dc.contributorBustos López, Martha Cristina
dc.contributorDíaz Baez, María Consuelo
dc.contributorResiliencia y Saneamiento, RESA
dc.creatorSánchez Romero, Carlos Alexis
dc.date.accessioned2021-01-20T00:50:19Z
dc.date.available2021-01-20T00:50:19Z
dc.date.created2021-01-20T00:50:19Z
dc.date.issued2020-12-10
dc.identifierSánchez, C. (2020). Evaluación de la toxicidad en sedimentos de los canales del Distrito de Riego de La Ramada mediante la utilización de dos bioensayos [Tesis de Maestría en Ingeniería Ambiental, Universidad Nacional de Colombia] Repositorio Institucional
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78837
dc.description.abstractLa necesidad de agua para la producción agrícola de la sabana occidental del Departamento de Cundinamarca (Colombia) es provista por el distrito de riego de La Ramada, el cual a través de canales suministra agua que proviene desde río Bogotá hasta los campos agrícolas. Sin embargo, en gran parte de esta zona se ha venido dando un cambio en el uso del suelo, los campos agrícolas se han sustituido por parques industriales y centros urbanos, lo cual ha afectado tanto la calidad del agua del distrito como la concentración de contaminantes en aguas y en sedimentos. El objetivo de esta investigación fue determinar si existe toxicidad en sedimentos provenientes de los canales del Distrito de Riego de La Ramada mediante el uso de dos bioensayos. Se seleccionaron tres zonas, una influenciada por actividades agrícolas, otra con influenciada de actividades urbanas y finalmente la tercera con afectación de actividad urbana industrial. En cada zona, se tomaron 17 muestras puntuales de agua y 6 muestras compuestas de sedimentos, en cada uno de los canales de riego. El muestreo se realizó tanto para la época seca como para la de lluvia. A cada muestra de agua se le determinaron las características fisicoquímicas como pH, conductividad eléctrica, nutrientes, DBO5, DQO y COT y microbiológicas (Coliformes totales y fecales) siguiendo los métodos estándares, plaguicidas y antibióticos. Se calculó la relación de adsorción de sodio (RAS), la relación Kelley (KR), el porcentaje de sodio (%Na) y la relación de adsorción de magnesio (RAM). Las muestras de sedimentos se les determinó la textura, el pH, el COT, metales pesados (Cr, Pb, Cd, Ni, Hg, Zn, Cu y As) totales y biodisponibles, así como la toxicidad. Esta última, se evaluó en los elutriados con los organismos de prueba Hydra attenuata y Daphnia magna. Para evaluar la contaminación por metales pesados en los sedimentos se calcularon los índices de carga contaminante (PLI), índice de geoacumulación (Igeo), factor de contaminación (FC), factor de enriquecimiento (EF) y el índice de riesgo ecológico (RI). Los parámetros físico químicos del agua variaron según el área de influencia y época climática (p<0,05), obteniendo para el área agrícola un rango de conductividad eléctrica entre 590 y 910 μS/cm, DBO entre 3 y 159 mg/L, DQO entre 40 y 282 mg/L, SST entre 14 y 165 mg/L, COT entre 9.4 y 63 mg/L, para el área urbana se obtuvo 586 y 2620 μS/cm, DBO entre 18 y 314 mg/L, DQO entre 29 y 399 mg/L, SST entre 5 y 78 mg/L, COT entre 6.9 y 182.6 mg/L y para el urbano industrial 475 y 1783 μS/cm, DBO entre 50 y 2250 mg/L, DQO entre 72 y 3150 mg/L, SST entre 14 y 1880 mg/L, COT entre 20,3 y 266 mg/L. Mientras que el OD se fue menor a 2 mg/L en todas las áreas y los valores de pH se encontraron dentro de lo permitido por la normatividad de Colombia (pH = 4,5-9). Las aguas presentaron altos contenidos de nitrógeno (>1,5mg/L) y fosforo total (>0,075 mg/L) que evidencian su eutroficación. Además, los contenidos de coliformes totales y fecales sobrepasaron los niveles permitidos por la normativa en las tres áreas estudiadas. Los valores del RAS oscilaron entre 5,8 y 32,4 entre las áreas estudiadas, mientras que los índices KR, y % Na indicaron que el uso continuo de estas aguas podría afectar la sostenibilidad de los suelos. Los valores del RAM se encontraban dentro de los valores recomendados (50<RAM). Los sedimentos presentaron texturas con predominio de partículas de arena y las variables medidas en los sedimentos variaron entre áreas de influencia (p<0,05) y no para la temporada climática (p>0,05). Los sedimentos presentaron pH que variaron entre 5,7 y 7,4 y las concentraciones de metales decrecieronde Zn seguido del Cu>Cr>Pb>Ni>As>Cd>Hg y superaron los valores de referencia de la zona (Zn: 86; Cu: 14; Cr: 9; Pb: 15; Ni: 12; As: 3,5; Cd: 1,7: Hg: 0,19 (mg/Kg)) a excepción del arsénico. Se obtuvieron porcentajes de biodisponibilidad de metales pesados entre 3 y 81%. El índice PLI mostró que los sedimentos de las tres áreas de influencia están contaminados, los índices de Igeo, EF, CF muestran que el área menos impactada por actividades antropogénicas fue el área agrícola, seguido del área urbana, mientras que el área urbana industrial fue la más contaminada. Mientras que el índice de riesgo ecológico (RI) indicó un riesgo alto en las áreas urbana y urbana industrial, y bajo en la agrícola. Se obtuvieron concentraciones de Metalaxyl, Fipronil, Clomazone, Ametryn, así como los antibióticos Ciprofloxacina, Trimethoprim y Sulfamethoxazole en aguas y sedimentos. La mayor toxicidad se presentó en el área urbana industrial, seguido de urbana y agrícola. H. attenuata fue más sensible que D. magna que solo presentó toxicidad en el área urbana industrial. Estos resultados evidencian que los canales del distrito de riego reciben descargas de aguas residuales y como se señaló anteriormente, la alta concentración de metales en los sedimentos, el análisis de biodisponibilidad, y los resultados de toxicidad, estarían indicando la potencial llegada de estos contaminantes a la columna de agua. El posterior uso del agua para riego constituiría un riesgo para la salud del ecosistema y de los consumidores.
dc.description.abstractThe need for water for agricultural production in the western savannah of the Department of Cundinamarca (Colombia) is provided by the irrigation district of La Ramada, which through canals supplies water that comes from the Bogotá River to the agricultural fields. However, in much of this area there has been a change in land use, agricultural fields have been replaced by industrial parks and urban centers, which has affected both the district's water quality and the concentration of pollutants. in waters and sediments. The objective of this research was to determine if there is toxicity in sediments from the channels of the La Ramada Irrigation District through the use of two bioassays. Three zones were selected, one influenced by agricultural activities, another influenced by urban activities and finally the third affected by urban industrial activity. In each zone, 17 specific water samples and 6 samples composed of sediments were taken from each of the irrigation channels. Sampling was carried out for both the dry and rainy seasons. Physicochemical characteristics such as pH, electrical conductivity, nutrients, BOD5, COD and TOC and microbiological characteristics (total and fecal coliforms) were determined for each water sample following standard methods, pesticides and antibiotics. Sodium adsorption ratio (RAS), Kelley ratio (KR), sodium percentage (% Na) and magnesium adsorption ratio (RAM) were calculated. Sediment samples were determined for total and bioavailable texture, pH, TOC, heavy metals (Cr, Pb, Cd, Ni, Hg, Zn, Cu and As), as well as toxicity. The latter was evaluated in those elutriated with the test organisms Hydra attenuata and Daphnia magna. To evaluate the contamination by heavy metals in the sediments, the pollutant load indices (PLI), geoaccumulation index (Igeo), contamination factor (FC), enrichment factor (EF) and the ecological risk index (RI) were calculated. The physical-chemical parameters of the water varied according to the area of influence and climatic season (p <0.05), obtaining for the agricultural area a range of electrical conductivity between 590 and 910 μS/cm, BOD between 3 and 159 mg/L, COD between 40 and 282 mg/L, TSS between 14 and 165 mg/L, TOC between 9,4 and 63 mg/L, for the urban area 586 and 2620 μS/cm were obtained, BOD between 18 and 314 mg/L, COD between 29 and 399 mg/L, TSS between 5 and 78 mg/L, TOC between 6,9 and 182,6 mg/L and for urban industrial 475 and 1783 μS/cm, BOD between 50 and 2250 mg/L, COD between 72 and 3150 mg/L, TSS between 14 and 1880 mg/L, TOC between 20.3 and 266 mg/L. While the DO was less than 2 mg/L in all areas and the pH values were within what is allowed by the Colombian regulations (pH = 4,5-9). The waters presented high nitrogen content (>1,5mg/L) and total phosphorus (> 0,075 mg/L) that show their eutrophication. In addition, the contents of total and fecal coliforms exceeded the levels allowed by the regulations in the three areas studied. The RAS values ranged between 5,8 and 32,4 between the studied areas, while the KR and% Na indices indicated that the continuous use of these waters could affect the sustainability of the soils. The RAM values were within the recommended values (50 <RAM). The sediments presented textures with a predominance of sand particles and the variables measured in the sediments varied between areas of influence (p <0,05) and not for the climatic season (p>0,05). The sediments presented pH that varied between 5,7 and 7,4 and the metal concentrations decreased by Zn followed by Cu>Cr> Pb> Ni> As> Cd> Hg and exceeded the reference values of the area (Zn: 86; Cu: 14; Cr: 9; Pb: 15; Ni: 12; As: 3.5; Cd: 1.7: Hg: 0,19 (mg/Kg)) with the exception of arsenic. Heavy metal bioavailability percentages between 3 and 81% were obtained. The PLI index showed that the sediments of the three areas of influence are contaminated, the indices of Igeo, EF, CF show that the area least impacted by anthropogenic activities was the agricultural area, followed by the urban area, while the industrial urban area was the most polluted. While the ecological risk index (IR) indicated a high risk in urban and industrial urban areas, and low in agricultural. Concentrations of Metalaxyl, Fipronil, Clomazone, Ametryn, as well as the antibiotics Ciprofloxacin, Trimethoprim and Sulfamethoxazole, were obtained in water and sediments. The highest toxicity was presented in the industrial urban area, followed by urban and agricultural. H. attenuata was more sensitive than D. magna, which only presented toxicity in the industrial urban area. These results show that the irrigation district canals receive wastewater discharges and, as noted above, the high concentration of metals in the sediments, the bioavailability analysis, and the results of toxicity, would be indicating the potential arrival of these pollutants to the water column. The subsequent use of the water for irrigation would constitute a risk to the health of the ecosystem and consumers.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbella, J., Martínez, M. (2012). Contribution of a tributary stream to eutrophication of Aplicada y Analítica. Revista Colombiana de Química, 41(2), 242–261.
dc.relationAbrahim, G., Parker, R. (2008). Assessment ofheavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 136, 227–238.
dc.relationAlcaldía de Mosquera. (2013). Perfil y agenda ambiental municipio de Mosquera Cundinamarca.
dc.relationAli, H., Khan, E., Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/2019/6730305
dc.relationAli, M. (2010). Fundamentals of Irrigation and on farm Water management. Bangladesh: Springer New York.
dc.relationAloupi, M., Angelidis, M. O. (2002). Pollution studies in the coastal zone. Water, air, and soil pollution, 133, 121–131.
dc.relationAnderson, B.; Jenkins, J. (1942). A time study of events in the life span of daphnia magna. Biological bulletine 83:260-272.
dc.relationAntunes, S., Figueiredo, D., Marques, S., Castro, B., Pereira, Gonçalves, F. (2007). Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Science of the Total Environment, 374, 252–259. https://doi.org/10.1016/j.scitotenv.2006.11.025
dc.relationAPHA. (2017). Methods standard for the Examination of Water and Wastewater. 23 ed. American Public Health Association. Washington DC.
dc.relationArauz, F. (2012). Fitopatología: un enfoque agroecológico. Editorial UCR. San José, Costa Rica.
dc.relationArgüello, H., Bustos, M. (2018). Contamination by Pathogenic Microorganisms in Water used for Agricultural Irrigation on the Sabana de Bogotá, Colombia. Advance Journal of Food Science and Technology.
dc.relationArenas, N., Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infectio, 22(2), 110–119.
dc.relationArroyo, A., Boelens, R. (2013). Aguas robadas: Despojo hídrico y movilación social. Ecuador: Abya Yala
dc.relationAyers, R., Westcot, D. (1985). Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 (revised 1), FAO, Rome, 174 pp.
dc.relationBarragan, L., Rojas, A., (2017). Formulación De Un Plan De Manejo Ambiental Para La Plaza De Mercado “Plaza Naranja” Del Municipio De Funza – Cundinamarca, Colombia. Tesis de grado, Universidad de Distrital Francisco José de Caldas.
dc.relationBarrera, H., Espinosa, A., Álvarez, S. (2019). Contaminación en el Lago de Tota,Colombia: toxicidad aguda en Daphnia magna (Cladócera: Daphniidae) e Hydra attenuata (Hydroida: Hydridae). Revista de Biología Tropical, 67:, 11–23.
dc.relationBiel-Maeso, M., CoradaFernández, C., LaraMartín, P. (2018). Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.12.085
dc.relationBiruk, L., Moretton, J., Lorio, A., De, Weigandt, C., Etcheverry, J., Filippetto, J., Magdaleno, A. (2017). Toxicity and genotoxicity assessment in sediments from the Matanza- Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants. Ecotoxicology and Environmental Safety, 135(August 2016), 302–311. https://doi.org/10.1016/j.ecoenv.2016.09.024
dc.relationBotero, A. M., Martínez-pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias, L. P. (2018). Science of the Total Environment ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088
dc.relationBoyd, C. E. (2020). Water Quality (3rd ed.). Springer nature Switzerland. https://doi.org/10.1007/978-3-030-23335-8
dc.relationBulich, A. (1982). Un método práctico y confiable para monitorear la toxicidad de las muestras acuáticas. Process Biochemistry, 17 (2), 45–47
dc.relationBurton, A. (1992). Sediment toxicity assessment. Boca Raton. United States: CR Press.
dc.relationBustos, M. (1999). Estudo geoquímico de hidrocarbonetos e metais pesados em sedimentos recentes e material vegetal do rio Bogotá e rio magdalena, Colombia. Tesis de maestría. Universidad federal Do Pará.
dc.relationCalle, L. (2005). Desarrollo de un prototipo para adecuar el agua del distrito de riego La Ramada para la producción limpia de hortalizas. Universidad Nacional de Colombia.
dc.relationCámara de Comercio Bogotá. (2015). Caracterización económica y empresarial de diecinueve municipios de Cundinamarca.
dc.relationCarazo, E., Pérez, G., Pérez, M., Chinchilla, C., Chin, J. S., Aguilar-Mora, P. Vryzas, Z. (2018). Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environmental Pollution, 241, 800–809. https://doi.org/10.1016/j.envpol.2018.06.020
dc.relationCardona, A. Parada, A. (2018). Diagnóstico base para el análisis histórico ambiental en el municipio Mosquera, Cundinamarca. Trabajo final de graduación para optar por el título de ingenieras ambiental. Universidad Distrital Francisco José Caldas.
dc.relationCastañeda, M., Lango, F., Navarrete, G. (2017). Heavy Metals in Sediment from Alvarado Lagoon System in Veracruz, México, (3), 1209–1214.
dc.relationChaves, M., Ruvolo, M. (2018). Hydra (Cnidaria, Hydrozoa) como modelo em estudos de ecotoxicidade: Revisão Hydra (Cnidaria, Hydrozoa) as a model in ecotoxicity studies: Review Hydra (Cnidaria, Hydrozoa) como modelo en estudios de ecotoxicidad: Revisión, 1–8.
dc.relationChristophoridis, C., Dedepsidis, D., Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators, 168, 1082–1091. https://doi.org/10.1016/j.jhazmat.2009.02.154
dc.relationCentro de Pensamiento en Estrategias, CDPEE. (2011). Proyecto: planes de competitividad en cuatro (4) provincias de Cundinamarca: almeadas, alto magdalena, Tequendama y sabana occidente. Informe final: plan de competitividad de la provincia de sabana occidente.
dc.relationConnell, D. (2005). Basic Concepts of Environmental Chemistry. Basic Concepts of Environmental Chemistry (second). Boca Raton: Taylor & Francis Group / CRC Press. https://doi.org/10.1201/b12378
dc.relationCorrales, L., Sánchez, L., Quimbayo, M. (2018). Microorganismos potencialmente fitopatógenos en aguas de riego proveniente de la cuenca media del rio Bogotá. NOVA, 16(29), 71–89.
dc.relationCorreal, M., Marthá, J., Sarmiento, R. (2015). Influencia de la variabilidad climática en las enfermedades respiratorias agudas en Bogotá. Biomédica, 35(2), 130–138.
dc.relationCortés, J. M., Troyo, E., Murillo, B., García, J. L., Garatuza, J., Suh, S. (2008). Índices de calidad del agua del acuífero del valle del Yaqui, Sonora. Terra Latinoamericana 27: 27, 133–141.
dc.relationCubides, P. (2018). Evaluación de un tratamiento para mejorar la calidad del agua utilizada para riego en la Sabana occidental de Cundinamarca. Tesis de maestría. Universidad Nacional de Colombia.
dc.relationCui, R., Kwak, J. Il, An, Y. (2018). Ecotoxicology and Environmental Safety Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals. Ecotoxicology and Environmental Safety, 162(March), 63–70. https://doi.org/10.1016/j.ecoenv.2018.06.054
dc.relationDecreto 1594. Ministerio de agricultura. Bogotá, Colombia. 26 de junio de 1984.
dc.relationDel Rosario, M., Alvariño, L., Lannacone, J. (2017). Toxicity of fungicide kresoxim - metil on seven bioindicators of environmental quality. The Biologist, 16(2), 299–321. https://doi.org/10.24039/rtb2017151152
dc.relationDelompré, P., Blewett, T., Goss, G., Glover, C. (2019). Ecotoxicology and Environmental Safety Shedding light on the e ffects of hydraulic fracturing flowback and produced water on phototactic behavior in Daphnia magna. Ecotoxicology and Environmental Safety, 174, 315–323. https://doi.org/10.1016/j.ecoenv.2019.03.006
dc.relationDemetrio, P. M., Rossini, G. D. B., Bonetto, C. A., Ronco, A. E. (2012). Effects of pesticide formulations and active ingredients on the coelenterate Hydra attenuata (Pallas, 1766). Bulletin of Environmental Contamination and Toxicology, 88(1), 15-19.
dc.relationDevesa-rey, R., Díaz-fierros, F., Barral, M. (2011). Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River NW Spain). Environ Monit Assess, 371–388. https://doi.org/10.1007/s10661-010-1742-7
dc.relationDi Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
dc.relationDíaz, C; Bustos, M. Espinosa, A. (2004). Pruebas de toxicidad acuática: Fundamentos y principios. UNILIBROS, Bogotá
dc.relationDíaz, J., Granada, C. (2018). Efecto de las actividades antrópicas sobre las características fisicoquímicas y microbiológicas del río Bogotá a lo largo del municipio de Villapinzón, Colombia, 66(1), 45–52.
dc.relationEbele, A. J., Abou-Elwafa Abdallah, M., Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004
dc.relationElder, F. (1988). Metal Biogeochemistry in Surface-Water Systems A Review of Principles and concepts.
dc.relationEnvironmental Canada. (1990). Biological test method: acute lethality test using Daphnia spp. Report EPS 1/RM/11
dc.relationEPA de EE.UU. (2001). Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. Office of Science and Technology Office of Water. Report: EPA-823-B-01-002
dc.relationEPA de EE. UU. (1996). Método 3050B: digestión ácida de sedimentos, lodos y suelos, Revisión 2. Washington, DC.
dc.relationEPA de EE.UU. (2007). Method 1694. biosolids by HPLC/MS/MSU.S. Agency for International Development: Washington, DC.
dc.relationEspinosa, A. (2018). La calidad del agua y las oportunidades para la vigilancia en Salud Ambiental El agua , un reto para la salud pública La calidad del agua y las oportunidades para la vigilancia en Salud Ambiental. Universidad Nacional de Colombia.
dc.relationFajardo, Á. L., Méndezs, F. J., Hernández, J. F., Molina, L. H., Tarazona, A., Nossa, C.Ramírez, N. (2013). La automedicación de antibióticos: un problema de salud pública Automedication with antibiotics : public health problem. Salud Barranquilla, 29(2), 226–235.
dc.relationFAO. (2002a). Agua y cultivos: logrando el uso óptimo en la agricultura. Roma.
dc.relationFAO. (2002b). Descubrir el potencial del agua para la agricultura. Roma.
dc.relationFAO. (2009). La agricultura mundial en la perspectiva del año 2050. Roma.
dc.relationFAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Roma, y Mundi-Prensa, Madrid. Roma.
dc.relationFAO. (2017). El futuro de la alimentación y la agricultura: Tendencias y desafíos. Roma
dc.relationFei, X., Lou, Z., Christakos, G., Ren, Z., Liu, Q., Lv, X. (2018). The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou City, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0113-0
dc.relationFeiler, U., Höss, S., Ahlf, W., Gilberg, D., Hammers-Wirtz, M., Hollert, H., Heininger, P. (2013). Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environmental Toxicology and Chemistry, 32(1), 144–155. https://doi.org/10.1002/etc.2024
dc.relationFeria, J., Marrugo, J. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America Metales pesados en el río Sinú, departamento de Córdoba, Colombia, Sudamérica.
dc.relationFerreira, B., Jelic, A., López-serna, R., Mozeto, A. A., Petrovic, M., Barceló, D. (2011). Chemosphere Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere, 85(8), 1331–1339. https://doi.org/10.1016/j.chemosphere.2011.07.051
dc.relationFontalvo, A., Marrugo, J. L. (2017). Metales pesados en sedimentos de la Cuenca Baja del río Magdalena, Colombia. Memorias III Seminario Internacional de Ciencias Ambientales SUE-Caribe, (2010), 67–70.
dc.relationFörstner, U. (1987). Sediment-Associated Contaminants - An Overview of Scientific Bases for Developing Remedial Options," Hydrobiologia 149:221-246.
dc.relationFu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y.,Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109. https://doi.org/10.1016/j.jhazmat.2014.01.044
dc.relationGándara, M., Leite, R., Carballo, P. (2013). Historia de vida de Daphnia magnayCeriodaphnia reticulataen condiciones de laboratorio: uso potencial como alimento para peces. Revista Colombiana de Ciencia Animal, 5(2), 340–357.
dc.relationGharaibeh, M., Ghezzehei, T. A., Albalasmeh, A., Alghzawi, Z. (2016). Alteration of physical and chemical characteristics of clayey soils by irrigation with treated waste water. Geoderma, 276, 33–40. https://doi.org/10.1016/j.geoderma.2016.04.011
dc.relationGillis, P., Wood, C., Ranville, J., Chow-fraser, P. (2006). Bioavailability of sediment-associated Cu and Zn to Daphnia magna. Aquatic Toxicology, 77, 402–411. https://doi.org/10.1016/j.aquatox.2006.01.010
dc.relationGregor, M. (2013). Surface groundwater quality: Changes in periods of water scarity. Slovakia: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32244-0
dc.relationGrenni, P., Ancona, V., Caracciolo, A. B. (2017). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 13, 25–39. https://doi.org/10.1016/j.microc.2017.02.006
dc.relationGuo, X., Feng, C., Gu, E., Tian, C., & Shen, Z. (2019). Spatial distribution, source apportionment and risk assessment of antibiotics in the surface water and sediments of the Yangtze Estuary. Science of the Total Environment, 671, 548–557. https://doi.org/10.1016/j.scitotenv.2019.03.393
dc.relationGupta, A., Rai, D., Pandey, R., Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environ Monit Assess, 157, 449–458. https://doi.org/10.1007/s10661-008-0547-4
dc.relationGuven, D. E., Akinci, G. (2013). Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences, 25(9), 1784–1794. https://doi.org/10.1016/S1001-0742(12)60198-3
dc.relationGúzman, M. (2007). Apoyo a la oficina asesora de planeación del DAMA en el proceso de formulaciónde los proyectos en sistema regional de áreas protegidas -Sirap y Recurso Hídrico, de las mesas ambientales “Bogotá-Cundinamarca” y “Región Central”. Informe final de la gestión realizada. Secretaria distrital de ambiente, oficina asesora de planeación.
dc.relationGuzmán, G., Ramírez, E. M., Thalasso, F., & Guerrero, A. L. (2011). Evaluación De Contaminantes En Agua Y Sedimentos Del Río San Pedro En El Estado De Aguascalientes. Universidad y Ciencia, 27(1), 17–32. https://doi.org/10.19136/era.a27n1.137
dc.relationHäkanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 14, 975–1001.
dc.relationHenríquez C., Cabalceta G., 2012. Guía para el estudio introductorio de los suelos con un enfoque agrícola. ACSS. San José, Costa Rica.
dc.relationHernández, F., Ibáñez, M., Bade, R., Bustos- López, M. C., Rincón, J., Moncayo, A., Bijlsma, L. (2015). LC-QTOF MS screening of more than 1, 000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia, (45), 6405–6416. https://doi.org/10.1007/s00216-015-8796-x
dc.relationInstituto Geográfico Agustín Codazzi (IGAC). (1977). Estudio general y detallado de suelos de los municipios de Cota, Funza, Mosquera y parte de Madrid (Departamento de Cundinamarca), Vol. XIII No. 10. Bogotá.
dc.relationInstituto Geográfico Agustín Codazzi (IGAC). (2007). Métodos analíticos del Laboratorio de Suelos. Colombia
dc.relationInstituto Geográfico Agustín Codazzi (IGAC). 2014. Levantamiento agrológico del Centro Agropecuario Marengo (CAM). Subdirección de Agrología, Universidad Nacional de Colombia, Bogotá.
dc.relationINGEOMINAS. (1997). Manual de procedimientos analíticos del Laboratorio de Química ambiental. Bogotá. 200p (Relatorio Técnico).
dc.relationIslam, S., Ahmed, K., Raknuzzaman, M. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016
dc.relationJi, Z., Zhang, Y., Zhang, H., Huang, C., Pei, Y. (2019). Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake. Ecotoxicology and Environmental Safety, 174(December 2018), 417–428. https://doi.org/10.1016/j.ecoenv.2019.02.062
dc.relationJurado, E., Bravo, J., Guerrero, A. (2017). Estudio piloto de la toxicidad de los sedimentos del río Pasto en el tramo La Playita-Puente La Carolina, Screening toxicity derived from pesticides at sediments of the Pasto River on the stretch La. AVANCES Investigación En Ingeniería, 14(1), 194–210.
dc.relationKalender, L., Çiçek Uçar, S. (2013). Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. Journal of Geochemical Exploration, 134, 73–84. https://doi.org/10.1016/j.gexplo.2013.08.005
dc.relationKarntanut, W., Pascoe, D. (2002). The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa), 47, 1059–1064.
dc.relationKass, D. (1995). Fertilidad de suelos. San José, Costa Rica. EUNED.
dc.relationKe, X., Gui, S., Huang, H., Zhang, H., Wang, C., Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. ECSN. https://doi.org/10.1016/j.chemosphere.2017.02.029
dc.relationKelley, W., 1963, Use of saline irrigation water. Soil Science, 95(4), 385-391.
dc.relationKhan, K., Khan, H., Lu, Y., Ihsanullah, I., Nawab, J. (2014). Ecotoxicology and Environmental Safety Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicology and Environmental Safety, 108, 224–232. https://doi.org/10.1016/j.ecoenv.2014.05.014
dc.relationKhangargot, B., Ray, P. (1989). Investigation of Correlation between Physicochemical Properties of Metals and Their Toxicity to the Water Flea Daphnia magna Straus. Ecotoxicology and Environmental Safety, 18, 109–120.
dc.relationLara-martín, P. A., Biel-maeso, M., Corada, C. (2018). Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environmental Pollution Journal, 235(235), 312–321. https://doi.org/10.1016/j.envpol.2017.12.085
dc.relationLazcano, C. (2016). Biotecnología ambiental de aguas y aguas residuales. Bogotá, Colombia: ECOE Ediciones.
dc.relationLeung, H., Au, C., Krupanidhi, S., Fung, K. (2016). Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut Res In, 10. https://doi.org/10.1007/s11356-016-6756-4
dc.relationLi, R, Tang, X., Guo, W., Lin, L., Zhao, L., Hu, Y., Liu, M. (2020). Science of the Total Environment Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Science of the Total Environment, 714, 136779. https://doi.org/10.1016/j.scitotenv.2020.136779
dc.relationLi, X., Peng, W., Jiang, Y., Duan, Y., Ren, J., Liu, Y., Fan, W. (2017). The Daphnia magna role to predict the cadmium toxicity of sediment: Bioaccumlation and biomarker response. Ecotoxicology and Environmental Safety, 138, 206–214. https://doi.org/10.1016/j.ecoenv.2017.01.002
dc.relationLi, S., Shi, W., Li, H., Xu, N., Zhang, R., Chen, X., … Fan, Y. (2018). Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Science of the Total Environment, 636, 1009–1019. https://doi.org/10.1016/j.scitotenv.2018.04.358
dc.relationLiu, Q., Sheng, Y., Jiang, M., Zhao, G., Li, C. (2020). Attempt of basin-scale sediment quality standard establishment for heavy metals in coastal rivers. Chemosphere, 245(245), 1–9.
dc.relationLiu, Z. (2015).Threshold Values for Representative Pollutants. In Water Quality Criteria Green Book of China. https://doi.org/10.1007/978-94-017-7270-9
dc.relationLiu, Y., Wang, Q., Zhuang, W., Yuan, Y., Yuan, Y., Jiao, K. Chen, Q. (2018). Chemosphere Calculation of Thallium’ s toxicity coefficient in the evaluation of potential ecological risk index: A case study. Chemosphere, 194, 562–569. https://doi.org/10.1016/j.chemosphere.2017.12.002
dc.relationLompo, J., Buerkert, A., Stenchly, K., Dao, J. (2017). Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system sire, 222, 58–63. https://doi.org/10.1016/j.envpol.2017.01.006
dc.relationLópez, C., Espinosa, A., Alape, Y. J. (1996). Variación en las características del ciclo de vida en individuos de Daphnia magna, provenientes de diferentes camadas. Acta Biológica Colombiana, 3(2), 93–104.
dc.relationLópez, F. 2010. Transformación productiva de la industria en Colombia y sus regiones después de la apertura económica. Cuadernos de economía 59(53):239-286.
dc.relationLópez, M. (2015). La importancia del agua en nuestro planeta. Tesis de maestría, Universidad de Jaé.
dc.relationLópez, D., Sánchez, M., Fischer, G., Acuña, J. F., & Darghan, A. E. (2019). Pesticide residues in strawberry fruits cultivated under integrated pest management and conventional systems in Cundinamarca (Colombia). Revista Colombiana de Ciencias Hortícolas, 13(1), 35–45. https://doi.org/10.17584/rcch.2019v13i1.8409
dc.relationLorenzo, E., Llanes, J., Fernández, L., Bataller, M. (2009). Reúso de aguas residuales domésticas para riego agrícola. Valoración crítica. Revista CENIC Ciencias Biológicas.
dc.relationLu, X. Q., Werner, I., Young, T. M. (2005). Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Environment International 31, 31, 593–602. https://doi.org/10.1016/j.envint.2004.10.018
dc.relationMacdonald, D. D., Ingersoll, C. G., Berger, T. A. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol., 39(2000), 20–31. https://doi.org/10.1007/s002440010075
dc.relationMachado, W., Villar, L. S., Monteiro, F. F., Viana, L. C. A., Santelli, R. E. (2010). Relation of acid-volatile sulfides (AVS) with metals in sediments from eutrophicated estuaries: Is it limited by metal-to-AVS ratios, 1606–1610. https://doi.org/10.1007/s11368-010-0297-0
dc.relationMartin, L., Justo, J. (2016). Análisis, prevención y resolución de conflictos por el por el agua en América Latina y el Caribe. Santiago: CEPAL.
dc.relationMcBride, M. (1994). Environmental chemistry of soils. New York: OXFORD UNIVERSITY PRESS.
dc.relationMckinley, K., Mclellan, I., Gagné, F., Quinn, B. (2019). Science of the Total Environment The toxicity of potentially toxic elements (Cu, Fe, Mn, Zn and Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations. Science of the Total Environment, 665, 848–854. https://doi.org/10.1016/j.scitotenv.2019.02.193
dc.relationMira, Č., Gros, M., Farré, M., Barceló, D., Petrovi, M. (2019). Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Science ofthe Total Environment, 652, 952–963. https://doi.org/10.1016/j.scitotenv.2018.10.290
dc.relationMiranda, D., Rojas, C. A., Jerez, C. M., Fischer, G., Zurita, J. (2008). Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá Accumulation of heavy metals in soil and plants of four vegetable crops irrigated with water of Bogota river, 2(2), 180–191.
dc.relationMiroslav, R., Vladimir, N. (2005). Practical environmental analysis. United Kingdom: The Royal Society of Chemistry.
dc.relationMishra, B. K., Regmi, R. K., Masago, Y., Fukushi, K., Kumar, P., Saraswat, C. (2017). Sustainability of Water Quality and Ecology Assessment of Bagmati river pollution in Kathmandu Valley: Scenario-based modeling and analysis for sustainable urban development. Sustainability of Water Quality and Ecology, 9–10, 67–77. https://doi.org/10.1016/j.swaqe.2017.06.001
dc.relationMojica, A., Guerrero, J. (2013). Evaluación de plaguicidas hacia la cuenca del Lago de Tota, Colombia. Revista Colombiana de Química, 42(2), 29–38.
dc.relationMouhamad, R. S., Hussein, A. A., Alsaedi, S. A., Nasif, N. S. (2017). Detect of human fecal contamination in water and soil. Microbiology Research International, 5(4), 43–50. https://doi.org/10.30918/MRI.54.17.021
dc.relationMuhammad, A., Shakoor, A. (2017). Irrigation Water Quality
dc.relationMüller V. 1969. Geochemical Index for Pollution Assessment in Aquatic Environment. Springer, New York, NY, USA
dc.relationNguyen, B., Nguyen, T., Bach, Q. (2020). Evaluación de la calidad del agua subterránea basada en el análisis de componentes principales y el examen basado en la fuente de contaminación: un estudio de caso en Ciudad Ho Chi Minh, Vietnam. Environ Monit Assessment 192, 395 (2020). https://doi.org/10.1007/s10661-020-08331-0
dc.relationNunes, B., Leal, C., Rodrigues, S., & Antunes, S. C. (2018). Assessment of ecotoxicological effects of ciprofloxacin in daphnia magna: life history traits, biochemical and genotoxic effects. Water Science & Technology, In press, 1–11. https://doi.org/10.2166/wst.2018.255
dc.relationOcampo, L., Botero, M., Restrepo, L. (2010). Revista Colombiana de Evaluación del crecimiento de un cultivo de Daphnia magna. Revista Colombiana de Ciencias Pecuarias, 23, 78–85.
dc.relationOrtiz, C., López, M., Rivas, F. (2012). Prevalencia de helmintos en la planta de aguas residuales del municipio El Rosal, Cundinamarca. Revista de Salud Pública, 14(2), 296–304.
dc.relationPandey, L. K., Lavoie, I., Morin, S., Park, J., Lyu, J., Choi, S. (2018). River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators, 84(March 2017), 140–151. https://doi.org/10.1016/j.ecolind.2017.07.043
dc.relationPandey, L. K., Park, J., Son, D. H., Kim, W., Islam, M. S., Choi, S.,Han, T. (2019). Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Science of The Total Environment, 651, 323–333. https://doi.org/10.1016/j.scitotenv.2018.09.057
dc.relationPaudel, I., Bar-tal, A., Levy, G., Rotbart, N., Ephrath, J. (2018). Treated wastewater irrigation: Soil variables and grapefruit tree performance. Agricultural Water Management, 204(March), 126–137. https://doi.org/10.1016/j.agwat.2018.04.006
dc.relationPeluso, L. (2011). Evaluación de efectos biológicos y biodisponibilidad de contaminantes en sedimentos del Río de la Plata y afluentes. Tesis de doctorado. Universidad Nacional de la Plata.
dc.relationPeluso, L., Abelando, M., Apartín, C, Almada, P., Ronco, A. (2013). Ecotoxicology and Environmental Safety Integrated ecotoxicological assessment of bottom sediments from the Paraná basin, Argentina. Ecotoxicology and Environmental Safety, 98, 179–186. https://doi.org/10.1016/j.ecoenv.2013.09.001
dc.relationPicó, Y., Alvarez, R., Alfarhan, A., El-Sheikh, M., Alshahrani, H., Barceló, D. (2020). Pharmaceuticals , pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network ( Saudi Arabia ) and its shallow lakes. Science of the Total Environment Journal, 701. https://doi.org/10.1016/j.scitotenv.2019.13502
dc.relationPollino, C. A., & Holdway, D. A. (1999). Potential of two hydra species as standard toxicity test animals. Ecotoxicology and Environmental Safety, 43(3), 309–316. https://doi.org/10.1006/eesa.1999.1796
dc.relationPosada, C., Ramírez-rojas, A., Porras, P., Boahemaa, A., Hernández, F., Juan, M. A. Zambrano, M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific Reports, 9(July), 1–13. https://doi.org/10.1038/s41598-019-48200-6
dc.relationQuinn, B., Gagné, F., & Blaise, C. (2009). Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuata. Science of the Total Environment, 407(3), 1072–1079. https://doi.org/10.1016/j.scitotenv.2008.10.022
dc.relationQuinn, B., Gagné, F., Blaise, C. (2012). Hydra, a model system for environmental studies. Develomental Biology, 56(June), 613–625. https://doi.org/10.1387/ijdb.113469bq
dc.relationRadingoana, M. P., Dube, T., Mazvimavi, D. (2020). An assessment of irrigation water quality and potential of reusing greywater in home gardens in water-limited environments.Physics and Chemistry of the Earth, 116(July 2019), 102857. https://doi.org/10.1016/j.pce.2020.102857
dc.relationRaghunath, I.I.M., 1987, Groundwater. Second edition: New Delhi, India, Wiley Eastern, 344-369
dc.relationRamadhan, O., Al-Saffawi, A., Al-Mashhdany, M. (2018). Assessment of Surface Water Quality for Irrigation using WQI model; A Case Study of Khosar and Tigris Rivers. International Journal of Enhanced Research in Science, Technology & Engineering, 7(February), 63–69.
dc.relationRamírez, P., Mendoza, A. (2008). Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo. La experiencia en México. México: Secretaría de Medio Ambiente y Recursos Naturales Instituto Nacional de Ecología.
dc.relationRamírez-morales, D., Chin-Pampillo, J. S., Marta, E., Aguilar-mora, P., Arias-mora, V., & Masís-Mora, M. (2021). Chemosphere Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere, 262(127841), 1–9. https://doi.org/10.1016/j.chemosphere.2020.127851
dc.relationRees, H., Hyland, J., Hyland, K., Mercer, C., Roff, J., Ware, S. (2008). Environmental indicators: utility in meeting regulatory needs. An overview, ICES Journal of Marine Science, 65, 1381 – 1386.
dc.relationRendón, J. (2009). Industrialización y dinámicas espaciales en Bogotá: industrialization and especial dynamics in Bogotá: Semestre Económico, 24(24), 93–112.
dc.relationReyes, Y., Vergara, I., Torres, O., Díaz, M., González, E. (2016). Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería, Investigación y Desarrollo, 16(2), 66–77. https://doi.org/10.19053/1900771X.v16.n2.2016.5447
dc.relationRimoldi, F., Peluso, L., Bulus, G., Ronco, A. E., & Demetrio, P. M. (2018). Multidisciplinary approach to a study of water and bottom sediment quality of streams associated with mixed land uses: Case study Del Gato Stream. 89 (October 2017), 188–198.
dc.relationRoig, N., Sierra, J., Nadal, M., Moreno-garrido, I., Nieto, E., Hampel, M.,Blasco, J. (2015). Science of the Total Environment Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study. Science of the Total Environment, 503–504, 269–278. https://doi.org/10.1016/j.scitotenv.2014.06.125
dc.relationRomero, J. (2004). Tratamiento de aguas residuales: Teoría y principios de diseño. Colombia: Escuela Colombiana de ingeniería.
dc.relationSalifu, M., Aidoo, F., Saah, M., Dickson, H. (2017). Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the Upper West region of Ghana. Applied Water Science, 7, 653–662. https://doi.org/10.1007/s13201-015-0277-z
dc.relationSánchez, J., Henrry, C. (2012). Degradación del aldrín por bacillus licheniformis, aislado del agua y sedimento de la cienaga grande de Santa Marta, colombia. Degradation of Aldrin by Bacillus licheniformis, Isolated from Water and Sediment from the Ciénaga Grande, Santa Marta, Colo. Acta Biol. Colomb, 17(1), 67–76.
dc.relationSantiago-Martín, A. De, Meffe, R., Teijón, G., Martínez, V., López-heras, I., Alonso, C. Bustamante, I. De. (2020). Science of the Total Environment Pharmaceuticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation. Science of the Total Environment.https://doi.org/10.1016/j.scitotenv.2019.135825
dc.relationSantos, M. 2010. Evaluación del crecimiento, desarrollo y componentes de rendimiento de cuatro cultivares de papa criolla en dos localidades del departamento de Cundinamarca. Tesis de maestría, Universidad Nacional de Colombia.
dc.relationShahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., Niazi, N. (2016). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2016.11.063
dc.relationShankar, U. Kappor, K (2010). Introductory microbiology. Oxford book company. Jaipur, India.
dc.relationSilva, J., Torres, P. (2008). Reuso de aguas residuales domésticas en agricultura. Una revisión, 26(2), 347–359.
dc.relationSilvia, J., Santos, J. 2007. Toxicología de agrotóxicos em ambientes acuáticos. Oecologia Brasiliensis 11(4):565-573
dc.relationSimpson, S., Graeme, B. (2016). Sediment quality assessment sediment quality: A practical guide (Second). Clayton South: CSIRO.
dc.relationSingh, P., Nel, A. (2017). A comparison between Daphnia pulex and Hydra vulgaris as possible test organisms for agricultural run-off and acid mine drainage toxicity assessments. Water S.A., 43(2), 323–332. https://doi.org/http://dx.doi.org/10.4314/wsa.v43i1.12
dc.relationSlobodkin, L., Bossert, P. (2010). Cnidaria. In Biochemistry of Taste and Olfaction (pp. 125–142). https://doi.org/10.1016/B978-0-12-374855-3.00005-4
dc.relationSoliman, N., El, G., Okbah, M. (2018). Risk assessment and chemical fractionation of selected elements in surface sediments from Lake Qarun , Egypt using modi fi ed BCR technique. Chemosphere, 191, 262–271. https://doi.org/10.1016/j.chemosphere.2017.10.049
dc.relationStark, J. D., Vargas, R. I. (2005). Toxicity and hazard assessment of fipronil to Daphnia pulex. Ecotoxicology and Environmental Safety, 62(1), 11–16. https://doi.org/10.1016/j.ecoenv.2005.02.011
dc.relationSpósito, M., Espínola, J. (2016). Evaluación in vitro del efecto tóxico de una formulación comercial de glifosato de amonio sobre cinco especies representantes de diferentes hábitats y niveles tróficos In vitro assessment of toxic effects of a commercial formulation ammonium salt of glyph. INNOTEC, 12(12), 48–53.
dc.relationStephenson, G. (1994). Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Ottawa Environment Canada.
dc.relationSun, Y., Zhou, Q., Xie, X., Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174(1–3), 455–462. https://doi.org/10.1016/j.jhazmat.2009.09.074
dc.relationSun, C., Zhang, Z., Cao, H., Xu, M., Xu, L. (2019). Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere, 219, 538–545. https://doi.org/10.1016/j.chemosphere.2018.12.040
dc.relationTartabull, T., Betancourt, C. (2016). La calidad del agua para el riego. Principales indicadores de medida y procesos que la impactan. Revista Científica Agroecosistemas, 4(1), 47–61.
dc.relationTerra, N, Feiden, I., Lucheta, F., Gonçalves, S., Gularte, J. (2010). Bioassay using Daphnia magna Straus, 1820 to evaluate the sediment of Caí River (Rio Grande do Sul, Brazil). Acta Limnologica Brasiliensia, 22(4), 442–454. https://doi.org/10.4322/actalb.2011.008
dc.relationTomašić, V. Zelić, B. (2018). Environmental Engineering: Basic Principles Berlin: De Gruyter.
dc.relationTomlinson, D., Wilson. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters, 575, 566–575.
dc.relationTorres, A., Méndez-fajardo, S., López, L., Marín, V., González, J., Suárez, C., Ruiz, A. (2011). Preliminary assessment of roof runoff rain water quality for potential harvesting in Bogota’s peri-urban areas, 127–135.
dc.relationTorres, L., 2004. Evaluación de la Incidencia del Vertido de Aguas Residuales Urbanas en el Distrito de Riego La Ramada. Trabajo de Grado, Universidad Nacional de Colombia, Bogotá.
dc.relationTrottier, S., Blaise, C., Kusui, T. Johnson, E. (1997). Acute toxicity assessment of aqueous samples using a microplate-based Hydra attenuata. Environ Toxicol Water Qual 12: 265-271
dc.relationTunc, T., Sahin, U. (2015). The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agricultural Water Management, 158, 213–224. https://doi.org/10.1016/j.agwat.2015.05.012
dc.relationValles, M., Ojeda, D., Guerrero, V., Prieto, J., Sánchez, E. (2017). Calidad del agua para riego en una zona Zogalera del estado de chihuahua. Rev. Int. Contaminación Ambiental, 33(1), 85–97. https://doi.org/10.20937/RICA.2017.33.01.08
dc.relationVargas, O., Prieto, G., Gonzáles, L., Matamoros, A. (2004). Geoquímica de metales pesados en suelos de la cuenca del río Bogotá. Bogotá.
dc.relationVan Vliet, M.T.H., Zwolsman, J.J.G., 2008, Impact of summer droughts on the water quality of the Meuse river: Journal of Hydrology, 353(1), 1-17.
dc.relationVasco, S., Sánchez L. (2017). Análisis de la gestión ambiental del humedal gualí tres esquinas, Vereda el Hato (Funza – Cundinamarca). Tesis de grado, Universidad Distrital Francisco José Caldas.
dc.relationWang, F., Leung, A. O. W., Wu, S. C., Yang, M. S., Wong, M. H. (2009). Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environmental Pollution, 157(7), 2082–2090. https://doi.org/10.1016/j.envpol.2009.02.015
dc.relationWongthangsiri, D., Pereira, R.M., Bangs, M.J., Koehler, P.G., Chareonviriyaphap, T. (2018). Potential of attractive toxic sugar baits for controlling Musca domestica L., Drosophila melanogaster Meigen, and Megaselia scalaris Loew adult flies. Agriculture and Natural Resources 52.https://doi.org/10.1016/j.anres.2018.10.013
dc.relationWilcox, L.V., 1955, Classification and use of irrigation waters: Washington D.C., United States Department of Agriculture, 19 pp
dc.relationWinpenny, J., Heinz, I., Koo, S. (2013). Reutilización del agua en la agricultura: ¿Beneficios para todos? Reutilización del agua en la agricultura:¿Beneficios para todos? FAO.
dc.relationWright, J. (2003). Environmental Chemistry. London: Taylor & Francis.
dc.relationXiangdong, L., Chi-sun, P., Pui, S.L., (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, vol. 16, n° 11–12, p 1361–1368
dc.relationYi, Y., Tang, C., Yi, T., Yang, Z., Zhang, S. (2017). Ecotoxicology and Environmental Safety Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicology and Environmental Safety, 145(January), 295–302. https://doi.org/10.1016/j.ecoenv.2017.07.022
dc.relationZahra, A., Zaffar, M., Naseem, R. (2014). Science of the Total Environment Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah Feeding tributary of the Rawal Lake, 471, 925–933. https://doi.org/10.1016/j.scitotenv.2013.10.017
dc.relationZaman, M., Shahid, S., Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques.
dc.relationZeeshan, M., Murugadas, A., Ghaskadbi, S., Rajendran, B., Abdulkader, M. (2017). Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.12.042
dc.relationZhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010
dc.relationZhang, Y., Chen, H., Jing, L., & Teng, Y. (2020). Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Science of the Total Environment, 731, 139128. https://doi.org/10.1016/j.scitotenv.2020.139128
dc.relationZhou, J., Broodbank, N. (2013). Sediment-water interactions of pharmaceutical residues in the river environment. Water Research, 48, 61–70. https://doi.org/10.1016/j.watres.2013.09.026
dc.relationZhou, Y., Wu, J., Wang, B., Duan, L., Zhang, Y., Zhao, W., … Li, Q. (2020). Occurrence , source and ecotoxicological risk assessment of pesticides in surface water of Wujin District ( northwest of Taihu Lake ),. Environmental Pollution, 265, 114953. https://doi.org/10.1016/j.envpol.2020.114953
dc.relationZhuang, W., Gao, X. (2014). Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Comparison among typical marine sediment quality indices. PLoS ONE, 9(4), 1–17. https://doi.org/10.1371/journal.pone.0094145
dc.relationZhuang, W., Wang, Q., Tang, L., Liu, J., Yue, W., Liu, Y., Wang, M. (2018). A new ecological risk assessment index for metal elements in sediments based on receptor model, speciation, and toxicity coe ffi cient by taking the Nansihu Lake as an example. Ecological Indicators. 89:725–737. https://doi.org/10.1016/j.ecolind.2018.02.033
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEvaluación de la toxicidad en sedimentos de los canales del Distrito de Riego de La Ramada mediante la utilización de dos bioensayos
dc.typeOtro


Este ítem pertenece a la siguiente institución