dc.contributor | Velásquez Lozano, Mario Enrique | |
dc.contributor | Ugarte Stambuk, Boris Juan Carlos | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Patiño Lagos, Margareth Andrea | |
dc.date.accessioned | 2022-08-18T21:27:34Z | |
dc.date.available | 2022-08-18T21:27:34Z | |
dc.date.created | 2022-08-18T21:27:34Z | |
dc.date.issued | 2021-04-19 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81969 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Saccharomyces cerevisiae es la principal levadura utilizada en biotecnología en todo el
mundo, gracias a que su metabolismo y fisiología son conocidos permitiendo su
aprovechamiento en diversos procesos industriales. Este microorganismo es excelente en
la fermentación de azúcares como las hexosas, sin embargo, ha sido considerado como
incapaz de metabolizar pentosas como la arabinosa y la xilosa presentes en la biomasa
lignocelulósica. Esta biomasa es una materia prima ampliamente disponible que contiene
xilosa, el segundo azúcar más abundante de la naturaleza, en aproximadamente el 35%
de los azúcares totales. Esta fracción de azúcar podría ser aprovechada para la obtención
de productos químicos de alto valor agregado como el xilitol. Utilizando ingeniería genética
algunos investigadores han obtenido cepas recombinantes de S. cerevisiae con capacidad
reducida de fermentar xilosa. El Grupo de Investigación en Procesos Químicos y
Bioquímicos de la Universidad Nacional de Colombia realizó el aislamiento de algunos
microorganismos obtenidos en Colombia, donde se identificó una cepa de S. cerevisiae,
denominada como 202-3, que en presencia de hidrolizados lignocelulósicos mostró un
consumo de xilosa del 2 % al 5%, característica que no se encuentra asociada a la especie.
En esta investigación se confirmó mediante tres enfoques distintos que la cepa 202-3
efectivamente corresponde a una S. cerevisiae: mediante observación morfológica de la
cepa por microscopía óptica y de barrido, por amplificación de un fragmento de 150 pb con
iniciadores específicos para la especie, y por secuenciación de la región ITS. Su secuencia
consenso mostró una similitud superior al 99 % respecto a las secuencias de S. cerevisiae
reportadas en la base de datos genómica Blastn del NCBI. Experimentalmente, la cepa
202-3 no mostró un mejor consumo de xilosa que otras especies de levaduras analizadas
consumidoras de esa pentosa, pero sí una metabolización significativa con un consumo
del 9,8 %, lo cual hasta ahora no había sido reportado para ninguna cepa de S. cerevisiae.
Sin embargo, para mejorar esa capacidad e intentar producir etanol a partir de la xilosa, la
cepa 202-3 fue sometida a ingeniería genética y evolutiva. Determinada la ploidía de la
cepa, se procedió a silenciar el gen GAL80 implicado en la represión de los genes GAL
para que sean expresados continuamente y mejorar la captación y asimilación de esa
pentosa. Para las recombinantes obtenidas los consumos de xilosa fueron de hasta el 18% con rendimiento de xilitol de hasta 0,407 g/g y no se obtuvo valores significativos de etanol.
Mediante ingeniería evolutiva a la cepa parental y a dos recombinantes se obtuvo cepas
mejoradas después de ocho inóculos sucesivos de 144 horas cada uno. De la cepa
parental 202-3 que consumió 7% de xilosa, se obtuvo otra cepa que consumió 14% de
xilosa y la producción de xilitol aumentó en 345% desde 0,236 g en el inóculo inicial a
1,050 g en el final. Con la cepa obtenida de la recombinante R2-MAPL (202-3,
GAL80/gal80Δ::KanMX) el consumo de xilosa fue de 20% y la producción de xilitol
aumentó 196% de 0,996 g inicial a 2,951 g final. Con la cepa obtenida de la recombinante
B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) el consumo final de xilosa fue de 28% y
la producción de xilitol pasó de 1,115 g inicial a 4,876 g final representando un incremento
de 337%. Estos resultados muestran que las estrategias utilizadas mejoraron el fenotipo
de la cepa nativa 202-3 frente al consumo de xilosa y la producción de xilitol. (Texto tomado de la fuente) | |
dc.description.abstract | Saccharomyces cerevisiae is the most used yeast in biotechnology throughout the world
because its metabolism, and physiology are well known, and it has been widely used in
various industrial processes. This microorganism is excellent in the fermentation of sugars
such as hexoses. However, it does not metabolize pentoses such as arabinose and xylose
which are present in lignocellulosic biomass. This biomass constitutes a widely available
raw material, with xylose content, the second most abundant sugar in nature,
corresponding to approximately 35% of total sugars. This sugar fraction could be used to
obtain high added value chemical products such as xylitol. Through genetic engineering
some researchers have obtained recombinant yeast strains of S. cerevisiae with reduced
xylose fermentation capability. The research group in Chemical and Biochemical
Processes of the Universidad Nacional de Colombia performed the isolation of some
microorganisms obtained in Colombia, where a S. cerevisiae strain called 202-3 was
identified. This strain showed a xylose consumption between 2% and 5% in presence of
lignocellulosic hydrolysates, characteristic that is not associated with the lineage. In this
research, it was confirmed through three different approaches that the 202-3 strain is
indeed a S. cerevisiae: morphologic strain observation by optical and SEM microscopy,
amplification of a 150 bp fragment with species-specific primers, and sequencing its ITS
region, whose consensus sequence showed similarity greater than 99% with the S.
cerevisiae sequences reported in the NCBI Blastn genomic database. Experimentally,
strain 202-3 did not show to be better than other yeast species with the capability to
consume xylose, but it did show a significant metabolization of that pentose with a
consumption of 9,8%, which until now had not been reported for S. cerevisiae. However,
to improve that ability and try to produce ethanol from xylose, the strain was subjected to
genetic and evolutionary engineering. Once the ploidy of the strain was determined, the
GAL80 gene involved in the repression of the GAL genes was deleted so that they are
continuously expressed and improve the uptake and assimilation of the pentose. For the
recombinant strains obtained, the xylose consumptions were up to 18% with a xylitol yield
of up to 0,407 g/g and no significant ethanol values were obtained. By evolutionary
engineering to the parental strain and to two recombinants, improved stains were obtained after eight successive inoculum of 144 hours each. From the parental strain 202-3 that
consumed 7% of xylose, another strain was obtained that consumed 14% of xylose and
the xylitol production increased 345%, from 0,236 g in the initial inoculum to 1,050 g in the
final one. With the strain obtained from recombinant R2-MAPL (202-3,
GAL80/gal80Δ::KanMX), the xylose consumption was 20% and xylitol production increase
196%, from 0,996 g initial to 2,951 g final. With the strain obtained from recombinant
B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) the final xylose consumption was 28%
and xylitol production went from 1,115 g initial to 4,876 g final, representing a 337%
increase. These results show that the strategies used improved the phenotype of the native
strain 202-3 against the consumption of xylose and the production of xylitol. | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Biotecnología | |
dc.publisher | Instituto de Biotecnología (IBUN) | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Ahmad, Irshad, Woo Yong Shim, y Jung-Hoe Kim. 2012. «Enhancement of xylitol
production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes
involved in glycerol metabolic pathway». Bioprocess and Biosystems Engineering 36 (9):
1279-84. https://doi.org/10.1007/s00449-012-0872-4 | |
dc.relation | Alonso, A., y A. Kotyk. 1978. «Apparent half-lives of sugar transport proteins in
Saccharomyces cerevisiae». Folia Microbiologica 23 (2): 118-25.
https://doi.org/10.1007/BF02915311 | |
dc.relation | Arora, Anju, Shweta Priya, Pankhuri Sharma, Shalley Sharma, y Lata Nain. 2016.
«Evaluating biological pretreatment as a feasible methodology for ethanol production from
paddy straw». Biocatalysis and Agricultural Biotechnology 8 (octubre): 66-72.
https://doi.org/10.1016/j.bcab.2016.08.006 | |
dc.relation | Attfield, Paul V., y Philip J. L. Bell. 2006. «Use of population genetics to derive
nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole
carbon source». FEMS Yeast Research 6 (6): 862-68. https://doi.org/10.1111/j.1567-
1364.2006.00098.x | |
dc.relation | Ausubel, F. M., R. Brent, R. E. Kingston, D. D Moore, J. G. Seidman, J. A. Smith, y K.
Struhl. 1992. Short Protocols in Molecular Biology. 2nd ed. John Wiley & Sons | |
dc.relation | Bamba, Takahiro, Tomohisa Hasunuma, y Akihiko Kondo. 2016. «Disruption of PHO13
improves ethanol production via the xylose isomerase pathway». AMB Express 6 (1): 4.
https://doi.org/10.1186/s13568-015-0175-7 | |
dc.relation | Barnett, J. A., R. W Payne, y D Yarrow. 1990. Yeasts : Characteristics and Identification.
2nd ed. Cambridge ; New York : Cambridge University Press.
https://trove.nla.gov.au/version/6557753 | |
dc.relation | Basso, L. C., H. V. de Amorim, A. J. de Oliveira, y M. L. Lopes. 2008. «Yeast selection for
fuel ethanol production in Brazil». FEMS Yeast Research 8 (7): 1155-63.
https://doi.org/10.1111/j.1567-1364.2008.00428.x | |
dc.relation | Batt, C. A., S. Carvallo, D. D. Easson, M. Akedo, y A. J. Sinskey. 1986. «Direct evidence
for a xylose metabolic pathway in Saccharomyces cerevisiae». Biotechnology and
Bioengineering 28 (4): 549-53. https://doi.org/10.1002/bit.260280411 | |
dc.relation | Belinchón, Mónica M., y Juana M. Gancedo. 2003. «Xylose and some non-sugar carbon
sources cause catabolite repression in Saccharomyces cerevisiae». Archives of
Microbiology 180 (4): 293-97. https://doi.org/10.1007/s00203-003-0593-9 | |
dc.relation | Bengtsson, Oskar, Marie Jeppsson, Marco Sonderegger, Nadia Skorupa Parachin, Uwe
Sauer, Bärbel Hahn-Hägerdal, y Marie-F. Gorwa-Grauslund. 2008. «Identification of
common traits in improved xylose-growing Saccharomyces cerevisiae for inverse
metabolic engineering». Yeast (Chichester, England) 25 (11): 835-47.
https://doi.org/10.1002/yea.1638 | |
dc.relation | Benson, Dennis A., Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, y David L.
Wheeler. 2003. «GenBank». Nucleic Acids Research 31 (1): 23-27 | |
dc.relation | Bergdahl, Basti, Anders G. Sandström, Celina Borgström, Tarinee Boonyawan, Ed W. J.
van Niel, y Marie F. Gorwa-Grauslund. 2013. «Engineering yeast Hexokinase 2 for
improved tolerance toward xylose-induced inactivation». PLoS ONE 8 (9).
https://doi.org/10.1371/journal.pone.0075055 | |
dc.relation | Berttilsson, M., J. Andersson, y G. Lidén. 2008. «Modeling simultaneous glucose and
xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar
transporters». Bioprocess and Biosystems Engineering 31 (4): 369-77.
https://doi.org/10.1007/s00449-007-0169-1 | |
dc.relation | Bhukya, Bhima, Srinivas Banoth, y Archana Anthappagudem. 2019. «Chapter 5 -
Saccharomyces cerevisiae as potential probiotic: strategies for isolation and selection».
En Applied Microbiology and Bioengineering, editado por Pratyoosh Shukla, 71-85.
Academic Press. https://doi.org/10.1016/B978-0-12-815407-6.00005-8 | |
dc.relation | Bisson, L. F., y D. G. Fraenkel. 1983. «Involvement of kinases in glucose and fructose
uptake by Saccharomyces cerevisiae». Proceedings of the National Academy of Sciences
of the United States of America 80 (6): 1730-34. https://doi.org/10.1073/pnas.80.6.1730 | |
dc.relation | Bisson, Linda F., Qingwen Fan, y Gordon A. Walker. 2016. «Sugar and glycerol transport
in Saccharomyces cerevisiae». Advances in Experimental Medicine and Biology 892:
125-68. https://doi.org/10.1007/978-3-319-25304-6_6 | |
dc.relation | Boles, E., y C. P. Hollenberg. 1997. «The Molecular genetics of hexose transport in
yeasts». FEMS Microbiology Reviews 21 (1): 85-111. https://doi.org/10.1111/j.1574-
6976.1997.tb00346.x | |
dc.relation | Borneman, Anthony R., Brian A. Desany, David Riches, Jason P. Affourtit, Angus H.
Forgan, Isak S. Pretorius, Michael Egholm, y Paul J. Chambers. 2012. «The genome
sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with
Saccharomyces cerevisiae and Saccharomyces kudriavzevii Origins». FEMS Yeast
Research 12 (1): 88-96. https://doi.org/10.1111/j.1567-1364.2011.00773.x | |
dc.relation | Bradbury, John E., Keith D. Richards, Heather A. Niederer, Soon A. Lee, P. Rod Dunbar,
y Richard C. Gardner. 2006. «A homozygous diploid subset of commercial wine yeast
strains». Antonie Van Leeuwenhoek 89 (1): 27-37. https://doi.org/10.1007/s10482-005-
9006-1 | |
dc.relation | Brink, Daniel P., Celina Borgström, Felipe G. Tueros, y Marie F. Gorwa-Grauslund. 2016.
«Real-Time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates
endogenous mechanisms for xylose signaling». Microbial Cell Factories 15 (1): 183.
https://doi.org/10.1186/s12934-016-0580-x | |
dc.relation | Bruinenberg, P. M., P. H. M. de Bot, J. Dijken, y W. A. Scheffers. 1984. «NADH-Linked
aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts».
Applied Microbiology and Biotechnology 19 (4): 256-60.
https://doi.org/10.1007/BF00251847 | |
dc.relation | Buziol, Stefan, Jessica Becker, Anja Baumeister, Susanne Jung, Klaus Mauch, Matthias
Reuss, y Eckhard Boles. 2002. «Determination of in vivo kinetics of the starvation-induced
Hxt5 Glucose Transporter of Saccharomyces cerevisiae». FEMS Yeast Research 2 (3):
283-91. https://doi.org/10.1016/S1567-1356(02)00113-7 | |
dc.relation | Cadete, Raquel M., Alejandro M. de Las Heras, Anders G. Sandström, Carla Ferreira,
Francisco Gírio, Marie-Françoise Gorwa-Grauslund, Carlos A. Rosa, y César Fonseca.
2016. «Exploring xylose metabolism in Spathaspora Species: XYL1.2 from Spathaspora
passalidarum as the key for efficient anaerobic xylose fermentation in metabolic
engineered Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 167.
https://doi.org/10.1186/s13068-016-0570-6 | |
dc.relation | Carlson, M. 1999. «Glucose repression in yeast». Current Opinion in Microbiology 2 (2):
202-7. https://doi.org/10.1016/S1369-5274(99)80035-6 | |
dc.relation | Carvalho, Walter, Marcio A. Batista, Larissa Canilha, Julio C. Santos, Attilio Converti, y
Silvio S. Silva. 2004. «Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids
and hydrolysate detoxification for xylitol production». Journal of Chemical Technology &
Biotechnology 79 (11): 1308-12. https://doi.org/10.1002/jctb.1131 | |
dc.relation | Chang, Sue-Feng, y Nancy W. Y. Ho. 1988. «Cloning the yeast xylulokinase gene for the
improvement of xylose fermentation». Applied Biochemistry and Biotechnology 17 (1):
313-18. https://doi.org/10.1007/BF02779165 | |
dc.relation | Cheng, Cheng, Rui-Qi Tang, Liang Xiong, Ronald E. Hector, Feng-Wu Bai, y Xin-Qing
Zhao. 2018. «Association of improved oxidative stress tolerance and alleviation of
glucose repression with superior xylose-utilization capability by a natural isolate of
Saccharomyces cerevisiae». Biotechnology for Biofuels 11: 28.
https://doi.org/10.1186/s13068-018-1018-y | |
dc.relation | Chiang, C., y S. G. Knight. 1959. «D-xylose metabolism by cell-free extracts of Penicillium
chrysogenum». Biochimica Et Biophysica Acta 35: 454-63 | |
dc.relation | Chiang, Lin-Chang, Cheng-Shung Gong, Li-Fu Chen, y George T. Tsao. 1981. «Dxylulose fermentation to ethanol by Saccharomyces cerevisiae». Applied and Environmental Microbiology 42 (2): 284-89 | |
dc.relation | Cid, Angel, Carlos Gancedo, y Rosario Lagunas. 1987. «Inactivation of the glucose
transport system in sporulating yeast». FEMS Microbiology Letters 41 (1): 59-61 | |
dc.relation | Cifuentes, Y. A. 2016. «Secuenciación y caracterización del genoma de la cepa
Saccharomyces cerevisiae 202-3 con potencial para la producción de etanol de segunda
generación». Universidad Nacional de Colombia | |
dc.relation | Cifuentes, Yina, Sergio Latorre, Andrés Pinzón, y Mario Velásquez. 2015. «Draft genome
sequence of a natural isolated Saccharomyces cerevisiae from Colombia». En 2015 IEEE
5th International Conference on Computational Advances in Bio and Medical Sciences
(ICCABS), 1-2. https://doi.org/10.1109/ICCABS.2015.7344727 | |
dc.relation | Coelho, Marco A., Carla Gonçalves, José Paulo Sampaio, y Paula Gonçalves. 2013. «Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene». PLOS Genetics 9 (6): e1003587. https://doi.org/10.1371/journal.pgen.1003587 | |
dc.relation | Dário, M. G. 2012. «Efeito da alteração na captação de sacarose ao metabolismo de Saccharomyces cerevisiae.» Text, Universidade de São Paulo.
http://www.teses.usp.br/teses/disponiveis/87/87131/tde-04062012-114632/ | |
dc.relation | De Bari, Isabella, Daniela Cuna, Vincenzo Di Matteo, y Federico Liuzzi. 2014. «Bioethanol production from steam-pretreated corn stover through an isomerase mediated process». New Biotechnology 31 (2): 185-95. https://doi.org/10.1016/j.nbt.2013.12.003 | |
dc.relation | DelaFuente, G. 1970. «Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate». European Journal of Biochemistry 16 (2): 240-43. https://doi.org/10.1111/j.1432-1033.1970.tb01077.x | |
dc.relation | Della-Bianca, Bianca Eli, Thiago Olitta Basso, Boris Ugarte Stambuk, Luiz Carlos Basso,
y Andreas Karoly Gombert. 2013. «What do we know about the yeast strains from the
brazilian fuel ethanol industry? ». Applied Microbiology and Biotechnology 97 (3): 979-91.
https://doi.org/10.1007/s00253-012-4631-x | |
dc.relation | Deng, X. X., y N. W. Ho. 1990. «Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific Note». Applied Biochemistry and Biotechnology 24-25: 193-99 | |
dc.relation | Devadas, Suganthi Martena, Mamatha Ballal, Peralam Yegneswaran Prakash, Manjunath H. Hande, Geetha V. Bhat, y Vinitha Mohandas. 2017. «Auxanographic carbohydrate assimilation method for large scale yeast identification». Journal of Clinical and Diagnostic
Research: JCDR 11 (4): DC01-3. https://doi.org/10.7860/JCDR/2017/25967.9653 | |
dc.relation | Diderich, J. A., J. A., J. M. Schuurmans, M. C. van Gaalen, A. L. Kruckerberg, y K. van Dam. 2001. «Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae». Yeast (Chichester, England) 18 (16): 1515-24. https://doi.org/10.1002/yea.779 | |
dc.relation | Diderich, J. A., M. Schepper, P. van Hoek, M. A. Luttik, J. P. van Dijken, J. T. Pronk, P. Klaassen, et al., 1999. «Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae». The Journal of Biological Chemistry 274 (22): 15350-59. https://doi.org/10.1074/jbc.274.22.15350 | |
dc.relation | Does, A. L., y L. F. Bisson. 1989. «Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis». Applied and Environmental Microbiology 55 (1): 159-64. https://doi.org/10.1128/AEM.55.1.159-164.1989 | |
dc.relation | Elbing, Karin, Christer Larsson, Roslyn M. Bill, Eva Albers, Jacky L. Snoep, Eckhard Boles, Stefan Hohmann, y Lena Gustafsson. 2004. «Role of Hexose Transport in control of glycolytic flux in Saccharomyces cerevisiae». Applied and Environmental Microbiology 70 (9): 5323-30. https://doi.org/10.1128/AEM.70.9.5323-5330.2004 | |
dc.relation | Eliasson, A., E. Boles, B. Johansson, M. Osterberg, J. M. Thevelein, I. Spencer-Martins, H. Juhnke, y B. Hahn-Hägerdal. 2000. «Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae». Applied Microbiology and Biotechnology 53 (4): 376-82 | |
dc.relation | Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2018. «A semi-synthetic regulon enables rapid growth of yeast on xylose». Nature Communications 9 (1): 1233. https://doi.org/10.1038/s41467-018-03645-7 | |
dc.relation | Endalur Gopinarayanan, Venkatesh, y Nikhil U. Nair. 2019. «Pentose metabolism in Saccharomyces cerevisiae: The need to engineer global regulatory systems». Biotechnology Journal 14 (1): e1800364. https://doi.org/10.1002/biot.201800364 | |
dc.relation | Espinoza-Acosta, José Luis. 2020. «Biotechnological production of xylitol from agricultural waste». Biotecnia 22 (1): 126-34. https://doi.org/10.18633/biotecnia.v22i1.1160 | |
dc.relation | Farwick, A., S. Bruder, V. Schadeweg, M. Oreb, y E. Boles. 2014. «Engineering of yeast Hexose Transporters to transport D-Xylose without Inhibition by D-Glucose». Proceedings of the National Academy of Sciences 111 (14): 5159-64. https://doi.org/10.1073/pnas.1323464111 | |
dc.relation | Fernández, R., P. Herrero, S. Gascón, y F. Moreno. 1984. «Xylose induced decrease in Hexokinase PII activity confers resistance to carbon catabolite repression of invertase synthesis in Saccharomyces carlsbergensis». Archives of Microbiology 139 (2): 139-42.
https://doi.org/10.1007/BF00401988 | |
dc.relation | Fukuda, Akira, Yuki Kuriya, Jin Konishi, Kozue Mutaguchi, Takeshi Uemura, Daisuke Miura, y Masahiro Okamoto. 2018. «Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae». Journal of Bioscience and Bioengineering 127 (5): 563-69. https://doi.org/10.1016/j.jbiosc.2018.10.020 | |
dc.relation | Garcia Sanchez, Rosa, Kaisa Karhumaa, César Fonseca, Violeta Sànchez Nogué, João RM Almeida, Christer U. Larsson, Oskar Bengtsson, Maurizio Bettiga, Bärbel HahnHägerdal, y Marie F. Gorwa-Grauslund. 2010. «Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering». Biotechnology for Biofuels 3 (1): 13. https://doi.org/10.1186/1754-6834-3-13 | |
dc.relation | Gietz, R. D., A. ST Jean, R. A. Woods, y R. H. Schiestl. 1992. «Improved method for high efficiency transformation of intact yeast cells.» Nucleic Acids Research 20 (6): 1425 | |
dc.relation | Gietz, R. D., y R. A. Woods. 2002. «Transformation of yeast by Lithium Acetate/singlestranded carrier DNA/Polyethylene Glycol method». Methods in Enzymology 350: 87-96 | |
dc.relation | Gietz, R. Daniel, y Robert H. Schiestl. 2007. «High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method». Nature Protocols 2 (1): 31-34. https://doi.org/10.1038/nprot.2007.13 | |
dc.relation | Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert,
et al., 1996. «Life with 6000 Genes». Science (New York, N.Y.) 274 (5287): 546, 563-67 | |
dc.relation | Gonçalves, D. L. 2014. «Influência dos transportadores de açúcares na fermentação de
xilose por linhagens recombinantes de Saccharomyces cerevisiae». Tese (Doutorado em
Bioquímica), Florianópolis - SC: Universidade Federal de Santa Catarina | |
dc.relation | Gonçalves, D. L., A. Matsushika, B. B. de Sales, T. Goshima, E. P. S. Bon, y B. U.
Stambuk. 2014. «Xylose and xylose/glucose co-fermentation by recombinant
Saccharomyces cerevisiae strains expressing individual Hexose Transporters». Enzyme
and Microbial Technology 63: 13-20. https://doi.org/10.1016/j.enzmictec.2014.05.003 | |
dc.relation | Gong, C. S., T. A. Claypool, L. D. McCracken, C. M. Maun, P. P. Ueng, y G. T. Tsao.
1983. «Conversion of pentoses by yeasts». Biotechnology and Bioengineering 25 (1): 85-
102. https://doi.org/10.1002/bit.260250108 | |
dc.relation | Gong, Cheng-Shung, Li-Fu Chen, Michael C. Flickinger, Lin-Chang Chiang, y George T.
Tsao. 1981. «Production of ethanol from D-Xylose by using D-xylose isomerase and
yeasts». Applied and Environmental Microbiology 41 (2): 430-36 | |
dc.relation | Granström, Tom Birger, Goro Takata, Masaaki Tokuda, y Ken Izumori. 2004. «Izumoring:
A novel and complete strategy for bioproduction of rare sugars». Journal of Bioscience
and Bioengineering 97 (2): 89-94. https://doi.org/10.1016/S1389-1723(04)70173-5 | |
dc.relation | Grunstein, Michael, y Susan M. Gasser. 2013. «Epigenetics in Saccharomyces
cerevisiae». Cold Spring Harbor Perspectives in Biology 5 (7).
https://doi.org/10.1101/cshperspect.a017491 | |
dc.relation | Gueldener, U., J. Heinisch, G. J. Koehler, D. Voss, y J. H. Hegemann. 2002. «A second
set of LoxP marker cassettes for Cre-mediated multiple gene knockouts in budding
yeast». Nucleic Acids Research 30 (6): e23 | |
dc.relation | Güldener, Ulrich, Susanne Heck, Thomas Fiedler, Jens Beinhauer, y Johannes H.
Hegemann. 1996. «A new efficient gene disruption cassette for repeated use in budding
yeast». Nucleic Acids Research 24 (13): 2519-24. https://doi.org/10.1093/nar/24.13.2519 | |
dc.relation | Hahn-hägerdal, B., T. Lindén, T. Senac, y K. Skoog. 1991. «Ethanolic fermentation of
pentoses in lignocellulose hydrolysates». Applied Biochemistry and Biotechnology 28-29
(1): 131-44. https://doi.org/10.1007/BF02922595 | |
dc.relation | Hahn-Hägerdal, Bärbel, Sissi Berner, y Kerstin Skoog. 1986. «Improved ethanol
production from xylose with glucose isomerase and Saccharomyces cerevisiae Using the
respiratory inhibitor azide». Applied Microbiology and Biotechnology 24 (4): 287-93.
https://doi.org/10.1007/BF00257051 | |
dc.relation | Hamacher, Tanja, Jessica Becker, Márk Gárdonyi, Bärbel Hahn-Hägerdal, y Eckhard
Boles. 2002. «Characterization of the xylose-transporting properties of yeast hexose
transporters and their influence on xylose utilization». Microbiology (Reading, England)
148 (Pt 9): 2783-88. https://doi.org/10.1099/00221287-148-9-2783 | |
dc.relation | Hammond, John R. M. 2003. «Yeast Genetics». En Brewing Microbiology, editado por
Fergus G. Priest y Iain Campbell, 67-112. Springer US. https://doi.org/10.1007/978-1-
4419-9250-5_3 | |
dc.relation | Han, Ji-Hye, Ju-Yong Park, Hyun Woo Kang, Gi-Wook Choi, Bong-Woo Chung, y Jiho
Min. 2010. «Specific Expression Patterns of Xyl1, Xyl2 and Xyl3 in Response to different
sugars in Pichia stipitis». Journal of Microbiology and Biotechnology 20 (5): 946-49.
https://doi.org/10.4014/jmb.0912.12028 | |
dc.relation | Hanly, T. J., y M. A. Henson. 2013. «Dynamic metabolic modeling of a microaerobic yeast
co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures.»,
2013, sec. 6:44 | |
dc.relation | Harju, S., H. Fedosyuk, y K. R. Peterson. 2004. «Rapid Isolation of Yeast Genomic DNA:
Bust n’ Grab». BMC Biotechnology 4 (abril): 8. https://doi.org/10.1186/1472-6750-4-8 | |
dc.relation | Hector, R. E., J. A. Mertens, M. J. Bowman, N. N. Nichols, M. A. Cotta, y S. R. Hughes.
2011. «Saccharomyces cerevisiae Engineered for Xylose Metabolism Requires
Gluconeogenesis and the Oxidative Branch of the Pentose Phosphate Pathway for Aerobic Xylose Assimilation». Yeast (Chichester, England) 28 (9): 645-60.
https://doi.org/10.1002/yea.1893 | |
dc.relation | Heredia, C. F., A. Sols, y G. Dela Fuente. 1968. «Specificity of the constitutive hexose
transport in yeast». European Journal of Biochemistry 5 (3): 321-29.
https://doi.org/10.1111/j.1432-1033.1968.tb00373.x | |
dc.relation | Ho, Nancy W. Y., y Sue-Fen Chang. 1989. «Cloning of yeast xylulokinase gene by
complementation of E. coli and yeast mutations». Enzyme and Microbial Technology 11
(7): 417-21. https://doi.org/10.1016/0141-0229(89)90136-1 | |
dc.relation | Hofer, M., y F. R. Nassar. 1987. «Aerobic and anaerobic uptake of sugars in
Schizosaccharomyces pombe». Microbiology 133 (8): 2163-72.
https://doi.org/10.1099/00221287-133-8-2163 | |
dc.relation | Hohenschuh, William, Ronald Hector, y Ganti S. Murthy. 2015. «A dynamic flux balance
model and bottleneck identification of glucose, xylose, xylulose co-fermentation in
Saccharomyces cerevisiae». Bioresource Technology 188: 153-60.
https://doi.org/10.1016/j.biortech.2015.02.015 | |
dc.relation | Hou, Jin, Chenxi Qiu, Yu Shen, Hongxing Li, y Xiaoming Bao. 2017. «Engineering of
Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose». FEMS
Yeast Research 17 (4). https://doi.org/10.1093/femsyr/fox034 | |
dc.relation | Hou, X. 2012. «anaerobic xylose fermentation by Spathaspora passalidarum». Applied
Microbiology and Biotechnology 94 (1): 205-14. https://doi.org/10.1007/s00253-011-3694-
4 | |
dc.relation | Hovsepian, Junie, Quentin Defenouillère, Véronique Albanèse, Libuše Váchová, Camille
Garcia, Zdena Palková, y Sébastien Léon. 2017. «multilevel regulation of an α-arrestin by
glucose depletion controls Hexose Transporter endocytosis». The Journal of Cell Biology
216 (6): 1811-31. https://doi.org/10.1083/jcb.201610094 | |
dc.relation | Howard, R. L., E. Abotsi, EL Jansen van Rensburg, y S. Howard. 2003. «Lignocellulose
biotechnology: issues of bioconversion and enzyme production». African Journal of
Biotechnology 2 (12): 602-19. https://doi.org/10.4314/ajb.v2i12.14892 | |
dc.relation | Hsiao, H Y, L C Chiang, P P Ueng, y G T Tsao. 1982. «Sequential utilization of mixed
monosaccharides by yeasts». Applied and Environmental Microbiology 43 (4): 840-45 | |
dc.relation | Huxley, C., E. D. Green, y I. Dunham. 1990. «Rapid Assessment of S. cerevisiae Mating
Type by PCR». Trends in Genetics: TIG 6 (8): 236 | |
dc.relation | Ito, Keisuke, Sohei Ito, Tatsuro Shimamura, Yasuaki Kawarasaki, Keiko Abe, Takumi
Misaka, Takuya Kobayashi, y So Iwata. 2010. «Crystallization and preliminary X-ray
analysis of a glucansucrase from the dental caries pathogen Streptococcus mutans».
Acta Crystallographica Section F: Structural Biology and Crystallization Communications
66 (Pt 9): 1086-88. https://doi.org/10.1107/S1744309110029714 | |
dc.relation | Jeffries, T. W., y N. Q. SHI. 1999. «Genetic engineering for improved xylose fermentation
by yeasts». Advances in Biochemical Engineering/Biotechnology 65: 117-61 | |
dc.relation | Jeffries, Thomas W., Igor V. Grigoriev, Jane Grimwood, José M. Laplaza, Andrea Aerts,
Asaf Salamov, Jeremy Schmutz, et al. 2007. «Genome sequence of the lignocellulosebioconverting and xylose-fermenting yeast Pichia Stipitis». Nature Biotechnology 25 (3):
319-26. https://doi.org/10.1038/nbt1290 | |
dc.relation | Jeppsson, H, S Yu, y B Hahn-Hägerdal. 1996. «Xylulose and glucose fermentation by
Saccharomyces cerevisiae in chemostat culture.» Applied and Environmental
Microbiology 62 (5): 1705-9 | |
dc.relation | Johansson, Björn, y Bärbel Hahn-Hägerdal. 2002. «the non-oxidative pentose phosphate
pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces
cerevisiae TMB3001». FEMS Yeast Research 2 (3): 277-82.
https://doi.org/10.1016/S1567-1356(02)00114-9 | |
dc.relation | Jönsson, Leif J, Björn Alriksson, y Nils-Olof Nilvebrant. 2013. «Bioconversion of
lignocellulose: inhibitors and detoxification». Biotechnology for Biofuels 6 (enero): 16.
https://doi.org/10.1186/1754-6834-6-16 | |
dc.relation | Jordan, Paulina, Jun-Yong Choe, Eckhard Boles, y Mislav Oreb. 2016. «Hxt13, Hxt15,
Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol
transporters». Scientific Reports 6 (1): 23502. https://doi.org/10.1038/srep23502 | |
dc.relation | Kahar, Prihardi, Kazuo Taku, y Shuzo Tanaka. 2011. «Enhancement of Xylose Uptake in
2-Deoxyglucose tolerant mutant of Saccharomyces cerevisiae». Journal of Bioscience
and Bioengineering 111 (5): 557-63. https://doi.org/10.1016/j.jbiosc.2010.12.020 | |
dc.relation | Kilian, S. G., B. A. Prior, y J. C. du Preez. 1993. «The kinetics and regulation of M-xylose
transport in Candida Utilis». World Journal of Microbiology and Biotechnology 9 (3): 357-
60. https://doi.org/10.1007/BF00383080 | |
dc.relation | Kim, S. R., H. Xu, A. Lesmana, U. Kuzmanovic, M. AU, C. Florencia, E. J. Oh, G. Zhang,
K. H. Kim, y Y-S. Jin. 2015. «Deletion of PHO13, encoding haloacid dehalogenase type
iia phosphatase, results in upregulation of the pentose phosphate pathway in
Saccharomyces cerevisiae». Applied and Environmental Microbiology 81 (5): 1601-9.
https://doi.org/10.1128/AEM.03474-14 | |
dc.relation | Kim, Soo Rin, Jeffrey M. Skerker, Wei Kang, Anastashia Lesmana, Na Wei, Adam P.
Arkin, y Yong-Su Jin. 2013. «Rational and evolutionary engineering approaches uncover
a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces
cerevisiae». PLOS ONE 8 (2): e57048. https://doi.org/10.1371/journal.pone.0057048 | |
dc.relation | Kobayashi, Yosuke, Takehiko Sahara, Satoru Ohgiya, Yoichi Kamagata, y Kazuhiro E.
Fujimori. 2018. «Systematic optimization of gene expression of pentose phosphate
pathway enhances ethanol production from a glucose/xylose mixed medium in a
recombinant Saccharomyces cerevisiae». AMB Express 8 (1): 139.
https://doi.org/10.1186/s13568-018-0670-8 | |
dc.relation | Konishi, Jin, Akira Fukuda, Kozue Mutaguchi, y Takeshi Uemura. 2015. «Xylose
fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating
genes». Biotechnology Letters 37 (8): 1623-30. https://doi.org/10.1007/s10529-015-1840-
2 | |
dc.relation | Korabecna, M. 2007. «The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 S
rRNA Gene): Its biological meaning and application». En in Medical Mycology. In
Communicating Current Research and Educational Topics and Trends in Applied
Microbiology, Méndez-Vilas | |
dc.relation | Kötter, P., y M. Ciriacy. 1993. «Xylose Fermentation by Saccharomyces cerevisiae».
Applied Microbiology and Biotechnology 38 (6): 776-83.
https://doi.org/10.1007/BF00167144 | |
dc.relation | Kotyk, A. 1967. «Properties of the sugar carrier in baker’s yeast. II. Specificity of
Transport». Folia Microbiologica 12 (2): 121-31. https://doi.org/10.1007/BF02896872 | |
dc.relation | Kotyk, A., y A. Kleinzeller. 1963. «Transport of D-Xylose and sugar space in baker’s
yeast». Folia Microbiologica 8 (mayo): 156-64. https://doi.org/10.1007/BF02894974 | |
dc.relation | Kruckeberg, A. L. 1996. «The Hexose Transporter Family of Saccharomyces cerevisiae».
Archives of Microbiology 166 (5): 283-92. https://doi.org/10.1007/s002030050385 | |
dc.relation | Kurtzman, Cletus, J. W. Fell, y Teun Boekhout. 2011. The Yeasts: A Taxonomic Study.
5.a ed. Elsevier | |
dc.relation | Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, y J. T. Pronk.
2005. «Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting
Saccharomyces cerevisiae strain». FEMS Yeast Research 5 (10): 925-34.
https://doi.org/10.1016/j.femsyr.2005.04.004 | |
dc.relation | Kwolek-Mirek, Magdalena, y Renata Zadrag-Tecza. 2014. «Comparison of methods used
for assessing the viability and vitality of yeast cells». FEMS Yeast Research 14 (7): 1068-
79. https://doi.org/10.1111/1567-1364.12202 | |
dc.relation | Lagunas, R., C. Dominguez, A. Busturia, y M. J. Sáez. 1982. «Mechanisms of
appearance of the pasteur effect in Saccharomyces cerevisiae: inactivation of sugar
transport systems». Journal of Bacteriology 152 (1): 19-25 | |
dc.relation | Lancheros-Castaneda, S., D. Morales Fonseca, y M. Velásquez Lozano. 2015. «Increase
in second generation ethanol production by different nutritional conditions from sugarcane bagasse hydrolysate using a Saccharomyces cerevisiae Native Strain». Chemical
Engineering Transactions 43 (mayo): 223-28. https://doi.org/10.3303/CET1543038 | |
dc.relation | Larochelle, M., S. Drouin, F. Robert, y B. Turcotte. 2006. «Oxidative stress-activated Zinc
Cluster protein Stb5 has dual Activator/Repressor functions required for pentose
phosphate pathway regulation and NADPH production». Molecular and Cellular Biology
26 (17): 6690-6701. https://doi.org/10.1128/MCB.02450-05 | |
dc.relation | Leão, Cecília, y N. van Uden. 1985. «Effects of ethanol and other alkanols on the
temperature relations of glucose transport and fermentation in Saccharomyces
cerevisiae». Applied Microbiology and Biotechnology 22 (5): 359-63.
https://doi.org/10.1007/BF00582420 | |
dc.relation | Lee, Hung. 1998. «Review: The structure and function of yeast xylose (aldose)
reductases». Yeast 14 (11): 977-84. https://doi.org/10.1002/(SICI)1097-
0061(199808)14:11<977::AID-YEA302>3.0.CO;2-J | |
dc.relation | Lee, T.-H., M.-D. Kim, Y.-C. Park, S.-M. Bae, Y.-W. Ryu, y J.-H. Seo. 2003. «effects of
xylulokinase activity on ethanol production from d-xylulose by recombinant
Saccharomyces cerevisiae». Journal of Applied Microbiology 95 (4): 847-52 | |
dc.relation | Lee, W.-J., M.-D. Kim, Y.-W. Ryu, L. F. Bisson, y J.-H. Seo. 2002. «Kinetic studies on
glucose and xylose transport in Saccharomyces cerevisiae». Applied Microbiology and
Biotechnology 60 (1-2): 186-91. https://doi.org/10.1007/s00253-002-1085-6 | |
dc.relation | Li, Hongxing, Yu Shen, Meiling Wu, Jin Hou, Chunlei Jiao, Zailu Li, Xinli Liu, y Xiaoming
Bao. 2016. «Engineering a wild-type diploid Saccharomyces cerevisiae strain for secondgeneration bioethanol production». Bioresources and Bioprocessing 3 (1).
https://doi.org/10.1186/s40643-016-0126-4 | |
dc.relation | Li, Hongxing, Meiling Wu, Lili Xu, Jin Hou, Ting Guo, Xiaoming Bao, y Yu Shen. 2015.
«Evaluation of Industrial Saccharomyces cerevisiae strains as the chassis cell for secondgeneration bioethanol production». Microbial Biotechnology 8 (2): 266-74.
https://doi.org/10.1111/1751-7915.12245 | |
dc.relation | Lin, Yan, y Shuzo Tanaka. 2006. «Ethanol fermentation from biomass resources: current
state and prospects». Applied Microbiology and Biotechnology 69 (6): 627-42.
https://doi.org/10.1007/s00253-005-0229-x | |
dc.relation | Lin, Zhenguo, y Wen-Hsiung Li. 2011. «Expansion of Hexose Transporter genes was
associated with the evolution of aerobic fermentation in yeasts». Molecular Biology and
Evolution 28 (1): 131-42. https://doi.org/10.1093/molbev/msq184 | |
dc.relation | Lindén, Torbjörn, y Bärbel Hahn-Hägerdal. 1989. «Fermentation of lignocellulose
hydrolysates with yeasts and xylose isomerase». Enzyme and Microbial Technology 11
(9): 583-89. https://doi.org/10.1016/0141-0229(89)90086-0 | |
dc.relation | Lohr, D. 1997. «Nucleosome transactions on the promoters of the yeast GAL and PHO
genes». The Journal of Biological Chemistry 272 (43): 26795-98 | |
dc.relation | Lõoke, M., K. Kristjuhan, y A. Kristjuhan. 2011. «Extraction of genomic DNA from yeasts
for PCR-Based applications». BioTechniques 50 (5): 325-28.
https://doi.org/10.2144/000113672 | |
dc.relation | Ma, Jun, y Mark Ptashne. 1987. «The carboxy-terminal 30 amino acids of GAL4 are
recognized by GAL80». Cell 50 (1): 137-42. https://doi.org/10.1016/0092-8674(87)90670-
2 | |
dc.relation | Maier, Andreas, Bernhard Völker, Eckhard Boles, y Günter Fred Fuhrmann. 2002.
«Characterisation of glucose transport in Saccharomyces cerevisiae with plasma
membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1,
Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 Transporters». FEMS Yeast Research 2 (4): 539-50.
https://doi.org/10.1111/j.1567-1364.2002.tb00121.x | |
dc.relation | Malakar, Pushkar, y Kareenhalli V. Venkatesh. 2014. «GAL regulon of Saccharomyces
cerevisiae performs optimally to maximize growth on galactose». FEMS Yeast Research
14 (2): 346-56. https://doi.org/10.1111/1567-1364.12109 | |
dc.relation | Maleszka, R., y H. Schneider. 1984. «Involvement of oxygen and mitochondrial function in
the metabolism of D-Xylulose by Saccharomyces cerevisiae». Archives of Biochemistry
and Biophysics 228 (1): 22-30 | |
dc.relation | Maniatis, T., E. F. Fritsch, y J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. 2nd ed. New York, NY: Cold Spring Harbor Laboratory Press | |
dc.relation | Maqueda, Matilde, Emiliano Zamora, Nieves Rodríguez-Cousiño, y Manuel Ramírez.
2010. «Wine yeast molecular typing using a simplified method for simultaneously
extracting mtDNA, nuclear DNA and virus DsRNA». Food Microbiology 27 (2): 205-9.
https://doi.org/10.1016/j.fm.2009.10.004 | |
dc.relation | Marsit, Souhir, Adriana Mena, Frédéric Bigey, François-Xavier Sauvage, Arnaud Couloux,
Julie Guy, Jean-Luc Legras, Eladio Barrio, Sylvie Dequin, y Virginie Galeote. 2015.
«evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in
wine yeasts». Molecular Biology and Evolution 32 (7): 1695-1707.
https://doi.org/10.1093/molbev/msv057 | |
dc.relation | Matsushika, A., T. Goshima, y T. Hoshino. 2014. «Transcription analysis of recombinant
industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis
for fermentation of glucose and xylose». Microbial Cell Factories 13: 16.
https://doi.org/10.1186/1475-2859-13-16 | |
dc.relation | Matsushika, A., H. Inoue, T. Kodaki, y S. Sawayama. 2009. «Ethanol production from
xylose in engineered Saccharomyces cerevisiae Strains: current state and perspectives».
Applied Microbiology and Biotechnology 84 (1): 37-53. https://doi.org/10.1007/s00253-
009-2101-x | |
dc.relation | Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, H. Inoue, K. Murakami, O. Takimura,
y S. Sawayama. 2008. «Expression of protein engineered NADP+ -dependent xylitol
dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces
cerevisiae». Applied Microbiology and Biotechnology 81 (2): 243-55.
https://doi.org/10.1007/s00253-008-1649-1 | |
dc.relation | Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, y S. Sawayama. 2008. «Bioethanol
production from xylose by recombinant Saccharomyces cerevisiae expressing xylose
reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase». Journal of
Bioscience and Bioengineering 105 (3): 296-99. https://doi.org/10.1263/jbb.105.296 | |
dc.relation | McClellan, C. J., y L. F. Bisson. 1988. «Glucose Uptake in Saccharomyces cerevisiae
Grown under Anaerobic Conditions: effect of null mutations in the hexokinase and
glucokinase structural genes». Journal of Bacteriology 170 (11): 5396-5400.
https://doi.org/10.1128/jb.170.11.5396-5400.1988 | |
dc.relation | McIlwain, Sean J., David Peris, Maria Sardi, Oleg V. Moskvin, Fujie Zhan, Kevin S.
Myers, Nicholas M. Riley, et al. 2016. «Genome sequence and analysis of a stresstolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research». G3:
Genes|Genomes|Genetics 6 (6): 1757-66. https://doi.org/10.1534/g3.116.029389 | |
dc.relation | Michael, Drew G., Ezekiel J. Maier, Holly Brown, Stacey R. Gish, Christopher Fiore,
Randall H. Brown, y Michael R. Brent. 2016. «Model-based transcriptome engineering
promotes a fermentative transcriptional state in yeast». Proceedings of the National
Academy of Sciences 113 (47): E7428-37. https://doi.org/10.1073/pnas.1603577113 | |
dc.relation | Milessi, Thais Suzane, Patricia M. Aquino, Cláudia R. Silva, Guilherme S. Moraes, Teresa
C. Zangirolami, Roberto C. Giordano, y Raquel L. C. Giordano. 2018. «Influence of key
variables on the simultaneous isomerization and fermentation (SIF) of xylose by a native
Saccharomyces cerevisiae strain co-encapsulated with xylose isomerase for 2G ethanol
production». Biomass and Bioenergy 119 (diciembre): 277-83.
https://doi.org/10.1016/j.biombioe.2018.09.016 | |
dc.relation | Mittelman, Karin, y Naama Barkai. 2017. «the genetic requirements for pentose
fermentation in budding yeast». G3 (Bethesda, Md.) 7 (6): 1743-52.
https://doi.org/10.1534/g3.117.039610 | |
dc.relation | Monošík, R., P. Magdolen, M. Stredanský, y E. Šturdík. 2013. «Monitoring of
monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry». Food Chemistry 138 (1): 220-26.
https://doi.org/10.1016/j.foodchem.2012.10.039 | |
dc.relation | Moreno, Fernando, Montserrat Vega, y Pilar Herrero. 2016. «The nuclear Hexokinase 2
acts as a glucose sensor in Saccharomyces cerevisiae». The Journal of Biological
Chemistry 291 (32): 16478. https://doi.org/10.1074/jbc.L116.738237 | |
dc.relation | Mortimer, R. K., y J. R. Johnston. 1986. «Genealogy of principal strains of the yeast
genetic stock center». Genetics 113 (1): 35-43 | |
dc.relation | Moysés, Danuza Nogueira, Viviane Castelo Branco Reis, João Ricardo Moreira de
Almeida, Lidia Maria Pepe de Moraes, y Fernando Araripe Gonçalves Torres. 2016.
«Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects».
International Journal of Molecular Sciences 17 (3). https://doi.org/10.3390/ijms17030207 | |
dc.relation | Muir, Alastair, Elizabeth Harrison, y Alan Wheals. 2011. «A multiplex set of speciesspecific primers for rapid identification of members of the genus Saccharomyces». FEMS
Yeast Research 11 (7): 552-63. https://doi.org/10.1111/j.1567-1364.2011.00745.x | |
dc.relation | Nakano, Kazunori, Ryosuke Katsu, Kiyoshi Tada, y Masatoshi Matsumura. 2000.
«production of highly concentrated xylitol by Candida magnoliae under a microaerobic
condition maintained by simple fuzzy control». Journal of Bioscience and Bioengineering
89 (4): 372-76. https://doi.org/10.1016/S1389-1723(00)88961-6 | |
dc.relation | Nasir, Armanul, Shafkat Shamim Rahman, Md Mahboob Hossain, y Naiyyum Choudhury.
2017. «Isolation of Saccharomyces cerevisiae from pineapple and orange and study of
metal’s effectiveness on ethanol production». European Journal of Microbiology &
Immunology 7 (1): 76-91. https://doi.org/10.1556/1886.2016.00035 | |
dc.relation | NEB. 2017. «PCR Using Q5® High-Fidelity DNA Polymerase (M0491) | NEB». 2017.
https://www.neb.com/protocols/2013/12/13/pcr-using-q5-high-fidelity-dna-polymerasem0491 | |
dc.relation | Ni, H., J. M. Laplaza, y T. W. Jeffries. 2007. «Transposon mutagenesis to improve the
growth of recombinant Saccharomyces cerevisiae on d-Xylose». Applied and
Environmental Microbiology 73 (7): 2061-66. https://doi.org/10.1128/AEM.02564-06 | |
dc.relation | Nijland, Jeroen G., Hyun Yong Shin, Leonie G. M. Boender, Paul P. de Waal, Paul
Klaassen, y Arnold J. M. Driessen. 2017. «Improved xylose metabolism by a CYC8
mutant of Saccharomyces cerevisiae». Appl. Environ. Microbiol. 83 (11): e00095-17.
https://doi.org/10.1128/AEM.00095-17 | |
dc.relation | Nijland, Jeroen G., Erwin Vos, Hyun Yong Shin, Paul P. de Waal, Paul Klaassen, y Arnold
J. M. Driessen. 2016. «Improving pentose fermentation by preventing ubiquitination of
hexose transporters in Saccharomyces cerevisiae». Biotechnology for Biofuels 9: 158.
https://doi.org/10.1186/s13068-016-0573-3 | |
dc.relation | Novo, Maite, Frédéric Bigey, Emmanuelle Beyne, Virginie Galeote, Frédérick Gavory,
Sandrine Mallet, Brigitte Cambon, et al. 2009. «Eukaryote-to-Eukaryote Gene Transfer
Events Revealed by the Genome Sequence of the Wine Yeast Saccharomyces cerevisiae
EC1118». Proceedings of the National Academy of Sciences 106 (38): 16333-38.
https://doi.org/10.1073/pnas.0904673106 | |
dc.relation | Novy, Vera, Bernd Brunner, Gerdt Müller, y Bernd Nidetzky. 2017. «Toward “homolactic”
fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a
kinetically efficient L -Lactate dehydrogenase within Pdc1 - Pdc5 deletion background: L -
lactic acid production from glucose and xylose». Biotechnology and Bioengineering 114
(1): 163-71. https://doi.org/10.1002/bit.26048 | |
dc.relation | Osiro, Karen O., Daniel P. Brink, Celina Borgström, Lisa Wasserstrom, Magnus Carlquist,
y Marie F. Gorwa-Grauslund. 2018. «Assessing the effect of D-Xylose on the sugar
signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose
transport and assimilation». FEMS Yeast Research 18 (1).
https://doi.org/10.1093/femsyr/fox096 | |
dc.relation | Özcan, Sabire, y Mark Johnston. 1999. «Function and regulation of yeast Hexose
Transporters». Microbiology and Molecular Biology Reviews 63 (3): 554-69 | |
dc.relation | Panchal, Chandra J., Lynda Bast, Inge Russell, y Graham G. Stewart. 1988. «Repression
of xylose utilization by glucose in xylose-fermenting yeasts». Canadian Journal of
Microbiology 34: 1316-20. https://doi.org/10.1139/m88-230 | |
dc.relation | Parachin, Nádia S., Oskar Bengtsson, Bärbel Hahn‐Hägerdal, y Marie-F. Gorwa‐
Grauslund. 2010. «The Deletion of YLR042c Improves ethanolic xylose fermentation by
recombinant Saccharomyces cerevisiae». Yeast 27 (9): 741-51.
https://doi.org/10.1002/yea.1777 | |
dc.relation | Patiño, M. A. 2015. «Engenharia evolutiva e genômica de leveduras Saccharomyces
cerevisiae recombinantes fermentadoras de xilose». Dissertação (Mestrado em
Biotecnologia e Biociências), Florianópolis - SC: Universidade Federal de Santa Catarina | |
dc.relation | Patiño, M. A., J. P. Ortiz, M. Velásquez, y B. U. Stambuk. 2019. «D-Xylose consumption
by nonrecombinant Saccharomyces cerevisiae: A Review». Yeast (Chichester, England),
junio. https://doi.org/10.1002/yea.3429 | |
dc.relation | Peng, Gang, y James E. Hopper. 2002. «Gene activation by interaction of an inhibitor with
a cytoplasmic signaling protein». Proceedings of the National Academy of Sciences 99
(13): 8548-53. https://doi.org/10.1073/pnas.142100099 | |
dc.relation | Petit, T., J. A. Diderich, A. L. Kruckeberg, C. Gancedo, y K. Van Dam. 2000. «Hexokinase
regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae». Journal of Bacteriology 182 (23): 6815-18.
https://doi.org/10.1128/jb.182.23.6815-6818.2000 | |
dc.relation | Petracek, M. E., y M. S. Longtine. 2002. «PCR-based engineering of yeast genome».
Methods in Enzymology 350: 445-69 | |
dc.relation | Postma, E., W. A. Scheffers, y J. P. van Dijken. 1989. «Kinetics of growth and glucose
transport in glucose-limited chemostat cultures of Saccharomyces Cerevisiae CBS 8066».
Yeast (Chichester, England) 5 (3): 159-65. https://doi.org/10.1002/yea.320050305 | |
dc.relation | Preez, J. C. du, S. H. de Kock, S. G. Kilian, y D. Litthauer. 2000. «The relationship
between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic
chemostat cultures». Antonie Van Leeuwenhoek 77 (4): 379-88.
https://doi.org/10.1023/a:1002744100953 | |
dc.relation | Ramos, J, K Szkutnicka, y V P Cirillo. 1988. «Relationship between low- and high-affinity
glucose transport systems of Saccharomyces cerevisiae». Journal of Bacteriology 170
(11): 5375-77 | |
dc.relation | Rao, Kripa, Silpa Chelikani, Patricia Relue, y Sasidhar Varanasi. 2008. «A Novel
technique that enables efficient conduct of simultaneous isomerization and fermentation
(SIF) of xylose». Applied Biochemistry and Biotechnology 146 (1-3): 101-17.
https://doi.org/10.1007/s12010-007-8122-y | |
dc.relation | Reifenberger, E., E. Boles, y M. Ciriacy. 1997. «Kinetic characterization of individual
hexose transporters of Saccharomyces cerevisiae and their relation to the triggering
mechanisms of glucose repression». European Journal of Biochemistry 245 (2): 324-33 | |
dc.relation | Reifenberger, E., K. Freidel, y M. Ciriacy. 1995. «Identification of Novel HXT genes in
Saccharomyces cerevisiae reveals the impact of individual Hexose Transporters on
Glycolytic Flux». Molecular Microbiology 16 (1): 157-67 | |
dc.relation | Reis, V. C. B. 2012. «Modificações genéticas em linhagem industrial de Saccharomyces
cerevisiae para a fermentação de xilose». Tese (Doutorado em Biologia Molecular),
Universidade de Brasília. http://repositorio.unb.br/handle/10482/13119 | |
dc.relation | Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, et al.
2000. «Genome-wide location and function of DNA binding proteins». Science (New York,
N.Y.) 290 (5500): 2306-9. https://doi.org/10.1126/science.290.5500.2306 | |
dc.relation | Richard, P., M. H. Toivari, y M. Penttilä. 1999. «Evidence that the gene YLR070c of
Saccharomyces cerevisiae encodes a xylitol dehydrogenase». FEBS Letters 457 (1): 135-
38 | |
dc.relation | Richard, P., M. H. Toivari, y M. Penttilä. 2000. «The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism». FEMS Microbiology Letters 190 (1): 39-43. https://doi.org/10.1111/j.1574-6968.2000.tb09259.x | |
dc.relation | Rodriguez-Peña, J. M., V. J. Cid, J. Arroyo, y C. Nombela. 1998. «The YGR194c (XKS1)
gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae».
FEMS Microbiology Letters 162 (1): 155-60 | |
dc.relation | Roy, Adhiraj, Yong-Bae Kim, Kyu Hong Cho, y Jeong-Ho Kim. 2014. «Glucose starvationinduced turnover of the yeast glucose transporter Hxt1». Biochimica et biophysica acta
1840 (9): 2878-85. https://doi.org/10.1016/j.bbagen.2014.05.004 | |
dc.relation | Sabatinos, SarahA., y SusanL. Forsburg. 2009. «Measuring DNA content by flow
cytometry in fission yeast». En DNA Replication, editado por Sonya Vengrova y Jacob Z.
Dalgaard, 449-61. Methods in Molecular Biology 521. Humana Press.
https://doi.org/10.1007/978-1-60327-815-7_25 | |
dc.relation | Sá-Correia, I., y N. van Uden. 1983. «Effect of ethanol on the fructose transport system of
Kluyveromyces fragilis». Biotechnology Letters 5 (6): 413-18.
https://doi.org/10.1007/BF00131283 | |
dc.relation | Sales, B. de, B. Scheid, D. Gonçalves, M. Knychala, A. Matsushika, E. Bon, y Boris U.
Stambuk. 2015. «Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis
allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae».
Biotechnology Letters 37 (10): 1973-82. https://doi.org/10.1007/s10529-015-1893-2 | |
dc.relation | Saloheimo, A., J. Rauta, O. V. Stasyk, A. A. Sibirny, M. Penttilä, y L. Ruohonen. 2007.
«Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains
expressing heterologous and homologous permeases». Applied Microbiology and
Biotechnology 74 (5): 1041-52. https://doi.org/10.1007/s00253-006-0747-1 | |
dc.relation | Sambrook, J., y D. W. Russell. 2001. Molecular Cloning: A laboratory manual. CSHL
Press | |
dc.relation | Sánchez, Sebastián, Vicente Bravo, Eulogio Castro, Alberto J. Moya, y Fernando
Camacho. 2002. «The fermentation of mixtures of D-glucose and D-xylose by Candida
shehatae, Pichia stipitis or Pachysolen tannophilus to Produce Ethanol». Journal of
Chemical Technology & Biotechnology 77 (6): 641-48. https://doi.org/10.1002/jctb.622 | |
dc.relation | Sato, Trey K., Mary Tremaine, Lucas S. Parreiras, Alexander S. Hebert, Kevin S. Myers,
Alan J. Higbee, Maria Sardi, et al. 2016. «Directed evolution reveals unexpected epistatic
interactions that alter metabolic regulation and enable anaerobic xylose use by
Saccharomyces cerevisiae». PLoS Genetics 12 (10): e1006372.
https://doi.org/10.1371/journal.pgen.1006372 | |
dc.relation | Scalcinati, Gionata, José Manuel Otero, Jennifer R. H. Van Vleet, Thomas W. Jeffries,
Lisbeth Olsson, y Jens Nielsen. 2012. «Evolutionary engineering of Saccharomyces
cerevisiae for efficient aerobic xylose consumption». FEMS Yeast Research 12 (5): 582-
97. https://doi.org/10.1111/j.1567-1364.2012.00808.x | |
dc.relation | Schiestl, R. H., y R. D. Gietz. 1989. «High efficiency transformation of intact yeast cells
using single stranded nucleic acids as a carrier». Current Genetics 16 (5-6): 339-46.
https://doi.org/10.1007/BF00340712 | |
dc.relation | Schuddemat, J., P. J. Van den Broek, y J. Van Steveninck. 1986. «Effect of xylose
incubation on the glucose transport system in Saccharomyces cerevisiae». Biochimica Et
Biophysica Acta 861 (3): 489-93. https://doi.org/10.1016/0005-2736(86)90459-1 | |
dc.relation | Sedlak, M., y N. W. Y. Ho. 2004. «Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces Yeast Capable of cofermenting glucose and xylose». Applied Biochemistry and Biotechnology 113-116: 403-16. 10.1385/abab:114:1-3:403 | |
dc.relation | Serrano, R., y G. Delafuente. 1974. «Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae». Molecular and Cellular Biochemistry 5 (3): 161-71. https://doi.org/10.1007/BF01731379 | |
dc.relation | SGD. 2017. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2017. http://www.yeastgenome.org/ | |
dc.relation | SGD. 2018. «Saccharomyces Genome Database: the genomics resource of budding yeast». 2018. https://www.yeastgenome.org/locus/S000003920 | |
dc.relation | Sharma, Shalley, Eldho Varghese, Anju Arora, K. N. Singh, Surender Singh, Lata Nain, y
Debarati Paul. 2018. «Augmenting pentose utilization and ethanol production of native
Saccharomyces cerevisiae LN using medium engineering and response surface
methodology». Frontiers in Bioengineering and Biotechnology 6: 132.
https://doi.org/10.3389/fbioe.2018.00132 | |
dc.relation | Shen, Y., X. Chen, B. Peng, L. Chen, J. Hou, y X. Bao. 2012. «An efficient xylosefermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive
evolution and its global transcription profile». Applied Microbiology and Biotechnology 96
(4): 1079-91. https://doi.org/10.1007/s00253-012-4418-0 | |
dc.relation | Shoham, M., y T. A. Steitz. 1982. «The 6-Hydroxymethyl group of a hexose is essential
for the substrate-induced closure of the cleft in hexokinase». Biochimica Et Biophysica
Acta 705 (3): 380-84. https://doi.org/10.1016/0167-4838(82)90260-6 | |
dc.relation | Smiley, Karl L., y Paul L. Bolen. 1982. «Demonstration of D-xylose reductase and Dxylitol dehydrogenase in Pachysolen tannophilus». Biotechnology Letters 4 (9): 607-10.
https://doi.org/10.1007/BF00127793 | |
dc.relation | Smith, J., E. van Rensbeurg, y J. F. Görgens. 2014. «Simultaneously improving xylose
fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of
recombinant Saccharomyces cerevisiae harbouring xylose isomerase». BMC
Biotechnology 14: 41. https://doi.org/10.1186/1472-6750-14-41 | |
dc.relation | Sonderegger, M., y U. Sauer. 2003. «Evolutionary engineering of Saccharomyces
cerevisiae for anaerobic growth on xylose». Applied and Environmental Microbiology 69
(4): 1990-98 | |
dc.relation | Stambuk, B. U., B. Dunn, S. L. Alves, E. H. Duval, y G. Sherlock. 2009. «Industrial fuel
ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1
and B6 biosynthesis». Genome Research 19 (12): 2271-78.
https://doi.org/10.1101/gr.094276.109 | |
dc.relation | Stambuk, B. U., E. C. A. Eleutherio, L. M. Florez-pardo, A. M. Souto-maior, y E. P. S.
Bon. 2008. «Brazilian potential for biomass ethanol: challenge of using hexose and
pentose co-fermenting yeast strains», 2008, sec. 67 | |
dc.relation | Stambuk, Boris U., Mary Ann Franden, Arjun Singh, y Min Zhang. 2003. «D-Xylose
transport by Candida succiphila and Kluyveromyces marxianus». Applied Biochemistry
and Biotechnology 105-108: 255-63. https://doi.org/10.1385/abab:106:1-3:255 | |
dc.relation | Subtil, T., y E. Boles. 2012. «Competition between pentoses and glucose during uptake
and catabolism in recombinant Saccharomyces cerevisiae». Biotechnology for Biofuels 5:
14. https://doi.org/10.1186/1754-6834-5-14 | |
dc.relation | Suihko, M.-L., y K. Poutanen. 1984. «D-xylulose fermentation by free and immobilized
Saccharomyces cerevisiae cells». Biotechnology Letters 6 (3): 189-94.
https://doi.org/10.1007/BF00127037 | |
dc.relation | Tamari, Zvi, Dalia Rosin, Yoav Voichek, y Naama Barkai. 2014. «Coordination of gene
expression and growth-rate in natural populations of budding yeast». PloS One 9 (2):
e88801. https://doi.org/10.1371/journal.pone.0088801 | |
dc.relation | Tamari, Zvi, Avihu H. Yona, Yitzhak Pilpel, y Naama Barkai. 2016. «Rapid evolutionary
adaptation to growth on an “unfamiliar” carbon source». BMC Genomics 17: 674.
https://doi.org/10.1186/s12864-016-3010-x | |
dc.relation | Thompson, J. R., E. Register, J. Curotto, M. Kurtz, y R. Kelly. 1998. «An improved
protocol for the preparation of yeast cells for transformation by electroporation». Yeast
(Chichester, England) 14 (6): 565-71. https://doi.org/10.1002/(SICI)1097-
0061(19980430)14:6<565::AID-YEA251>3.0.CO;2-B | |
dc.relation | Timson, David J., Helen C. Ross, y Richard J. Reece. 2002. «Gal3p and Gal1p interact
with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry». The
Biochemical Journal 363 (Pt 3): 515-20 | |
dc.relation | Toivari, Mervi H., Laura Salusjärvi, Laura Ruohonen, y Merja Penttilä. 2004.
«Endogenous xylose pathway in Saccharomyces cerevisiae». Applied and Environmental
Microbiology 70 (6): 3681-86. https://doi.org/10.1128/AEM.70.6.3681-3686.2004 | |
dc.relation | Träff K. L., Jönsson L. J., y Hahn‐Hägerdal B. 2002. «Putative xylose and arabinose
reductases in Saccharomyces cerevisiae». Yeast 19 (14): 1233-41.
https://doi.org/10.1002/yea.913 | |
dc.relation | Trumbly, R. J. 1992. «Glucose repression in the yeast Saccharomyces cerevisiae».
Molecular Microbiology 6 (1): 15-21 | |
dc.relation | Turner, Timothy L., Heejin Kim, In Iok Kong, Jing-Jing Liu, Guo-Chang Zhang, y Yong-Su
Jin. 2016. «Engineering and evolution of Saccharomyces cerevisiae to produce biofuels
and chemicals». Advances in Biochemical Engineering/Biotechnology, diciembre.
https://doi.org/10.1007/10_2016_22 | |
dc.relation | Van Vleet, J. H., T. W. Jeffries, y L. Olsson. 2008. «Deleting the para-nitrophenyl
phosphatase (PNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves
growth and ethanol production on D-xylose». Metabolic Engineering 10 (6): 360-69.
https://doi.org/10.1016/j.ymben.2007.12.002 | |
dc.relation | Van Zyl, C. V., B. A. Prior, S. G. Kilian, y J. L. F. Kock. 1989. «D-Xylose Utilization by
Saccharomyces cerevisiae». Journal of General Microbiology 135 (11): 2791-98.
https://doi.org/10.1099/00221287-135-11-2791 | |
dc.relation | Velásquez, Mario, y Grupo de Investigación en Procesos Químicos y Bioquímicos. 2015.
«Informe técnico final Producción de etanol de segunda generación a partir de hidrolizado
de bagazo de caña por levaduras y bacterias nativas» | |
dc.relation | Verduyn, C., E. Postma, W. A. Scheffers, y J. P. Van Dijken. 1992. «Effect of benzoic acid
on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration
and alcoholic fermentation». Yeast (Chichester, England) 8 (7): 501-17.
https://doi.org/10.1002/yea.320080703 | |
dc.relation | Wahlbom, C. Fredrik, Ricardo R. Cordero Otero, Willem H. van Zyl, Bärbel HahnHägerdal, y Leif J. Jönsson. 2003. «Molecular analysis of a Saccharomyces cerevisiae
mutant with improved ability to utilize xylose shows enhanced expression of proteins
involved in transport, initial xylose metabolism, and the Pentose Phosphate Pathway».
Applied and Environmental Microbiology 69 (2): 740-46.
https://doi.org/10.1128/aem.69.2.740-746.2003 | |
dc.relation | Wang, P. Y., y H. Schneider. 1980. «Growth of Yeasts on D-Xylulose 1». Canadian
Journal of Microbiology 26 (9): 1165-68 | |
dc.relation | Wang, Patrick Y., Charles Shopsis, y Henry Schneider. 1980. «Fermentation of a pentose
by yeasts». Biochemical and Biophysical Research Communications 94 (1): 248-54.
https://doi.org/10.1016/S0006-291X(80)80213-0 | |
dc.relation | Webb, S. R., y H. Lee. 1990. «Regulation of D-Xylose utilization by hexoses in pentosefermenting yeasts». Biotechnology Advances 8 (4): 685-97 | |
dc.relation | Wei, N., H. Xu, S. R. Kim, y Y-S. Jin. 2013. «Deletion of FPS1, encoding
aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces
cerevisiae». Applied and Environmental Microbiology 79 (10): 3193-3201.
https://doi.org/10.1128/AEM.00490-13 | |
dc.relation | Wei, Shan, Yanan Liu, Meiling Wu, Tiantai Ma, Xiangzheng Bai, Jin Hou, Yu Shen, y
Xiaoming Bao. 2018. «Disruption of the transcription factors Thi2p and Nrm1p alleviates
the post-glucose effect on xylose utilization in Saccharomyces cerevisiae». Biotechnology
for Biofuels 11 (1): 112. https://doi.org/10.1186/s13068-018-1112-1 | |
dc.relation | Wenger, Jared W., Katja Schwartz, y Gavin Sherlock. 2010. «Bulk segregant analysis by
high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces
cerevisiae». PLoS Genetics 6 (5): e1000942.
https://doi.org/10.1371/journal.pgen.1000942 | |
dc.relation | Westergaard, S. L., A. P. Oliveira, C. Bro, L. Olsson, y J. Nielsen. 2007. «A systems
biology approach to study glucose repression in the yeast Saccharomyces cerevisiae».
Biotechnology and Bioengineering 96 (1): 134-45. https://doi.org/10.1002/bit.21135 | |
dc.relation | White, T. J., T. Bruns, S. Lee, y J. Taylor. 1990. «38 - Amplification and direct sequencing
of fungal ribosomal RNA genes for phylogenetics». En PCR Protocols, editado por
Michael A. Innis, David H. Gelfand, John J. Sninsky, y Thomas J. White, 315-22. San
Diego: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 | |
dc.relation | Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C. P. Hollenberg, y E. Boles. 1999.
«Concurrent knock-out of at least 20 transporter genes is required to block uptake of
hexoses in Saccharomyces cerevisiae». FEBS Letters 464 (3): 123-28.
https://doi.org/10.1016/s0014-5793(99)01698-1 | |
dc.relation | Xu, Haiqing, Sooah Kim, Hagit Sorek, Youngsuk Lee, Deokyeol Jeong, Jungyeon Kim,
Eun Joong Oh, et al. 2016. «PHO13 deletion-induced transcriptional activation prevents
sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces
cerevisiae». Metabolic Engineering 34 (marzo): 88-96.
https://doi.org/10.1016/j.ymben.2015.12.007 | |
dc.relation | Yablochkova, E. N., O. I. Bolotnikova, N. P. Mikhailova, N. N. Nemova, y A. I. Ginak.
2003. «The activity of xylose reductase and xylitol dehydrogenase in yeasts».
Microbiology 72 (4): 414-17. https://doi.org/10.1023/A:1025032404238 | |
dc.relation | Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, y T. L. Madden. 2012.
«Primer-BLAST: A tool to design target-specific primers for Polymerase Chain Reaction».
BMC Bioinformatics 13: 134. https://doi.org/10.1186/1471-2105-13-134 | |
dc.relation | Young, E., A. Poucher, A. Comer, A. Bailey, y H. Alper. 2011. «Functional survey for
heterologous sugar transport proteins, using Saccharomyces cerevisiae as a Host». Applied and Environmental Microbiology 77 (10): 3311-19.
https://doi.org/10.1128/AEM.02651-10 | |
dc.relation | Young, E., A. Tong, H. Bui, C. Spofford, y H. Alper. 2014. «Rewiring yeast sugar
transporter preference through modifying a conserved protein motif». Proceedings of the
National Academy of Sciences of the United States of America 111 (1): 131-36.
https://doi.org/10.1073/pnas.1311970111 | |
dc.relation | Yu, S., H. Jeppsson, y B. Hahn-Hägerdal. 1995. «Xylulose fermentation by
Saccharomyces cerevisiae and xylose-fermenting yeast strains». Applied Microbiology
and Biotechnology 44 (3): 314-20. https://doi.org/10.1007/BF00169922 | |
dc.relation | Yuan, Dawei, Kripa Rao, Patricia Relue, y Sasidhar Varanasi. 2011. «Fermentation of
biomass sugars to ethanol using native industrial yeast strains». Bioresource Technology
102 (3): 3246-53. https://doi.org/10.1016/j.biortech.2010.11.034 | |
dc.relation | Yuan, Dawei, Kripa Rao, Sasidhar Varanasi, y Patricia Relue. 2012. «A viable method
and configuration for fermenting biomass sugars to ethanol using native Saccharomyces
cerevisiae». Bioresource Technology 117 (agosto): 92-98.
https://doi.org/10.1016/j.biortech.2012.04.005 | |
dc.relation | Zeng, Wei-Yi, Yue-Qin Tang, Min Gou, Zhao-Yong Sun, Zi-Yuan Xia, y Kenji Kida. 2017.
«Comparative transcriptomes reveal novel evolutionary strategies adopted by
Saccharomyces cerevisiae with Improved xylose utilization capability». Applied
Microbiology and Biotechnology 101 (4): 1753-67. https://doi.org/10.1007/s00253-016-
8046-y | |
dc.relation | Zha, J., B-Z. Li, M-H. Shen, M-L. Hu, H. Song, y A. H. Yuan. 2013. «Optimization of CDT-
1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose
and xylose by engineered Saccharomyces cerevisiae», 2013, sec. 8(7): e68317 | |
dc.relation | Zha, Jian, Minghua Shen, Menglong Hu, Hao Song, y Yingjin Yuan. 2014. «Enhanced
expression of genes involved in initial xylose metabolism and the oxidative pentose
phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through
evolutionary engineering». Journal of Industrial Microbiology & Biotechnology 41 (1): 27-
39. https://doi.org/10.1007/s10295-013-1350-y | |
dc.relation | Zhang, F., S. Rodriguez, y J. D. Keasling. 2011. «Metabolic engineering of microbial
pathways for advanced biofuels production». Current Opinion in Biotechnology 22 (6):
775-83. https://doi.org/10.1016/j.copbio.2011.04.024 | |
dc.relation | Zhong, C., M. W. Lau, V. Balan, B. E. Dale, y Y-J. Yuan. 2009. «Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw». Applied Microbiology and Biotechnology 84 (4): 667-76. https://doi.org/10.1007/s00253-009-2001-0 | |
dc.relation | Zyl, C. van, B. A. Prior, S. G. Kilian, y E. V. Brandt. 1993. «Role of D-ribose as a cometabolite in D-Xylose metabolism by Saccharomyces cerevisiae». Applied and Environmental Microbiology 59 (5): 1487-94. https://doi.org/10.1128/AEM.59.5.1487-1494.1993 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Mejoramiento genético de una levadura Saccharomyces cerevisiae aislada en territorio colombiano para la fermentación de xilosa | |
dc.type | Trabajo de grado - Doctorado | |