Pindell, & S. Barrett, The Caribbean Decade of North American Geology (pp. 404-432). Colorado: Geological Society of America.
dc.relationPindell, J., & Kennan, L. (2009). Tectonic evolution of the Caribbean and northern South America in the mante reference frame. In J. Pindell, & L. Kennan, The geology and evolution of theh region between North and South America (Special Publication ed., p. 60). Geological Society of London.
dc.relationPisciotto, K., & Mahoney, J. (1981). Isotopic survey of diagenetic carbonates, Deep Sea Drilling Project, Leg 63. En R. Yeats, B. Haq, & e. al, Initial Reports Deep Sea Drilling Project (Vol. 63, págs. 595-609). Washington, DC.
dc.relationPiper, D. Z. (1974). Rare Earth Elements in the sedimentary cycle: a summary. Chemical Geology(14), 285-304.
dc.relationPlanavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., Knudsen, A. (2009) Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-strati!ed oceans Earth and Planetary Science Letters 286 230–242.
dc.relationProskurowski, G, Lilley, M.D, Kelley, D.S., Olson, E.J. (2006). Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem Geol 229:331–343.
dc.relationProskurowski G, Lilley M.D, Olson E.J. (2008). Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flows vents at 9°50′N East pacific Rise. Geochim Cosmochim Acta 72:2005–2023.
dc.relationProskurowski, G., et al. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319(5863), 604-607.
dc.relationRamírez, C. , Weber, M., Tobón, M., Proenza, J.A., Beltrán-Triviño, A., Pujol-Solà, N., Betancur, S., Duque, J., von Quadt, A. (2019). Evolución Tectónica desde el Jurásico Superior al Mioceno en Planeta Rica, Córdoba, Aportes a la historia geológica del Caribe. Memorias XVII Congreso Colombiano de Geología y IV Simposio de Exploradores.
dc.relationReeburg, W. (1980). Anaerobic methane oxidation: rate depth distribution in Skan Bay sediments. Earth Planetary Science Letters(47), 345-352.
dc.relationRetallack, GJ. (1981). Fossil soils: indicators of ancient terrestrial environments. In Niklas KJ (Editor). Paleobotany, Paleoecology, and Evolution, Vol. 1: Praeger Publishers, New York. p. 55–102.
dc.relationRejas, M. (2009). Génesis de carbonatos autigénicos asociados a volcanes de fango del Golfo de Cádiz (SW España): influencia de procesos bioquímicos y desestabilización de hidratos de gas. Barcelona: Universitat de Barcelona.
dc.relationReysenbach, A., & Cady, S. (2001). Microbiology of ancient and modern hydrothermal systems. Trends in Microbiology, 9(2), 3-4.
dc.relationRio, M., Roux, M., Renard, M. and Schein, E. (1992). Chemical and isotopic features of present day bivalve shells from hydrothermal vents or cold seeps, Palaios, 7, 351–360, doi:10.2307/3514821.
dc.relationRISE Project, G. (1980). East Pacific Rise: hot springs and geophysical experiments. Science(207), 1421-1432.
dc.relationRitger, S., Carson, B., & Suess, E. (1987). Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol. Soc. Am. Bull(98), 147-156.
dc.relationRoberts, H., & Aharon, P. (1994). Hydrocarbon-derived carbonates buildups of the northern Gulf of México: a review of submersible investigation. Geo-Marine Letters(14), 135-148.
dc.relationRodriguez, N., Paull, C., & Borowski, W. (2000). Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. En C. Paull, R. Matsumoto, P. Wallace, & W. Dilon, Proceedings of the Ocean Drilling Program Scientific Results (Vol. 164, págs. 301-312). College Station TX.
dc.relationRose, G. (s.f.). Mineralogisch-geognostiche Reise nach dem Ural, dem Altai und dem Kaspischen Meere. En C. Berlin, Eichoff (Verlag der Sanderchen Buchhandl) (Vols. I-VII).
dc.relationRosenbaum, J., & Sheppard, S. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim Acta(50), 1147-1150.
dc.relationRozenson, I., & Heller-Kallai, L. (1976a). Reduction and oxidation of Fe3+ in dioctahedral smectites-1: reduction with hydrazine and dithionite. Clays & Clay Minerals(24), 271-282.
dc.relationRozenson, I., & Heller-Kallai, L. (1976b). Reduction and oxidation of Fe3+ in dioctahedral smectites-2: reduction with sodium sulphide solutions. Clays & Clay Minerals(24), 283-288.
dc.relationRussell, B. (1955). Classification of Rocks. Quarterly of the Colorado School of Mines, 50(1), 1-50.
dc.relationRussell, J., Goodman, B., & Fraser, A. (1979). Infrared and Mössbauer studies of reduced nontronites. Clay & Clays Minerals(27), 63-71.
dc.relationRusinova, O., Rusinov, V., & Troneva, N. (1986). Metasomatism, Mineralogy, and Genetic Questions of Volcanic-Hosted Gold and Silver Deposits. Moscow, Nauka, Rusia: D. Korzhinskii.
dc.relationSaccocia, P., Seewald, J., & Shanks, W. (2009). Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450ºC, 50 MPa. Geochimica et Cosmochimica Acta(60), 529-533.
dc.relationSahu, K. (1981). Preliminary studies on formation of Ni-rich laterite over ultramafic rocks of Amjori Sill in Similipal, Mayurbhanj, Orissa. Seminar on lateritisation processes, Indian Institute of Technology, Bombay. , Trivandum, Indian.
dc.relationSample, J., & Reid, M. (1998). Contrasting hydrological regimes along strike-slip and thrust faults in the Oregon convergent margin: Evidence from the chemistry of syntectonic carbonate cements and veins. Geolical Society of American Bulletin(110), 48-59.
dc.relationSano, Y., Takahata, N., Tsutsumi, Y., & Miyamoto, T. (2006). Ion microprobe U-Pb dating of manazite with about five micrometer spatial resolution. Geochemical Journal, 40, 597-608.
dc.relationSavin, S.M. & Epstein, S. (1970). The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta 34, 25–42.
dc.relationSavin, SM & Lee, M. (1988). Isotopic studies of phyllosilicates. In: Bailey SW, editor. Hydrous Phyllosilicates (exclusive of micas). Washington: Mineralogical Society of America. p 189-224.
dc.relationScott, M., Scott, R., Rona, P., Butler, L., & Nalwalk, A. (1974). Rapidly accumulating manganese deposit from the median valley of the Mid-Atlantic Ridge. Geophys. Res. Lett.(1), 355-358.
dc.relationShank, T. M., Fornari, D. J., von Damm, K. L., Lilley, M. D., Haymon, R. M. & Lutz, R. A. (1998). Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9 ́500N, East Pacific Rise). Deep-Sea Research II, 45: 465–515.
dc.relationShapiro, R., & Fricke, H. (2011). Tepee Buttes: Fossilized methane-seep ecosystems. Geological Society of America, 94-101.
dc.relationShapiro, R. (2004). Recognition of fossil prokaryotes in Cretaceous methane seep carbonates: relevance to astrobiology. Astrobiology(4), 438-449.
dc.relationSchauble E. A., Ghosh P. & Eiler J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim. Cosmochim. Acta 70, 2510–2529.
dc.relationSchmaljohann, E., Faber,R., Whiticar, M. J., & Dando, P. R. (1990). Co‐existence of methane‐ and sulphur‐based endosymbioses between bacteria and invertebrates at a site in the Skagerrak, Mar. Ecol. Prog. Ser., 61, 119–124, doi:10.3354/meps061119.
dc.relationSimoneit, B. R., Lein, A. Y., Peresypkin V. I., & Osipov, G. A. (2004). Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N), Geochim. Cosmochim. Acta, 68, 2275–2294.
dc.relationSchmit, K., Koschinsky, D., Garbe-Schoenberg, L. M., de Carvalho, R., & Seifert. (2007). Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15ºN on the Mid-Atlantic Ridge. Temporal and spatial investigation. Chemical Geology(242), 1-21.
dc.relationShock, E., & Schulte, M. (1998). Organic syntheis during fluid mixing in hydrothermal systems. Journal Geophys(Res 103), 513-528.
dc.relationSilantyev, S., Mironenko, M., & Novoselov, A. (2009). Hydrothermal Systems in Peridotites of Slow-Spreading Mid-Oceanic Ridges. Modeling Phase Transitions and Material Balance: Downwelling Limb of a Hydrothermal Circulation Cell. Petrology, 17(2), 138-157.
dc.relationSillitoe, R.H., Hannington, M.D. and Thompson, J.F., (1996). High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology, V. 91, pp. 204-212.
dc.relationSinger, A., Stoffers, P., Heller-Kallai, I., & Safranek, D. (1984). Nontronite in a deep sea core from South Pacific. Clays Clay Miner(32), 375-383.
dc.relationSinton, C., Duncan, R., Storey, M., Lewis, J., & Estrada, J. (1998). An oceanic flood basalt province within the Caribbean Plate. Earth and Planetary Science Letters, 155, 221-235.
dc.relationSchrenk, M., Brazelton, W., & Lang, S. (2013). Serpentinization, Carbon and Deep Life. Reviews in Mineralogy and Geochemistry, 75, 575-606.
dc.relationSchroeder, T., Barbara, J., & Frost, B. R. (2002). Geologic implications of sea water circulation through peridotite exposed at low-spreading mid-ocean ridge. Geological Society of America, 30(4), 367-370.
dc.relationSchwarzenbach, E. M., Fruh-Green, G. L., Bernasconi, S. M., Alt, J. C., Shanks III, W. C., Gaggero, L., & Crispini, L. (2012). Sulfur geochemistry of peridotite-hosted hydrothermal systems: Comparing the Ligurian ophiolites with oceanic serpentinites. Geochimica et Cosmochimica Acta(91), 283-305.
dc.relationSlack, J.F., Grenne, T., Bekker, A., Rouxel, O.J., Lindberg, P.A. (2007). Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to sea"oor-hydrothermal sul!de deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256.
dc.relationSleep, N., Meibom, A., Fridriksson, T., Coleman, R., & Bird, D. (2004). H2-rich fluids from serpentinization: Geochemical and biotic implications. PNAS, 101(35), 12818-12823.
dc.relationSpinola, D., Pi-Puig, T., Sollerio-Rebolledo, E., Egli, M., Sudo, M., Sedov, S., & Kühn, P. (2017). Origin of clay minerals in Early Eocene volcanic paleosols on King George Island, Maritime Antractica. Scientific Reports, 1-11.
dc.relationStolz, J., Lovley, D., & Haggerty, S. (1990). Biogenic magnetite and the magnetization of sediments. J. Geophys. Res(95), 4355-4361.
dc.relationSumicol S.A. (2002). Caracterización mineralógica de los tipos de roca de la laterita niquelífera de Cerro Matoso S.A., Colombia. Informe privado para Cerro Matoso S.A., 2 vols., 833p.
dc.relationTaitel-Goldman, N., Ezersky, V., and Mogilyanski, D. (2008). Study of Mn-siderite–rhodochrosite from the hydrothermal sediments of the Atlantis II Deep, Red Sea. Isr. J. Earth Sci. 57: 45–54
dc.relationTeichert, B. M., Bohrmann, G., & Suess, E. (2005). Chemoherms on Hydrate Ridge - Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology(227), 67-85.
dc.relationToussaint, J., & Restrepo, J. (1994). The colombian Andes during cretaceous times. En S. Vieweg, Cretaceous Tectonics of the Andes (págs. 61-100). Wiesbaden.
dc.relationThiagarajan N., Adkins J. and Eiler J. M. (2011) Carbonate clumped isotope thermometry of deep-sea corals and implica- tions for vital effects. Geochim. Cosmochim. Acta 75, 4416–4425.
dc.relationThiel, V., Peckmann, J., Seifert, R., Wehrung, P., Reitner, J., & Michaelis, W. (s.f.). Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica et Cosmochimica Acta(63), 3959-3966.
dc.relationThoréz, J. (1976). Practical Identification of Clay Minerals: A Handbook for Teachers and Students in Clay Mineralogy.
dc.relationTorres, M., Bohrman, G., Dubé, T., & Poole, F. (2003). Formation of modern and Paloezoic stratiform barite at cold methane seeps on continental margins. Geology(31), 897-900.
dc.relationTosca, N., Guggenheim, S., & Pufahl, P. (2016). An authigenic origin for Precambrian greenalite: Implications for iron formation and chemistry of ancient seawater. GSA Bulletin, 128(3/4), 511-530.
dc.relationTravis, J. (1993). Probing the unsolved mysteries of the deep. Science, 259, 1123-1124.
dc.relationTripati A. K., Eagle R. A., Thiagarajan N., Gagnon A. C., Bauch H., Halloran P. R. and Eiler J. M. (2010). 13C–18O isotope signatures and “clumped isotope” thermometry in foraminifera and coccoliths. Geochim. Cosmochim. Acta 74, 5697–5717.
dc.relationTrocine, R., & Trefry, J. (1988). Distribution and chemistry of suspended particles from an active hydrothermal vent site on Mid-Atlantic Ridge at 26ºN. Earth Planetary Science Letters(88), 1-15.
dc.relationTsikouras, B., Karipi, S., Grammatikopoulos, T., & Hatzipanagiotou, K. (2006). Listwaenite evolution in the ophiolite mélange of Iti Mountain (Continental Central Greece). Eur. J. Mineral, 243-255.
dc.relationTunnicliffe, V., & Juniper, S.K. (1990). Dynamic character of the hydrothermal vent habitat and the nature of the sulfide chimney fauna. Progress in Oceanography 24: 1- 14.
dc.relationUcurum, A. (1998). Application of the correspondence-type geoestatistical analysis on the Co, Ni, As, Ag, and Au concentrations of the listwaenites from serpentinites in the Diveru and Kulunack ophiolitic mélanges. Turk. J. Earth Sci.(7), 87-95.
dc.relationUcurum, A. (2000). Listwaenites in Turkey: perspectives on formation and precious metal concentration with referene to occurrences in East-Central Anatolia. Ofioliti(25), 15-29.
dc.relationUrey, H. (1947). The thermodynamic properties of isotopic substances. J Chem Soc(562).
dc.relationUrey, H., Lowenstam, H., Epstein, S., & Mckinney, C. (1951). Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southeastern United States. Bull. Geol. Soc. Amer(62), 399-416.
dc.relationVan Dover, C. L. (1995), Ecology of Mid-Atlantic Ridge hydrothermal vents, in Hydrothermal Vents and Processes, edited by L. M. Walked and D. R. Dixon, Geol. Soc. Spec. Publ., 87, 257–294.
dc.relationVan Dover, C. (2000). The Ecology of Deep-sea Hydrothermal Vents. Princeton University Press. Princeton, NJ.
dc.relationVan Dover., C.L., Jhon, B., Marsh, L., Vecchion, M. et al., (2014). Exploration of the Mid-Cayman Rise Oceanography. vol 27, No.1, 52p.
dc.relationVon Damm, K.L., (1995). Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris, S., Lupton, J., Mullineaux, L., Zierenberg, R., (Eds.), Physical, Chemical, Biological, and Geological Inter- actions within Seafloor Hydrothermal Systems, AGU. Monogr. 91, 222-47.
dc.relationVon Damm K. L. (2004) Evolution of the hydrothermal system at East Pacific Rise 9°50N: geochemical evidence for changes in the upper oceanic crust. In Mid-Ocean Ridges Hydrothermal Interactions Between the Lithosphere and Oceans (eds. C. R. German, J. Lin and L. Parson). American Geophysical Union, Washington, DC.
dc.relationVargas, M., Kashefi, K., Blunt-Harris, E., & Lovley, D. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature(395), 65-67.
dc.relationVasconcelos, P., & Seeber, A. (2006). Initial Report - UQ Field Trip To Cerro Matoso. Department of Earth Science. The University of Queensland.
dc.relationVillagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the central and western cordilleras of Colombia: early cretaceous - tertiary evolution of the northern Andes. Lithos(168), 228-249.
dc.relationWheat, C., Feely, R., & Mottl, M. (1996). Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget in the oceans. Geochimica et Cosmochimica Acta(60), 3593-3608.
dc.relationWilliams, A. B. & P. A. Rona. (1986). Two new caridean shrimps (Bresiliidae) from a hydrothermal vent field on the Mid-Atlantic Ridge. J. Crust. Biol. 6:446–462.
dc.relationWhite TS, Witzke BJ, Ludvigson GA, Brenner RL. (2005). Distinguishing base-level change and climate signals in a Cretaceous alluvial sequence. Geology 33(1):13–16.
dc.relationWhiticar, M., Faber, E., & Schoell, M. (1986). Biogenic methane formation in marine an freshwater environments: CO2 reduction vs acetate fermentation-Isotope evidence. Geochim Cosmochim Acta(50), 693-709.
dc.relationWhiticar, MJ. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314
dc.relationWu, J., Low, P., & Roth, C. (1989). Effectis of octahedral-iron reduction and swelling pressure on interlayer distances in Na-nontronite. Clays & Clay Minerals(37), 211-218.
dc.relationZhang, C., Liu, S., Phelps, T., Cole, D., Horita, J., & Fortier, S. (1997). Physiochemical, mineralogical and isotopic characterizations of magnetic iron oxides formed by thermophilic Fe(III)-reducing bacteria. Geochim. Cosmochim. Acta(61), 4621-4632.
dc.relationZhang, C., Stapleton, R., Zhou, J., Palumbo, A., & Phelps, T. (1999). Iron reduction by psychrophilic enrichment cultures. FEMS Microbiol. Ecol. Lett(30), 367-371.
dc.relationZhang, C., Horita, J., Cole, D., Zhou, J., Lovley, D., & Phelps, J. (2001). Temperature-dependent oxygen and carbon isotope fractionations of biogenic siderite. Geochimica et Cosmochimica, 65(14), 2257-2271.
dc.relationZhang W., Guan P., Jian X., Feng F. and Zou C. (2014). In situ geochemistry of Lower Paleozoic dolomites in the north- western Tarim basin: implications for the nature, origin, and evolution of diagenetic fluids. Geochem. Geophys. Geosyst. 15, 2744–2764.
dc.relationZheng YF, Fu B, Li Y, Xiao Y, Li S. (1998). Oxygen and hydrogen isotope geochemistry of ultra-high pressure eclogites from the Dabie mountains and the Sulu terrane. Earth Planet Sci Lett 155:113–129.
dc.relationZierenberg, R.A., Shanks, W.C. (1988). Isotopic studies on epi- genetic features in metalliferous sediment Atlantis II Deep, Red Sea. The Canadian Mineralogist 26(3): 737–753.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCarbonatos y otros minerales autigénicos asociados a las lateritas niquelíferas de Cerro Matoso y su posible relación con actividad hidrotermal y reducción de sulfatos
dc.typeOtro


Este ítem pertenece a la siguiente institución