dc.contributorDiaz Serna, Francisco Javier
dc.contributorUniversidad Nacional de Colombia
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorUNGIDO
dc.creatorOrtiz Pimiento, Nestor Raúl
dc.date.accessioned2020-04-27T16:44:42Z
dc.date.available2020-04-27T16:44:42Z
dc.date.created2020-04-27T16:44:42Z
dc.date.issued2020-03-31
dc.identifierN. Ortiz-Pimiento, Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria, Medellín.: Universidad Nacional de Colombia, 2020, p. 105.
dc.identifierOrtiz-Pimiento, N.R., Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria, Medellín.: Universidad Nacional de Colombia, 2020, p. 105.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77448
dc.description.abstractIn this doctoral thesis, an optimization model is developed in order to provide a solution strategy to the scheduling problem in new product development projects. This projects face diferent risks that affect the normal execution of activities and their due date. Therefore, the problem has been analyzed as a resource-constrained project scheduling problem (RCPSP) under a probabilistic context. Specifically, it includes parameters like the random duration of the activities and the probability of inserting additional tasks in the project network. The optimization model developed in this research has four stages: the identification of risks, the estimation of the activities duration from four redundancy based methods, the resolution of an integer linear program in order to generate the project baselines, and the selection of the best baseline through two robustness indicators. A case study to applied the proposed model is presented, which refers to the development of a leadframe material for a semiconductor package. In the developed model, two fundamental contributions are hightlighted: the integration of a detail project’s risks analysis with an optimization model that generate a robust baseline, and the adaptation of the RCPSP with random duration of activities and stochastic insertion tasks to the case of new product development project.
dc.description.abstractEn esta tesis doctoral, se desarrolla un modelo de optimización como estrategia de solución al problema de programación de proyectos de desarrollo de nuevos productos. Teniendo en cuenta que este tipo de proyectos son afectados por diversos riesgos que al materializarse pueden afectar la ejecución normal de las actividades y sus plazos de finalización, se ha optado por modelar el problema dentro de un contexto probabilístico y tomando como referente el problema de programación de proyectos con recursos restringidos (Resource Constrained Project Scheduling Problem: RCPSP). El RCPSP adoptado incluye como parámetros: la duración aleatoria de las actividades y la probabilidad de insertar tareas adicionales en la red del proyecto. El modelo de optimización desarrollado en esta investigación contempla cuatro etapas: la identificación de los riesgos, la estimación de la duración de las actividades a partir de cuatro procedimientos basados en duraciones redundantes, la resolución de un programa lineal entero que genera las líneas-base del proyecto, y la selección de la mejor línea-base evaluada por medio de dos indicadores de robustez. Con el fin de aplicar el modelo propuesto, se presenta un caso de estudio que hace referencia al desarrollo de un material para el marco de conexión de un circuito integrado. En el modelo desarrollado se destacan dos aportes fundamentales: la integración de un análisis detallado de riesgos del proyecto con un modelo de optimización que genera una línea-base robusta, y la adaptación del RCPSP con duración aleatoria de actividades e inserción de tareas al caso de proyectos de desarrollo de nuevos productos.
dc.languagespa
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAdida, E., & Joshi, P. (2009). A Robust optimisation approach to project scheduling and resource allocation. International Journal of Services Operations and Informatics, 4(2), 169–193. https://doi.org/10.1504/IJSOI.2009.023421
dc.relationArcher, S., Armacost, R. L., & Pet-armacost, J. (2009). Effectiveness of resource buffers for the Stochastic Task Insertion Problem. The Journal of Management and Engineering Integration, 2(2), 14–21.
dc.relationArtigues, C., Demassey, S., & Néron, E. (2008). The Resource Constrained Project Scheduling Problem. In Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications (pp. 21–34). https://doi.org/10.1080/05695557108974820
dc.relationArtigues, C., Koné, O., Lopez, P., & Mongeau, M. (2015). Mixed-integer linear programming formulations. In Handbook on Project Management and Scheduling (Vol. 1, pp. 17–41). https://doi.org/10.1007/978-3-319-05443-8
dc.relationAsh, R. C., & Pittman, P. H. (2008). Towards holistic project scheduling using critical chain methodology enhanced with PERT buffering chain methodology enhanced with PERT buffering. International Journal of Organisation and Management, 1(2), 185–203. https://doi.org/10.1504/IJPOM.2008.022191
dc.relationAshtiani, B., Jalali, G., Aryanezhad, M. B., & Makui, A. (2007). A new approach for buffer sizing in Critical Chain scheduling. In IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1037–1041). https://doi.org/10.1109/IEEM.2007.4419350
dc.relationAshtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the Stochastic Resource-Constrained Project Scheduling Problem: Exploring the benefits of pre-processing. Journal of Scheduling, 14(2), 157–171. https://doi.org/10.1007/s10951-009-0143-7
dc.relationBallestin, F., & Leus, R. (2007). Resource-Constrained Project Scheduling for timely project completion with stochastic activity durations. Katholieke Universiteit Leuven, 1–34.
dc.relationBehnam, A., Harfield, T., & Kenley, R. (2016). Construction management scheduling and control: The familiar historical overview. In N. A. & S. L. Kamaruzzaman., A. Ali. (Ed.), The 4th International Building Control Conference (pp. 754–759). Kuala Lumpur. https://doi.org/10.1051/00101
dc.relationBie, L., Cui, N., & Zhang, X. (2011). Buffer sizing approach with dependence assumption between activities in critical chain scheduling. In POMS 22nd Annual Conference.
dc.relationBłażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Scheduling under resource constraints. In Handbook on Scheduling: From Theory to Applications (pp. 425–475). https://doi.org/10.1007/978-3-540-32220-7_12
dc.relationBöttcher, J., Drexl, A., Kolisch, R., & Salewski, F. (2008). Project Scheduling under partially renewable resource constraints. Management Science, 45(4), 543–559. https://doi.org/10.1287/mnsc.45.4.543
dc.relationBrčić, M., Kalpic, D., & Fertalj, K. (2012). Resource Constrained Project Scheduling under uncertainty: A Survey. In 23rd Central European Conference on Information and Intelligent Systems (pp. 401–409).
dc.relationBrcic, M., Kalpic, D., & Katic, M. (2014). Proactive Reactive Scheduling in Resource Constrained Projects with flexibility and Quality Robustness requirements. In Combinatorial Optimization (pp. 112–124). https://doi.org/10.1007/978-3-662-21711-5
dc.relationBrowning, T. R., & Yassine, A. A. (2010). A random generator of resource-constrained multi-project network problems. Journal of Scheduling, 13(2), 143–161. https://doi.org/10.1007/s10951-009-0131-y
dc.relationBruni, M. E., Puglia, L. Di, Beraldi, P., & Guerriero, F. (2017). An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations. Omega, 71, 66–84. https://doi.org/10.1016/j.omega.2016.09.009
dc.relationBruni, M. E., Pugliese, L. D. P., Beraldi, P., & Guerriero, F. (2018). A computational study of exact approaches for the adjustable robust resource-constrained project scheduling problem. Computers and Operations Research, 99, 178–190. https://doi.org/10.1016/j.cor.2018.06.016
dc.relationCapa, C., & Ulusoy, G. (2015). Proactive project scheduling in an R&D department: A bi Objective genetic algorithm. In International Conference on Industrial Engineering and Operations Management (IEOM) (pp. 1–6). https://doi.org/10.1109/IEOM.2015.7093733
dc.relationChakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2017). Resource constrained project scheduling with uncertain activity durations. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2016.12.040
dc.relationChen, Y., Xiong, J., & Zhou, Z. (2016). Resilence Analysis for Projects Scheduling with Renewable Resource Constraint and Uncertain Activity Durations. Journal of Industrial and Management Optimization, 12(2), 719–737. https://doi.org/10.3934/jimo.2016.12.719
dc.relationCheng, J., Fowler, J., & Kempf, K. (2012). Simulation-based multi-mode resource-constrained project scheduling of semiconductor equipment installation and qualification. In Proceedings - Winter Simulation Conference. https://doi.org/10.1109/WSC.2012.6465247
dc.relationCho, S.-H., & Eppinger, S. D. (2005). A Simulation-Based Process Model for Managing Complex Design Projects. IEEE Transactions on Engineering Management, 52(3), 316–328. https://doi.org/10.1109/TEM.2005.850722
dc.relationChoi, J., Lee, J. H., & Realff, M. J. (2003). Simulation based approach for improving heuristics in stochastic resource constrained project scheduling problem. In Process Systems Engineering 2003, 8th International Symposium on Process Systems Engineering (Vol. 15, pp. 439–444). https://doi.org/10.1017/CBO9781107415324.004
dc.relationChoi, J., Realff, M. J., & Lee, J. H. (2004). Dynamic programming in a heuristically confined state space: A stochastic resource-constrained project scheduling application. Computers and Chemical Engineering, 28(6–7), 1039–1058. https://doi.org/10.1016/j.compchemeng.2003.09.024
dc.relationChtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering, 55(1), 183–194. https://doi.org/10.1016/j.cie.2007.11.017
dc.relationCreemers, S. (2014). The Resource-constrained Project Scheduling Problem with Stochastic Activity Durations. In IEEE International Conference onIndustrial Engineering and Engineering Management (pp. 453–457).
dc.relationCreemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity durations under resource constraints. Journal of Scheduling, 18(3), 263–273. https://doi.org/10.1007/s10951-015-0421-5
dc.relationCreemers, S. (2019). The preemptive stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 277(1), 238–247. https://doi.org/10.1016/j.ejor.2019.02.030
dc.relationCreemers, S., De Reyck, B., & Leus, R. (2015). Project planning with alternative technologies in uncertain environments. European Journal of Operational Research, 242(2), 465–476. https://doi.org/10.1016/j.ejor.2014.11.014
dc.relationCreemers, S., Leus, R., & De Reyck, B. (2010). Project scheduling with alternative technologies: Incorporating varying activity duration variability. In IEEE International Conference on Industrial Engineering and Engineering Management (pp. 641–645). https://doi.org/10.1109/IEEM.2010.5674523
dc.relationDavari, M., & Demeulemeester, E. (2017). The proactive and reactive resource-constrained project scheduling problem. Journal of Scheduling, faltaaaaa, 1–27. https://doi.org/10.1007/s10951-017-0553-x
dc.relationDavari, M., & Demeulemeester, E. (2019). Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem. Annals of Operations Research, 274(1), 187–210. https://doi.org/10.1007/s10479-018-2899-7
dc.relationDe Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347–366. https://doi.org/10.1016/0377-2217(94)00344-0
dc.relationDeblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308–316. https://doi.org/10.1016/j.ejor.2011.04.019
dc.relationElmaghraby, S. E. (2005). On the fallacy of averages in project risk management. European Journal of Operational Research, 165, 307–313. https://doi.org/10.1016/j.ejor.2004.04.003
dc.relationFallah, M., & Ashtiani, B. (2010). Critical Chain Project Scheduling: Utilizing Uncertainty for Buffer Sizing. International Journal of Research and Reviews in Applied Sciences, 3(June), 280–289.
dc.relationFernandez, A. A., Armacost, R. L., & Pet-Edwards, J. J. (1998). Understanding simulation solutions to resource constrained project scheduling problems with stochastic task durations. EMJ Engineering Management Journal, 10(4), 5–13. https://doi.org/10.1080/10429247.1998.11415002
dc.relationFu, N., Lau, H. C., & Xiao, F. (2008). Generating robust schedules subject to resource and duration uncertainties. In Proceedings of the 18th International Conference on Automated Planning and Scheduling (pp. 83–90).
dc.relationGan, L., & Xu, J. (2015). Control risk for multimode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Management in Engineering, 31(3), 1–16. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000243
dc.relationGao, F., Chen, Y., Jiang, G., & Liu, Y. (2005). Model and heuristic algorithm of R&D project scheduling problem with stochastic number of activity iterations. In IEEE International Conference on Information Reuse and Integration (pp. 276–281). https://doi.org/10.1109/IRI-05.2005.1506486
dc.relationGhoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718–731. https://doi.org/10.1080/0305215X.2016.1206534
dc.relationGoldratt, E. M. (1997). Critical Chain. The North River Press Publishing Corporation. https://doi.org/10.2307/3009987
dc.relationGolenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling with non-consumable limited resources. International Journal of Production Economics, 48(1), 29–37. https://doi.org/10.1016/S0925-5273(96)00019-9
dc.relationGolenko-Ginzburg, D., & Gonik, A. (1998). A heuristic for network project scheduling with random activity durations depending on the resource allocation. International Journal of Production Economics, 55(2), 149–162. https://doi.org/10.1016/S0925-5273(98)00044-9
dc.relationGolenko-Ginzburg, D., Gonik, A., & Baron, A. (2006). Resource Constrained Project Scheduling Models Under Random Disturbances. In Perspectives in Modern Project Scheduling (pp. 53–78). Springer US.
dc.relationGolenko-Ginzburg, D., Gonik, A., & Laslo, Z. (2003). Resource constrained scheduling simulation model for alternative stochastic network projects. Mathematics and Computers in Simulation, 63(2), 105–117. https://doi.org/10.1016/S0378-4754(03)00050-8
dc.relationHabibi, F., Barzinpour, F., & Sadjadi, S. J. (2018). Resource-constrained project scheduling problem: review of past and recent developments. Journal of Project Management, 3, 55–88. https://doi.org/10.5267/j.jpm.2018.1.005
dc.relationHartmann, S. (1999). Project Scheduling Models. In Project Scheduling under Limited Resources (Vol. 478, pp. 5–10). https://doi.org/10.1007/978-3-642-58627-9
dc.relationHazir, O., Haouari, M., & Erel, E. (2010). Robust scheduling and robustness measures for the discrete time/cost trade-off problem. European Journal of Operational Research, 207(2), 633–643. https://doi.org/10.1016/j.ejor.2010.05.046
dc.relationHeldman, K. (2005). Risk Management: Project Managers Spotlight on. Project Managers Spotlight on:
dc.relationHerroelen, W., & Leus, R. (2004). The construction of stable project baseline schedules. European Journal of Operational Research, 156(3), 550–565. https://doi.org/10.1016/S0377-2217(03)00130-9
dc.relationHuang, M., Yuan, J., & Xiao, J. (2015). An Adapted Firefly Algorithm for Product Development Project Scheduling with Fuzzy Activity Duration. Mathematical Problems in Engineering, 2015, 1–11. https://doi.org/10.1155/2015/973291
dc.relationIranmanesh, H., Mansourian, F., & Kouchaki, S. (2016). Critical chain scheduling : a new approach for feeding buffer sizing. Int. J. Operational Research, 25(1), 114–130. https://doi.org/https://doi.org/10.1504/IJOR.2016.073254
dc.relationKaram, A., & Lazarova-Molnar, S. (2013). Recent trends in solving the deterministic resource constrained Project Scheduling Problem. In 2013 9th International Conference on Innovations in Information Technology, IIT 2013 (pp. 124–129). IEEE. https://doi.org/10.1109/Innovations.2013.6544405
dc.relationKlein, R. (2000). Resource-Constrained Scheduling Problems. In Scheduling of resource-constrained projects (pp. 73–109). https://doi.org/10.1007/978-1-4615-4629-0
dc.relationKolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23–37. https://doi.org/10.1016/j.ejor.2005.01.065
dc.relationKolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems. Management Science, 41(10), 1693–1703. https://doi.org/10.1287/mnsc.41.10.1693
dc.relationLeon, V. J., Wu, S. D., & Storer, R. H. (1994). Robustness measures and robust scheduling for job shops. IIE Transactions (Institute of Industrial Engineers), 26(5), 32–43. https://doi.org/10.1080/07408179408966626
dc.relationLertapiruk, V. (2014). Process improvement for new product development case study: integrated circuits chip. Chulalongkorn University.
dc.relationLeus, R., & Herroelen, W. (2002). Stability and resource allocation in project planning. IIE Transactions (Vol. 2376). https://doi.org/10.1080/07408170490447348
dc.relationLi, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. European Journal of Operational Research, 246(1), 20–33. https://doi.org/10.1016/j.ejor.2015.04.015
dc.relationLiu, D., Chen, J., & Peng, W. (2012). A new buffer setting method based on activity attributes in construction engineering. Applied Mechanics and Materials, 177, 3274–3281. https://doi.org/10.4028/www.scientific.net/AMM.174-177.3274
dc.relationLiu, F., Luh, P. B., & Moser, B. (1998). Scheduling and Coordination of Distributed Design Project. Annals of CIRP, 47(1), 111-114 (0-4). https://doi.org/Doi: 10.1016/s0007-8506(07)62797-8
dc.relationLiu, X., Yang, Y., Chen, J., Wang, Q., & Li, M. (2009). Achieving on-time delivery: A two-stage probabilistic scheduling strategy for software projects. Trustworthy Software Development Processes, 5543 LNCS, 317–319. https://doi.org/10.1007/978-3-642-01680-6_29
dc.relationMansoorzadeh, S., & Mohd Yusof, S. (2011). Reliable project scheduling with combination of risk management and critical chain schedule. In IEEE Student Conference on Research and Development (pp. 442–447). https://doi.org/10.1109/SCOReD.2011.6148780
dc.relationMansoorzadeh, S., Yusof, S. M., Mansoorzadeh, S., & Zeynal, H. (2014). A Comprehensive and Practical Framework for Reliable Scheduling in Project Management. Advanced Materials Research, 903, 378–383. https://doi.org/10.4028/www.scientific.net/AMR.903.378
dc.relationMizuyama, H. (2006). A time quality tradeoff problem of a project with nonstandardized activities. In 36th International Conference on Computers and Industrial Engineering, ICC and IE (pp. 3039–3049). https://doi.org/10.1057/jors.1988.132
dc.relationMogaadi, H., & Chaar, B. F. (2015). Scenario-based evolutionary approach for robust RCPSP. In Proceedings of the second international Afro-European conference for industrial advancement AECIA 2015 (pp. 45–55). https://doi.org/10.1007/978-3-319-29504-6
dc.relationMohammadi, M., Sayed, M., & Mohammad, M. (2014). Scheduling new product development projects using simulation-based dependency structure matrix. International Journal of Logisctics Systems and Management, 19(3), 311–328. https://doi.org/https://doi.org/10.1504/IJLSM.2014.065499
dc.relationMorillo, D., Moreno, L., & Díaz, J. (2014a). Metodologías analíticas y heurísticas para la solución del Problema de Programación de Tareas con Recursos Restringidos (RCPSP): una revisión. Parte 1. Ingeniería y Ciencia - Ing.Cienc., 10(20), 203–227.
dc.relationMorillo, D., Moreno, L., & Díaz, J. (2014b). Metodologías analíticas y heurísticas para la solución del Problema de Programación de Tareas con Recursos Restringidos (RCPSP): una revisión. Parte 2. Ingeniería y Ciencia - Ing.Cienc., 10(20), 203–227.
dc.relationMorrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19, 79–102. https://doi.org/10.1016/j.disopt.2016.01.005
dc.relationMuñoz Martos, M. del M., Cerdá, E., & Caballero, R. (1998). Programación Estocástica: Algunas Aportaciones Teóricas y Computacionales. Universidad Complutensse de madrid.
dc.relationNarendra, P. M., & Fukunaga, K. (1977). A Branch and Bound Algorithm for Feature Subset Selection. IEEE Transactions on Computers, C–26(9), 917–922. https://doi.org/10.1109/TC.1977.1674939
dc.relationNasr, W., Yassine, A., & Abou Kasm, O. (2016). An analytical approach to estimate the expected duration and variance for iterative product development projects. Research in Engineering Design, 27(1), 55–71. https://doi.org/10.1007/s00163-015-0205-0
dc.relationNelson, R. G., Azaron, A., & Aref, S. (2016). The use of a GERT based method to model concurrent product development processes. European Journal of Operational Research, 250(2), 566–578. https://doi.org/10.1016/j.ejor.2015.09.040
dc.relationNing, M., He, Z., Jia, T., & Wang, N. (2017). Metaheuristics for multi-mode cash fl ow balanced project scheduling with stochastic duration of activities. Automation in Construction, 81(June), 224–233. https://doi.org/10.1016/j.autcon.2017.06.011
dc.relationÖkmen, Ö., & Özta, A. (2005). Judgmental risk analysis process development in construction projects. Building and Environment, 40(9), 1244–1254. https://doi.org/10.1016/j.buildenv.2004.10.013
dc.relationOrtiz-Pimiento, N. R., & Diaz-Serna, F. J. (2018). The project scheduling problem with non-deterministic activities duration: A literature review. Journal of Industrial Engineering and Management, 11(1), 116–134. https://doi.org/http://dx.doi.org/10.3926/jiem.2492
dc.relationPalpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search. Annals of Operations Research, 131, 237–257. https://doi.org/https://doi.org/10.1023/B:ANOR.0000039521.26237.62
dc.relationPark, Y. H., & Park, Y. H. (2010). A study of risk management and performance measures on new product development. Asian Journal on Quality, 11(1), 39–48. https://doi.org/10.1108/15982681011051813
dc.relationPellerin, R., Perrier, N., & Berthaut, F. (2019). A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research.
dc.relationPet-Edwards, J. J., & Mollaghesemi, M. (1996). A simulation and genetic algorithm approach to stochastic research constrained project scheduling. In Southcon/96 Conference Record (pp. 333–338). https://doi.org/10.1109/SOUTHC.1996.535089
dc.relationRabbani, M., Baradaran, S., Fatemi Ghomi, S. M. T., & Hashemin, S. S. (2008). Development of a Constructive Heuristics Rule for Constrained Resource Allocation in Stochastic Networks. Journal of Applied Sciences, 8(21), 3917–3923.
dc.relationRabbani, M., Fatemi Ghomi, S. M. T., Jolai, F., & Lahiji, N. S. (2007). A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept. European Journal of Operational Research, 176(2), 794–808. https://doi.org/10.1016/j.ejor.2005.09.018
dc.relationRamat, E., Lente, C., Slimane, M., Tacquard, C., & Venturini, G. (1996). Stochastic Project Scheduling Based on Time Lag. In IEEE International Conference on Systems, Man and Cybernetics (pp. 2916–2921).
dc.relationRezaie, K., Manouchehrabadi, B., & Shirkouhi, S. N. (2009). Duration estimation, a new approach in critical chain scheduling. In Proceedings - 2009 3rd Asia International Conference on Modelling and Simulation, AMS 2009 (pp. 481–484). https://doi.org/10.1109/AMS.2009.67
dc.relationSaihjpal, V., & Singh, S. B. (2014). New Placement Strategy for Buffers in Critical Chain. In Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012 (pp. 429–436). https://doi.org/10.1007/978-81-322-1602-5
dc.relationSchmidt, C. W., & Grossmann, I. E. (1996). A mixed integer programming model for stochastic scheduling in new product development. Computers & Chemical Engineering, 20(96), S1239-SI244. https://doi.org/https://doi.org/10.1016/0098-1354(96)00214-1
dc.relationShi, Q., & Gong, T. (2009). An improved project buffer sizing approach to critical chain management under resources constraints and fuzzy uncertainty. In International Conference on Artificial Intelligence and Computational Intelligence (pp. 486–490). https://doi.org/10.1109/AICI.2009.192
dc.relationShou, Y., & Wang, W. (2012). Robust optimization-based genetic algorithm for project scheduling with stochastic activity durations. International Journal on Information, 15(10), 4049–4064.
dc.relationSong, W., Kang, D., Zhang, J., & Xi, H. (2018). Risk-aware proactive scheduling via conditional value-at-risk. In 32nd Conference on Artificial Intelligence, AAAI 2018 (pp. 6278–6285).
dc.relationSong, W., Xi, H., Kang, D., & Zhang, J. (2018). An agent-based simulation system for multi-project scheduling under uncertainty. Simulation Modelling Practice and Theory, 86(November 2017), 187–203. https://doi.org/10.1016/j.simpat.2018.05.009
dc.relationSubhy, E. S., Georgy, M. E., & Ibrahim, M. E. (2014). Incorporating Uncertainty into Project Schedule Crashing : An Algorithm. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction, ISARC 2014 (pp. 404–409).
dc.relationSubramanian, D., Pekny, J. F., & Reklaitis, G. V. (2001). A simulation-optimization framework for research and development pipeline management. AIChE Journal, 47(10), 2226–2242. https://doi.org/10.1002/aic.690471010
dc.relationTabrizi, B. H., & Ghaderi, S. F. (2016). A robust bi-objective model for concurrent planning of project scheduling and material procurement. Computers & Industrial Engineering, 98, 11–29. https://doi.org/10.1016/j.cie.2016.05.017
dc.relationTereso, A. P., Araujo, M., & Elmaghraby, S. E. (2004). Adaptive resource allocation in multimodal activity networks. International Journal of Production Economics, 92(1), 1–10. https://doi.org/10.1016/j.ijpe.2003.09.005
dc.relationTukel, O. I., Rom, W. O., & Eksioglu, S. D. (2006). An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 172, 401–416. https://doi.org/10.1016/j.ejor.2004.10.019
dc.relationTysiak, W. (2017). Monte Carlo simulation and critical chains. In 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017 (Vol. 1, pp. 471–474). https://doi.org/10.1109/IDAACS.2017.8095125
dc.relationVan De Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management : The trade-off between stability and makespan. Int. J. Production Economics, 97, 227–240. https://doi.org/10.1016/j.ijpe.2004.08.004
dc.relationVan De Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215–236. https://doi.org/10.1080/00207540500140914
dc.relationVarakantham, P., Fu, N., & Lau, H. C. (2016). A Proactive Sampling Approach to Project Scheduling under Uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 3195–3201).
dc.relationVaziri, K., Carr, P. G., & Nozick, L. K. (2007). Project Planning for Construction under Uncertainty with Limited Resources. American Society of Civil Engineers (ASCE), 133(April), 268–277.
dc.relationWale, K. (2015). Risk-Aware Project Scheduling for Projects with Varied Risk Levels. IEEE Symposium Series on Computational Intelligence Risk-Aware, 1642–1649. https://doi.org/10.1109/SSCI.2015.231
dc.relationWang, J. (2002). A fuzzy project scheduling approach to minimize schedule risk for product development. Fuzzy Sets and Systems, 127(2), 99–116. https://doi.org/10.1016/S0165-0114(01)00146-4
dc.relationWang, J. (2004). A fuzzy robust scheduling approach for product development projects. European Journal of Operational Research, 152(1), 180–194. https://doi.org/10.1016/S0377-2217(02)00701-4
dc.relationWang, J. R. (1999). A fuzzy set approach to activity scheduling for product development. Journal of the Operational Research Society, 50(12), 1217–1228. https://doi.org/10.1057/palgrave.jors.2600814
dc.relationWard, L. (2004). Managing portfolios of projects under uncertainty. Annals of Operations Research, 132, 243–256.
dc.relationWeaver, P. (2006). A brief history of scheduling: Back to the future. MyPrimavera Conference, (April), 24. https://doi.org/10.1016/j.ijsu.2011.11.004
dc.relationWei-xin, W., Xu, W., Xian-long, G., & Lei, D. (2014). Multi-objective optimization model for multi-project scheduling on critical chain. Advances in Engineering Software, 68, 33–39. https://doi.org/10.1016/j.advengsoft.2013.11.004
dc.relationXiong, J., Chen, Y., Liu, J., & Abbass, H. A. (2011). An evolutionary multi-objective scenario-based approach for Stochastic Resource Investment Project Scheduling. In IEEE Congress of Evolutionary Computation, CEC 2011 (pp. 2767–2774). https://doi.org/10.1109/CEC.2011.5949965
dc.relationXiong, J., Liu, J., Chen, Y., & Abbass, H. A. (2011). A Knowledge-Based Evolutionary Multiobjective Approach for Stochastic Extended Resource Investment Project Scheduling Problems. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 18(5), 742–763. https://doi.org/10.1109/TEVC.2013.2283916
dc.relationYaghoubi, S., Noori, S., & Azaron, A. (2015). The Markovian Multi-Criteria Multi-Project Resource-Constrained Project Scheduling Problem. In Handbook on Project Management and Scheduling Vol. 2 (Vol. 2, pp. 837–862). https://doi.org/10.1007/978-3-319-05915-0
dc.relationYang, L., Fu, Y., Li, S., Huang, B., & Tao, P. (2008). A buffer sizing approach in critical chain scheduling with attributes dependent. In International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008 (pp. 1–4). https://doi.org/10.1109/WiCom.2008.1805
dc.relationYi, C. S., Gao, J. B., & Guan, X. Bin. (2014). A Fuzzy Scheduling Methodology for Energy R&D Projects. Applied Mechanics and Materials, 521, 806–809. https://doi.org/10.4028/www.scientific.net/AMM.521.806
dc.relationYu, J., Xu, Z., & Hu, C. (2013). Buffer Sizing Approach in Critical Chain Project Management under Multiresource Constraints. In 6th International Conference on Information Management, Innovation Management and Industrial Engineering (pp. 71–75). https://doi.org/10.1109/ICIII.2013.6703669
dc.relationZafra-Cabeza, Ascension, Ridao, M. A., & Camacho, E. F. (2008). Using a risk-based approach to project scheduling: A case illustration from semiconductor manufacturing. European Journal of Operational Research, 190(3), 708–723. https://doi.org/10.1016/j.ejor.2007.06.021
dc.relationZafra-Cabeza, Ascensión, Ridao, M. A., & Camacho, E. F. (2007). A model predictive control approach for project risk management. In Proceedings of the European Control Conference 2007 (pp. 3337–3343). https://doi.org/10.23919/ECC.2007.7068825
dc.relationZhang, J., Jia, S., & Díaz, E. (2015). A new buffer sizing approach based on the uncertainty of project activities. Concurrent Engineering: Research and Applications, 23(1), 3–12. https://doi.org/10.1177/1063293X14561871
dc.relationZhang, J., Shi, R., & Díaz, E. (2015). Dynamic monitoring and control of software project effort based on an effort buffer. Journal of the Operational Research Society, 66(9), 1555–1565. https://doi.org/10.1057/jors.2014.125
dc.relationZhang, J., Song, X., & Díaz, E. (2016). Project buffer sizing of a critical chain based on comprehensive resource tightness. European Journal of Operational Research, 248(1), 174–182. https://doi.org/10.1016/j.ejor.2015.07.009
dc.relationZhang, X., Cui, N., Bie, L., & Chai, Y. (2011). Timely project completion probability and stability cost on the interaction among uncertainty of random duration, service level and feeding buffer in a RCPSP environment. In 2011 International Conference on Management and Service Science (pp. 2–5). https://doi.org/10.1109/ICMSS.2011.5998239
dc.relationZhang, Z., Liu, M., Zhou, X., & Chen, L. (2015). A multi-objective DCP model for bi-level resource-constrained project scheduling problems in grounding grid system project under hybrid uncertainty. KSCE Journal of Civil Engineering, 20, 1631–1641. https://doi.org/10.1007/s12205-015-0615-6
dc.relationZhang, Z., & Xu, J. (2015). Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Industrial and Management Optimization, 12(2), 565–593. https://doi.org/10.3934/jimo.2016.12.565
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleModelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria
dc.typeOtro


Este ítem pertenece a la siguiente institución