dc.contributorMoreno Herrera, Claudia Ximena
dc.contributorVIVERO GOMEZ, RAFAEL JOSE
dc.contributorMicrobiodiversidad y Bioprospección
dc.creatorDuque Granda, Daniela
dc.date.accessioned2022-08-26T21:28:15Z
dc.date.available2022-08-26T21:28:15Z
dc.date.created2022-08-26T21:28:15Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82150
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractDue to climate change, there is an increase in tropical diseases such as leishmaniasis, transmitted by some species of the genus Lutzomyia, as Lutzomyia longipalpis, vector of Leishmania infantum in America. In addition, the microbiota of insects is known to play a role in their immunity, directly impacting their vector competence to transmit pathogens. This justifies the need to explore the composition of the microbiota, the presence of endosymbionts and their potential relationship with temperature variations in Lu. longipalpis. For this reason, the molecular detection of Arsenophonus was conducted in populations of wild phlebotomines of Lu. longipalpis, Pintomyia evansi and Psychodopygus panamensis from Colombia. Subsequently, with a device with temperature gradient "MB-Thermocline", it was evaluated the temperature preference of Lu. longipalpis, Pi. evansi while populations of Aedes aegypti were used as a control in the assay. The PCR results showed the presence of Arsenophonus and interspecific differences (p-value < 0.05) were observed between phlebotomines, specifically between 25 °C and 31 °C where there was a greater abundance of Pi. evansi found in such compartments, however both species showed a marked preference towards the temperature of 21-23 °C, while Ae. aegypti prefered temperatures between 27-29 °C. Representative groups of Lu. longipalpis that presented temperature preference (phenotypes) in each compartment of the device, were used to perform an analysis of the microbiota using New Generation Sequencing techniques. The analysis of the microbiota of these groups shows that the communities have a significantly different taxonomic structure between temperature ranges (p-value < 0.013), the most abundant genera were Pseudomonas (57.36% at 25-27 °C, 6.55% at 29-31 °C and 13.20% at 31-33 °C) and Bacillus (1.21% at 25-27 °C, 61.54% at 29-31 °C and 37.64% at 31-33 °C). It was possible to detect the natural infection of secondary endosymbionts such as Arsenophonus, Rickettsia, Spiroplasma and Asaia. Significantly, Arsenophonus is more abundant in groups of Lu. longipalpis that preferred warm temperatures (p-value < 0.02). In general, it was possible to observe that there are endosymbionts of interest that naturally infect Lu. longipalpis and that these and the microbial community vary according to the temperature to which the sand flies were exposed. This is relevant to understand the transmission dynamics of leishmaniasis and how some species may have a greater capacity to adapt to climate variability.
dc.description.abstractDebido al cambio climático, existe un aumento en enfermedades tropicales como la leishmaniasis, transmitida por algunas especies del género Lutzomyia, como Lutzomyia longipalpis, vector de Leishmania infantum en América. Además, se sabe que la microbiota de los insectos juega un papel en su inmunidad, impactando directamente su competencia vectorial para transmitir patógenos. Lo expuesto justifica la necesidad de explorar la composición de la microbiota, la presencia de endosimbiontes y su potencial relación con variaciones de temperatura en Lu. Longipalpis. Para ello se llevó a cabo la detección molecular de Arsenophonus en poblaciones de flebotomíneos silvestres de Lu. longipalpis, Pintomyia evansi y Psychodopygus panamensis de Colombia. Posteriormente, con un dispositivo con gradiente de Temperatura “MB-Termoclina”, se evaluó la preferencia de temperatura de Lu. longipalpis, Pi. evansi y se usaron poblaciones de Aedes aegypti como control en el ensayo. Los resultados de PCR mostraron la presencia de Arsenophonus y se observaron diferencias interespecíficas (valor-p < 0,05) entre flebotomíneos, específicamente entre los 25 °C y 31 °C donde se encontró una mayor abundancia de Pi. evansi en tales compartimientos, sin embargo ambas especies mostraron una marcada preferencia hacia la temperatura de 21-23 °C, mientras que Ae. aegypti prefirió temperaturas entre 27-29 °C. A grupos representativos de Lu. longipalpis que presentaron preferencia de temperaturas (fenotipos) en cada una de las cabinas del dispositivo, se les realizó un análisis de la microbiota usando la secuenciación de nueva generación. El análisis de la microbiota de estos grupos, muestra que las comunidades tienen una estructura taxonómica significativamente diferente entre rangos de temperatura (valor-p < 0.013), los géneros más abundantes fueron Pseudomonas (57.36% a los 25-27 °C, 6.55% a los 29-31 °C y 13.20% a los 31-33 °C) y Bacillus (1.21% a los 25-27 °C, 61.54% a los 29-31 °C y 37.64% a los 31-33 °C). Fue posible detectar la infección natural de endosimbiontes secundarios como Arsenophonus, Rickettsia, Spiroplasma y Asaia. Significativamente, Arsenophonus es más abundante en grupos de Lu. longipalpis que prefirieron temperaturas cálidas (valor-p< 0.02). En general, fue posible observar que existen endosimbiontes de interés que infectan de manera natural a Lu. longipalpis y que estos y la comunidad microbiana varían según la temperatura a la que fueron expuestos los flebótomos. Lo anterior es relevante para entender las dinámicas de transmisión de la leishmaniasis y como algunas especies pueden tener una mayor capacidad de adaptación a la variabilidad climática. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherEscuela de biociencias
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbalain-Colloc, M. L., Rosen, L., Tully, J. G., Bove, J. M., Chastel, C., & Williamson, D. L. (1988). Spiroplasma taiwanense sp. nov. from Culex tritaeniorhynchus Mosquitoes Collected in Taiwan. International Journal of Systematic Bacteriology, 38(1), 103–107. doi:10.1099/00207713-38-1-103
dc.relationAguirre-Obando, O. A., Duarte Gandica, I. (2020). Control of Aedes (Stegomyia) aegypti using Bacillus thuringiensis var. israelensis in Armenia, Quindío, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 23(1). https://doi.org/10.31910/rudca.v23.n1.2020.1067
dc.relationArnold, P.A., White, C.R. & Johnson, K.N. (2015) Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 96,3667–3671
dc.relationArnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures. Ecological Entomology. DOI: 10.1111/ccn.12696
dc.relationAzpurua, J., De La Cruz, D., Valderama, A., & Windsor, D. (2010). Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama. PLoS Neglected Tropical Diseases, 4(3), e627. doi:10.1371/journal.pntd.0000627
dc.relationBarua, S., Hoque, M. M., Kelly, P. J., Poudel, A., Adekanmbi, F., Kalalah, A., Yang, Y., & Wang, C. (2020). First report of Rickettsia felis in mosquitoes, USA. Emerging microbes & infections, 9(1), 1008–1010. https://doi.org/10.1080/22221751.2020.1760736
dc.relationBravo, A., Gómez, I., Porta, H., García-Gómez, B. I., Rodriguez-Almazan, C., Pardo, L., & Soberón, M. (2013). Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial biotechnology, 6(1), 17–26. https://doi.org/10.1111/j.1751- 7915.2012.00342.x
dc.relationChepkemoi, S. T., Mararo, E., Butungi, H., Paredes, J., Masiga, D., Sinkins, S. P., & Herren, J. K. (2017). Identification of Spiroplasmainsolitum symbionts in Anopheles gambiae. Wellcome open research, 2, 90. https://doi.org/10.12688/wellcomeopenres.12468.1
dc.relationContreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera colombiana. Biomédica, 34(3). doi:10.7705/biomedica.v34i3.2121
dc.relationDe Barjac, H., Larget, I., Killick-Kendrick, R. (1981). Toxicity of Bacillus thuringiensis var. israelensis, serotype H14, to the larvae of phlebotomine sandflies. Bulletin de la Societe de pathologie exotique et de ses filiales 74, 485-489.
dc.relationDíaz, S., Villavicencio, B., Correia, N., Costa, J., & Haag, K. L. (2016). Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasites & vectors, 9(1), 636. https://doi.org/10.1186/s13071-016-1926-2
dc.relationDíaz-Nieto, L. M., Gil, M. F., Lazarte, J. N., Perotti, M. A. & Berón, C.M. Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria. Scientific Reports, 11, 1094 (2021). https://doi.org/10.1038/s41598-020-80034-5
dc.relationDrew, G.C., Budge, G.E., Frost, C.L. et al. (2021). Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts. ISME J. https://doi.org/10.1038/s41396-021-00977-z
dc.relationDuron, O., Schneppat, U. E., Berthomieu, A., Goodman, S. M., Droz, B., Paupy, C., Obame Nkoghe, J., Rahola, N., Tortosa, P. (2014) Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol 23: 2105–2117.
dc.relationFerguson, Laura V. (2017). Thermal Biology of Insect Immunity and Host-Microbe Interactions. Electronic Thesis and Dissertation Repository. 4406. https://ir.lib.uwo.ca/etd/4406
dc.relationGarcía, C., Escovar, J., Londoño, Y., Moncada, L. (2010). Altitud y tablas de vida de poblaciones de Culex quinquefasciatus (Diptera Cucilidae). Revista Colombiana de Entomología 36(1), 62-67
dc.relationGarcía San Miguel, L., Sierra, M. J., Vazquez, A., Fernandez-Martínez, B., Molina, R., Sanchez-Seco, M. P., Lucientes, J., Figuerola, J., de Ory, F., Monge, S., Suarez, B., & Simón, F. (2021). Phlebovirus-associated diseases transmitted by phlebotominae in Spain: Are we at risk?. Enfermedades infecciosas y microbiologia clinica (English ed.), 39(7), 345–351. https://doi.org/10.1016/j.eimce.2021.05.001
dc.relationGuzmán, H. & Tesh, R.B. (2000). Effects of temperature and diet on the growth and longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomédica 20, 190 - 9.
dc.relationHu, Y., Xi, Z., Liu, X. et al. (2020). Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasites Vectors 13, 28 https://doi.org/10.1186/s13071-020-3899-4
dc.relationInstituto Nacional de Salud (2021). Boletín Epidemiológico del Ministerio del Interior, 2021. Retrieved from: https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16- Boletin-Epidemiologico-Noviembre-2021-2.pdf
dc.relationKaratepe, B., Aksoy, S. & Karatepe, M. Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. (2018). Sci Rep 8, 10616 . https://doi.org/10.1038/s41598-018-29031-3
dc.relationKaratepe, M., Aksoy, S. & Karatepe, B. Wolbachia spp. and Spiroplasma spp. in Musca spp.: Detection Using Molecular Approaches. (2021) Turkiye Parazitol Derg. Aug 4;45(3):211-215. English. doi: 10.4274/tpd.galenos.2021.35229. PMID: 34346878.
dc.relationKelly, P. H., Bahr, S. M., Serafim, T. D., Ajami, N. J., Petrosino, J. F., Meneses, C., Kirby, J. R., Valenzuela, J. G., Kamhawi, S., & Wilson, M. E. (2017). The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio, 8(1), e01121-16. https://doi.org/10.1128/mBio.01121-16
dc.relationKwon, M.-O., Wayadande, A. C., and Fletcher, J. (1999). Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus. Phytopathology 89:1144-1151.
dc.relationLi, K., Chen, H., Jiang, J., Li, X., Xu, J., Ma, Y. (2016). Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep. Nov 7;6:36406. doi: 10.1038/srep36406. PMID: 27819272; PMCID: PMC5098245.
dc.relationLindh, J. M., Terenius, O. & Faye, I. (2020). 16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus Mosquitoes Reveals New Species Related to Known Insect Symbionts. Applied and Environmental Microbiology, ASM Journals Vol. 71, No. 11
dc.relationLozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga- Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitol Int. Jun;82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21. PMID: 33486127.
dc.relationMaina AN, Klein TA, Kim H-C, Chong S-T, Yang Y, Mullins K, et al. (2017). Molecular characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea. PLoS ONE 12(11): e0188327. https://doi.org/10.1371/journal.pone.0188327
dc.relationMirkery-Pachecho O, Marina C, Ibañez B, Sanchez D, Castillo V. (2012). Infección natural de Lutzomyia cruciata (Diptera: Psychodidae, Phlebotominae) con Wolbachia en cafetales de Chiapas, México. Act Zoológica Mex., 8(2):401–13.
dc.relationMinisterio de Protección Social, Instituto Nacional de Salud & Organización Panamericana de la Salud (no date). Gestión para la vigilancia entomológica y gestión de la Leishmaniasis. Retrieved from: http://simudatsalud-risaralda.co/normatividad_inv7/Entomologica%20Leishmaniasis.pdf
dc.relationMonteiro, C. C., Villegas, L. E., Campolina, T. B., Pires, A. C., Miranda, J. C., Pimenta, P. F., & Secundino, N. F. (2016). Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasites & vectors, 9(1), 480. https://doi.org/10.1186/s13071-016-1767-z
dc.relationMontenegro, H., Solferini, V. N., Klaczko, L. B. & Hurst, G. D. D. (2005). Male-killing Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol. Biol. 14, 281–287.
dc.relationMouches C, Bové JM, Tully JG, Rose DL, McCoy RE, Carle-Junca P, Garnier M, Saillard C. Spiroplasma apis, a new species from the honey-bee Apis mellifera. (1983). Ann Microbiol (Paris). May-Jun;134A(3):383-97. PMID: 6195951.
dc.relationOno, M., Braig, H. R., Munstermann, L. E., Ferro, C., & O’NeilL, S. L. (2001). WolbachiaInfections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 38(2), 237–241. doi:10.1603/0022-2585-38.2.237
dc.relationOnyango, G.M., Bialosuknia, M.S., Payne, F.A., Mathias, N., Ciota, T.A., Kramer, D.L. (2020) Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 10, 19135. https://doi.org/10.1038/s41598-020-76188-x
dc.relationOrganización Panamericana de la Salud (2021). Leishmaniasis: Informe epidemiológico de las Américas. Retrieved from: file:///C:/Users/danid/Downloads/OPSCDEVT210019_spa.pdf
dc.relationOrganización Panamericana de la Salud. (2019). Manual de procedimientos para vigilancia y control de las leishmaniasis en las Américas. Washington, D.C.: OPS.
dc.relationPadilla JC, Lizarazo FE, Murillo OL, Mendigana FA, Pachon E, Vera MJ. Epidemiologia de las principales enfermedades transmitidas por vectores en Colombia, 1990–2016. (2017). Biomedica 37:27–40. pmid:29165933
dc.relationPapadopoulos C, Karas PA, Vasileiadis S, Ligda P, Saratsis A, Sotiraki S, Karpouzas DG. Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens. 2020; 9(6):428. https://doi.org/10.3390/pathogens9060428
dc.relationPascar, J., & Chandler, C. H. (2018). A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ, 6, e5486. https://doi.org/10.7717/peerj.5486
dc.relationPilgrim J, Siozios S, Baylis M, Hurst GDD. Tissue Tropisms and Transstadial Transmission of a Rickettsia Endosymbiont in the Highland Midge, Culicoides impunctatus (Diptera: Ceratopogonidae). (2020). Appl Environ Microbiol. Oct 1;86(20):e01492-20. doi: 10.1128/AEM.01492-20. PMID: 32801177; PMCID: PMC7531967.
dc.relationRivas, G.B., de Souza, N.A., Peixoto, A.A., Bruno, R. (2014). Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae). Parasites Vectors 7, 278 . https://doi.org/10.1186/1756-3305-7-278
dc.relationRocklöv, J., Dubrow, R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol 21, 479–483 (2020). https://doi.org/10.1038/s41590- 020-0648-y
dc.relationRodrigues, M.S., Morelli, K.A. & Jansen, A.M. (2017). Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species. Parasites Vectors 10, 488 https://doi.org/10.1186/s13071-017-2457-1
dc.relationSaxena, D., Pushalkar, S. & Stotsky, G. (2010). Fate and Effects in Soil of Cry Proteins from Bacillus thuringiensis: Influence of Physicochemical and Biological Characteristics of Soil. The Open Toxinology Journal, 133 – 153.
dc.relationSocolovschi, C., Mediannikov, O., Raoult, D., & Parola, P. (2009). The relationship between spotted fever group Rickettsiae and ixodid ticks. Veterinary research, 40(2), 34. https://doi.org/10.1051/vetres/2009017
dc.relationSocolovschi, C., Pages, F., Ndiath, M. O., Ratmanov, P., Raoult, D. (2012a). Rickettsia species in African Anopheles mosquitoes. PLoS One. ;7(10):e48254. doi: 10.1371/journal.pone.0048254. Epub 2012 Oct 30. PMID: 23118963; PMCID: PMC3484133.
dc.relationSocolovschi, C., Reynaud, P., Kernif, T., Raoult, D., & Parola, P. (2012b). Rickettsiae of spotted fever group, Borrelia valaisiana, and Coxiella burnetii in ticks on passerine birds and mammals from the Camargue in the south of France. Ticks and Tick-Borne Diseases, 3(5-6), 355–360. doi:10.1016/j.ttbdis.2012.10.019
dc.relationSocolovschi, C., Pagés, F., & Raoult, D. (2012c). Rickettsia felis in Aedes albopictus Mosquitoes, Libreville, Gabon. Emerging Infectious Diseases, 18(10), 1687-1689. https://doi.org/10.3201/eid1810.120178
dc.relationSegata, N., Baldini, F., Pompon, J., Garrett, W. S., Truong, D. T., Dabiré, R. K., … Catteruccia, F. (2016). The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Scientific Reports, 6(1). doi:10.1038/srep24207
dc.relationTabbabi, A., Watanabe, S., Mizushima, D., Caceres, A. G., Gomez, E. A., Yamamoto, D. S., Kato, H. (2020). Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms, 9(1), 68. doi:10.3390/microorganisms9010068
dc.relationTang, X. T., Cai, L., Shen, Y., & Du, Y. Z. (2018). Diversity and evolution of the endosymbionts of Bemisia tabaci in China. PeerJ, 6, e5516. https://doi.org/10.7717/peerj.5516
dc.relationTruitt, A.M., Kapun, M., Kaur, R. & Miller, W.J. (2018) Wolbachia modifies thermal preference in Drosophila melanogaster.Environmental Microbiology. https://doi.org/10.1111/1462-2920.14347
dc.relationVarotto-Boccazzi, I., Epis, S., Arnoldi, I., Corbett, Y., Gabrieli, P., Paroni, M., Nodari, R., Basilico, N., Sacchi, L., Gramiccia, M., Gradoni, L., Tranquillo, V. & Bandi, C. (2020). Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans. Pharmacological Research, 105288. doi:10.1016/j.phrs.2020.105288
dc.relationVasconcelos Dos Santos, T., Santos Neto, N. F., Sánchez Uzcátegui, Y., & Galardo, A. (2019). Trichophoromyia iorlandobaratai (Diptera: Psychodidae), a new phlebotomine species from the Brazilian Amazonia. Journal of medical entomology, 56(2), 416–420. https://doi.org/10.1093/jme/tjy194
dc.relationVivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo, G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms. Jun 4;9(6):1214. doi: 10.3390/microorganisms9061214. PMID: 34199688; PMCID: PMC8228094.
dc.relationWilliamson, D. L., Tully, J. G., Rosen, L., Rose, D. L., Whitcomb, R. F., Abalain-Colloc, M. L., Carle, P., Bové, J. M., Smyth, J. (1996). Spiroplasma diminutum sp. nov., from Culex annulus mosquitoes collected in Taiwan. Int J Syst Bacteriol. Jan;46(1):229-33. doi: 10.1099/00207713-46-1-229. PMID: 8573499.
dc.relationWong, M.L., Liew, J.W.K., Wong, W.K. et al. (2020).Natural Wolbachia infection in fieldcollected Anopheles and other mosquito species from Malaysia. Parasites Vectors 13, 414. https://doi.org/10.1186/s13071-020-04277-x
dc.relationZorrilla, V., Vásquez, G., Espada, Liz, & Ramírez, P. (2017). Vectores de la leishmaniasis tegumentaria y la Enfermedad de Carrión en el Perú: una actualización. Revista Peruana de Medicina Experimental y Salud Pública, 34(3), 485-496. https://dx.doi.org/10.17843/rpmesp.2017.343.2398
dc.relationAyoubi, A., Talebi, A. A., Fathipour, Y., & Mehrabadi, M. (2018). Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect Science. doi:10.1111/1744-7917.12603
dc.relationBallinger, M. J. & Perlman, S. J. (2018). The defensive Spiroplasma. Current Opinion in Insect Science 32, 36-41.
dc.relationBarua, S., Hoque, M. M., Kelly, P. J., Poudel, A., Adekanmbi, F., Kalalah, A., Yang, Y., & Wang, C. (2020). First report of Rickettsia felis in mosquitoes, USA. Emerging microbes & infections, 9(1), 1008–1010. https://doi.org/10.1080/22221751.2020.1760736
dc.relationBinetruy, F., Bailly, X., Chevillon, C., Martin, O.Y., Bernasconi, M.V., Duron, O. (2019). Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis. (3):575-584. doi: 10.1016/j.ttbdis.2019.02.001. Epub 2019 Feb 5. PMID: 30744948.
dc.relationBohacsova M, Mediannikov O, Kazimirova M, Raoult D, Sekeyova Z (2016) Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri. PLoS ONE 11(2): e0149950. https://doi.org/10.1371/journal.pone.0149950
dc.relationBoyd, B. M., Allen, J. M., Nguyen, N.-P., Vachaspati, P., Quicksall, Z. S., Warnow, T., Mugisha, L., Johnson, K., Reed, D. L. (2017). Primates, Lice, and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice. Molecular Biology and Evolution, 34(7), 1743–1757. doi:10.1093/molbev/msx117
dc.relationBressan A. (2014). Emergence and evolution of Arsenophonus bacteria as insectvectored plant pathogens. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 22, 81–90. https://doi.org/10.1016/j.meegid.2014.01.004
dc.relationChiang, C. L., & Reeves, W. C. (1962). Statistical estimation of virus infection rates in mosquito vector populations. American Journal of Epidemiology, 75(3), 377–391. doi:10.1093/oxfordjournals.aje.a120259
dc.relationCordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341. doi:10.1016/j.tig.2011.05.002
dc.relationDouglas, A. E. (2015). Multiorganismal Insects: Diversity and Function of Resident Microorganisms. Annual Review of Entomology, 60(1), 17–34. doi:10.1146/annurev-ento- 010814-020822
dc.relationDouglas, A. E. (2017). The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Current Opinion in Insect Science, 23, 65– 69. doi:10.1016/j.cois.2017.07.012
dc.relationDoudoumis, V., Blow, F., Saridaki, A., Doudoumis, V., Blow, F., Saridaki, A., Augustinos, A., Dyer, N. A., Goodhead, I., Solano, P., Rayaisse, J.-B., Takac, P., Mekonnen, S., Parker, A.G., Abd-Alla, A.M.M., Darby, A., Bourtzis, K., Tsiamis, G. (2017). Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Scientific Reports, 7(1). doi:10.1038/s41598-017-04740-3
dc.relationDuron, O., Wilkes, T. E., & Hurst, G. D. D. (2010). Interspecific transmission of a malekilling bacterium on an ecological timescale. Ecology Letters, 13(9), 1139–1148. doi:10.1111/j.1461-0248.2010.01502.x
dc.relationDuron, O., Schneppat, U.E., Berthomieu, A., Goodman, S.M., Droz, B., Paupy, C., Nkoghe, J.O., Rahola, N., Tortosa, P. (2014). Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology 23:2105- 2117
dc.relationDuron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J., Hurst, G.D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone . BMC Biol 6, 27. https://doi.org/10.1186/1741-7007-6-27
dc.relationDurovni B., Saraceni V., Eppinghaus A., Riback T. I. S., Moreira L. A., Jewell N. P., et al. . (2020). The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Res. 8:1328. 10.12688/f1000research.19859.2
dc.relationEleftherianos I, Atri J, Accetta J, Castillo JC. (2013) Endosymbiotic bacteria in insects: guardians of the immune system?. Front Physiol. 2013;4:46. doi:10.3389/fphys.2013.00046
dc.relationElston, Katherine & Leonard, Sean & Geng, Peng & Bialik, Sarah & Robinson, Elizabeth & Barrick, Jeffrey. (2021). Engineering insects from the endosymbiont out. Trends in Microbiology. 10.1016/j.tim.2021.05.004.
dc.relationFan, H.-W., Lu, J.-B., Ye, Y.-X., Yu, X.-P., & Zhang, C.-X. (2016). Characteristics of the draft genome of “Candidatus Arsenophonus nilaparvatae”, a facultative endosymbiont of Nilaparvata lugens. Insect Science, 23(3), 478–486. doi:10.1111/1744-7917.12318
dc.relationFolmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294 - 299.
dc.relationForattini, O. P. (2002). Culicidologia médica. In: De E da U, São Paulo SP, (Ed.) Culicidologia médica. Editora da Universidade de São Paulo, São Paulo, p. 860.
dc.relationGalati, E.A.B., Andrade-Filho, J.D., Silva, A.C.L., Falcao, A.L. (2003)Description of a New Genus and a New Species of New World Phlebotominae (Diptera, Psychodidae). Rev Brasil Entomol, 47, (63-70).
dc.relationGherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., Mandelco, L., and Brenner, D. J. 1991. Arsenophonus nasoniae gen.-nov., sp.-nov., the causative agent of the son killer trait in the parasitic wasp Nasonia vitripennis. Int. J. Syst. Bact., 41, 563– 565.
dc.relationGolczer, G. & Arrivillaga, J. (2008). Modificación de un protocolo estándar de extracción de ADN para flebotominos pequeños (Phlebotominae: Lutzomyia). Rev. Col. Entomol, 34, 199-202.
dc.relationGhosh, S., Bouvaine, S. & Maruthi, M. (2015). Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol 15, 93 https://doi.org/10.1186/s12866-015-0425-5
dc.relationHypsa, V., & Dale, C. (1997). In Vitro Culture and Phylogenetic Analysis of “Candidatus Arsenophonus triatominarum,” an Intracellular Bacterium from the Triatomine Bug, Triatoma infestans. International Journal of Systematic Bacteriology, 47(4), 1140–1144. doi:10.1099/00207713-47-4-1140
dc.relationHoyos-López, R., Suaza-Vasco, J., Rúa-Uribe, G., Uribe, S., & Gallego-Gómez, J. C. (2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Memorias do Instituto Oswaldo Cruz, 111(10), 625–634. https://doi.org/10.1590/0074-02760160096
dc.relationHoyos-López, R., Uribe-Soto, S., & Gallego-Gómez, J. C. (2015). Evolutionary relationships of West Nile virus detected in mosquitoes from a migratory bird zone of Colombian Caribbean. Virology journal, 12, 80. https://doi.org/10.1186/s12985-015-0310- 8
dc.relationHunter, D. J., Torkelson, J. L., Bodnar, J., Mortazavi, B., Laurent, T., Deason, J., Thephavongsa, K., & Zhong, J. (2015). The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis. PloS one, 10(12), e0144552. https://doi.org/10.1371/journal.pone.0144552
dc.relationJouzani, G. S., Valijanian, E., & Sharafi, R. (2017). Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology, 101(7), 2691–2711. doi:10.1007/s00253-017-8175-y
dc.relationKarimi, S., Askari Seyahooei, M., Izadi, H., Bagheri, A., & Khodaygan, P. (2019). Effect of Arsenophonus Endosymbiont Elimination on Fitness of the Date Palm Hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae). Environmental Entomology. doi:10.1093/ee/nvz047
dc.relationKikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability. Microbes and Environments, 24(3), 195–204. doi:10.1264/jsme2.me09140s
dc.relationKikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., Fukatsu, T. (2012). Symbiont-mediated insecticide resistance Proc. Natl. Acad. Sci. USA, 109, pp. 8618- 8622.
dc.relationKumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549
dc.relationLane J. (1953). Neotropical Culicidae. São Paulo Univ São Paulo; 1112.
dc.relationLi, K., Chen, H., Jiang, J., Li, X., Xu, J., Ma, Y. (2016). Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep. 2016;6(1):36406.
dc.relationLozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga- Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitol Int. 82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21. PMID: 33486127.
dc.relationMaina AN, Klein TA, Kim H-C, Chong S-T, Yang Y, Mullins K, et al. (2017). Molecular characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea. PLoS ONE 12(11): e0188327. https://doi.org/10.1371/journal.pone.0188327
dc.relationMarceló, C., Cabrera Quintero, O. L., & Santamaría, E. (2014). Concentraciones diagnósticas de tres insecticidas de uso en salud pública en una cepa experimental de Lutzomyia longipalpis (Diptera: Psychodidae) en Colombia. Biomédica, 34(4). doi:10.7705/biomedica.v34i4.2233
dc.relationMcCutcheon, J. P., Boyd, B. M., & Dale, C. (2019). The Life of an Insect Endosymbiont from the Cradle to the Grave. Current Biology, 29(11), R485–R495. doi:10.1016/j.cub.2019.03.032
dc.relationMeyer, C.P. & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol, 3, 2229–2238.
dc.relationMorse, S.F., Bush, S.E., Patterson, B.D., Dick, C.W., Gruwell, M.E., Dittmar, K. (2013). Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Applied and Environmental Microbiology, 79, 2952-2961
dc.relationMouton, L., Thierry, M., Henri, H. Boudin, R., Gnankine, O., Reynaud, B., Zchori-Fein, E., Becker, N., Fleury, F., Delatte, H. (2012). Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex. BMC Microbiol 12, S10 https://doi.org/10.1186/1471-2180-12-S1-S10
dc.relationNováková, E., Hypša, V., Nguyen, P., Husník, F., & Darby, A. C. (2016). Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Standards in genomic sciences, 11, 72. https://doi.org/10.1186/s40793-016-0195-1
dc.relationNováková, M., & Šmajs, D. (2018). Rickettsial Endosymbionts of Ticks. Ticks and Tick- Borne Pathogens. doi:10.5772/intechopen.80767
dc.relationNováková, E., Hypša, V. & Moran, N.A. (2009). Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9, 143. https://doi.org/10.1186/1471-2180-9-143
dc.relationPAHO. (2016). Plan estratégico del subprograma de Dengue Chikunguña 2014 - 2021 en el marco de la EGI ETV y articulado al plan nacional mesoamericano de Dengue - Chikunguña. Retrieved from: http://www.proyectomesoamerica.org:8088/smsp/phocadownload/Institucional/ PlanesNacionales/PNDengue/COL%20PN%20Dengue.pdf
dc.relationPang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W. (2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS genetics, 14(10), e1007725. https://doi.org/10.1371/journal.pgen.1007725
dc.relationPapadopoulos, C., Karas, P.A., Vasileiadis, S., Ligda, P., Saratsis, A., Sotiraki, S., Karpouzas, D.G. Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens 9(6), 428. https://doi.org/10.3390/pathogens9060428
dc.relationPerlmutter, J. I., & Bordenstein, S. R. (2018). Microbial Misandry: Discovery of a Spiroplasma Male-Killing Toxin. Cell Host & Microbe, 23(6), 689–690. doi:10.1016/j.chom.2018.05.011
dc.relationPilgrim, J., Siozios, S., Baylis, M., Hurst, G.D.D. (2020). Tissue Tropisms and Transstadial Transmission of a Rickettsia Endosymbiont in the Highland Midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Appl Environ Microbiol. Oct 1;86(20):e01492-20. doi: 10.1128/AEM.01492-20. PMID: 32801177; PMCID: PMC7531967
dc.relationRaina, H.S., Singh, A., Popli, S., Pandey, N., & Rajagopal, R. (2015) Infection of Bacterial Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci. PLoS ONE 10(8): e0136159. https://doi.org/10.1371/journal.pone.0136159
dc.relationReeves, W. K., Kato, C. Y., & Gilchriest, T. (2008). Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in Wyoming, USA. Journal of the American Mosquito Control Association, 24(3), 444–447. https://doi.org/10.2987/5745.1
dc.relationRio, R., Attardo, G. M., & Weiss, B. L. (2016). Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy. Trends in parasitology, 32(9), 739– 749. https://doi.org/10.1016/j.pt.2016.05.002
dc.relationRosenblueth, M., Martínez-Romero, J., Ramírez-Puebla, S.T., Vera-Ponce de León, A., Rosas-Pérez, T., Bustamante-Brito, R., Rincón-Rosales, R., Martínez-Romero, E. (2018). Endosymbiotic microorganisms of scale insects. TIP Revista Especializada en Ciencias Químico - Biológicas, 21(1). https://doi.org/10.1016/j.recqb.2017.08.006
dc.relationRueda, L. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission. Zootaxa 589(1), 1 - 60.
dc.relationSazama, E. J., Ouellette, S. P., & Wesner, J. S. (2019). Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species. Environmental Entomology. doi:10.1093/ee/nvy188
dc.relationSalgado-Almario J, Hernández CA, Ovalle CE. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomédica, 39, 278-90. https://doi.org/10.7705/biomedica.v39i3.4312
dc.relationŠochová E, Husník F, Nováková E, Halajian A, Hypša V. (2017). Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5:e4099 https://doi.org/10.7717/peerj.4099
dc.relationSocolovschi, C., Pagés, F., & Raoult, D. (2012). Rickettsia felis in Aedes albopictus Mosquitoes, Libreville, Gabon. Emerging Infectious Diseases, 18(10), 1687-1689. https://doi.org/10.3201/eid1810.120178
dc.relationThao, M. L., & Baumann, P. (2004). Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current microbiology, 48(2), 140–144. https://doi.org/10.1007/s00284-003-4157-7
dc.relationVivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo, G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 4, 9(6):1214. doi: 10.3390/microorganisms9061214. PMID: 34199688; PMCID: PMC8228094
dc.relationWilkes, T.E., Darby, A.C., Choi, J.H., Colbourne, J.K., Werren, J.H., Hurst, G.D.D. (2010). The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Molecular Biology, 19, 59–73. pmid:20167018
dc.relationWilkes, T.E, Duron, O., Darby, A.C., Hypša, V., Nováková, E., Hurst, G.D.D. (2012). The Genus Arsenophonus. In Zchori-Fein, E. & Bourtzis, K. (Ed.), Manipulative Tenants, Bacteria Associated with Arthropods. (225 - 244). CRC Press
dc.relationWilliamson, D. L., Tully, J. G., Rosen, L., Rose, D. L., Whitcomb, R. F., Abalain-Colloc, M. L., Carle, P., Bové, J. M., Smyth, J. (1996). Spiroplasma diminutum sp. nov., from Culex annulus mosquitoes collected in Taiwan. Int J Syst Bacteriol, 46(1), 229-33. doi: 10.1099/00207713-46-1-229. PMID: 8573499
dc.relationWorld Mosquito Program. (2021). Retrieved from: https://www.worldmosquitoprogram.org/en/global-progress/colombia
dc.relationXue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z., Xu, H. J., Xi, Y., Zhu, Z. R., Zhou, W. W., Pan, P. L., Li, B. L., Colbourne, J. K., Noda, H., Suetsugu, Y., Kobayashi, T., Zheng, Y., Liu, S., Zhang, R., Liu, Y., … Cheng, J. A. (2014). Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome biology, 15(12), 521. https://doi.org/10.1186/s13059-014-0521-0
dc.relationYañez, O., Gauthier, L., Chantawannakul, P., & Neumann, P. (2016). Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS microbiology letters, 363(14), fnw147. https://doi.org/10.1093/femsle/fnw147
dc.relationZhang, J., Lu, G., Li, J., Kelly, P., Li, M., Wang, J., Huang, K., Qiu, H., You, J., Zhang, R., Wang, Y., Zhang, Y., Wu, H., Wang, C. (2019). Molecular Detection of Rickettsia felis and Rickettsia bellii in Mosquitoes. Vector-Borne and Zoonotic Diseases. doi:10.1089/vbz.2019.2456
dc.relationAlmeida, P. S. de, Sciamarelli, A., Batista, P. M., Ferreira, A. D., Nascimento, J., Raizer, J., Andrade Filho, J. D., & Gurgel-Goncalves, R. (2013). Predicting the geographic distribution of Lutzomyia longipalpis (Diptera: Psychodidae) and visceral leishmaniasis in the state of Mato Grosso do Sul, Brazil. Memórias Do Instituto Oswaldo Cruz, 108(8), 992–996. doi:10.1590/0074-0276130331
dc.relationArnold, P.A., White, C.R. & Johnson, K.N. (2015). Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 96, 3667–3671
dc.relationArnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures. Ecological Entomology. DOI: 10.1111/ccn.12696
dc.relationBellone, R., & Failloux, A.-B. (2020). The Role of Temperature in Shaping Mosquito- Borne Viruses Transmission. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.584846
dc.relationColares, C., Roza, A. S., Mermudes, J. R. M., Silveira, L. F. L., Khattar, G., Mayhew, P. J., Monteiro, R. F., Nunes, M. F. S. Q. C. & Macedo, M. V. (2021). Elevational specialization and the monitoring of the effects of climate change in insects: Beetles in a Brazilian rainforest mountain. Ecological Indicators, 120, 106888. doi:10.1016/j.ecolind.2020.106888
dc.relationCosta, P. L., Dantas-Torres, F., da Silva, F. J., Guimarães, V. C. F. V., Gaudêncio, K., & Brandão-Filho, S. P. (2013). Ecology of Lutzomyia longipalpis in an area of visceral leishmaniasis transmission in north-eastern Brazil. Acta Tropica, 126(2), 99–102. doi:10.1016/j.actatropica.2013.01
dc.relationEl Hajj, R., El Hajj, H., & Khalifeh, I. (2018). Fatal Visceral Leishmaniasis Caused by Leishmania infantum, Lebanon. Emerging infectious diseases, 24(5), 906–907. https://doi.org/10.3201/eid2405.180019
dc.relationErguler, K., Pontiki, I., Zittis, G., Proestos, Y., Christodoulou, V., Tsirigotakis, N., Antoniou, M., Kasap, O. E., Lelieveld, J. (2019). A climate-driven and field dataassimilated population dynamics model of sand flies. Scientific Reports, 9(1). doi:10.1038/s41598-019-38994-w
dc.relationFalcão de Oliveira, E., Oshiro, E. T., Fernandes, W. S., Murat, P. G., de Medeiros, M. J., Souza, A. I., de Oliveira, A. G., & Galati, E. A. (2017). Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions. PLoS neglected tropical diseases, 11(2),
dc.relationFrid, L. & Myers, J. H. (2002). Thermal ecology of western tent caterpillars Malacosoma californicum pluviale and infection by nucleopolyhedrovirus. Ecological Entomology, 27, 665-673
dc.relationGoda, T., Leslie, J. R., & Hamada, F. N. (2014). Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila. Journal of Visualized Experiments, 83. doi:10.3791/51097.
dc.relationGoda, T., & Hamada, F. N. (2019). Drosophila Temperature Preference Rhythms: An Innovative Model to Understand Body Temperature Rhythms. International journal of molecular sciences, 20(8), 1988. https://doi.org/10.3390/ijms20081988
dc.relationGonzález, C., Paz, A., & Ferro, C. (2014). Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. Acta Tropica, 129, 83–90. doi:10.1016/j.actatropica.2013.08
dc.relationGuernaoui, S., Boussaa, S., Pesson, B., & Boumezzough, A. (2005). Nocturnal activity of phlebotomine sandflies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus in Chichaoua, Morocco. Parasitology Research, 98(3), 184–188. doi:10.1007/s00436-005- 0032-8
dc.relationGuzmán & Tesh. (2000). Effects of temperature and diet on the growth and longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomédica, 20, 190-9
dc.relationHague, M. T. J., Caldwell, C. N., & Cooper, B. S. (2020). Pervasive Effects of Wolbachia on Host Temperature Preference. mBio, 11(5). doi:10.1128/mbio.01768-20
dc.relationHaider, N., Kirkeby, C., Kristensen, B., Kjær, L. J., Sørensen, J. H., & Bødker, R. (2017). Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Scientific Reports, 7(1). doi:10.1038/s41598-017-08514-9
dc.relationHlavacova, J., Votypka, J., & Volf, P. (2013). The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. Journal of medical entomology, 50(5), 955–958
dc.relationIDEAM - UNAL. (2018). Variabilidad Climática y Cambio Climático en Colombia, Bogotá, D.C.
dc.relationIPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press
dc.relationKaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2014). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21(3), 1092–1102. doi:10.1111/gcb.12750
dc.relationMacedo-Silva, V. P., Martins, D. R., De Queiroz, P. V., Pinheiro, M. P., Freire, C. C., Queiroz, J. W., Dupnik, K. M., Pearson, R. D., Wilson, M. E., Jeronimo, S. M., & Ximenes, M. (2014). Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae). Journal of medical entomology, 51(1), 237–244. https://doi.org/10.1603/me12131
dc.relationMartínez-Suárez, C., Almanza-Rodríguez, C., Bejarano, E.E. (2012). Estimación del tiempo de desarrollo de Lutzomyia evansi bajo condiciones experimentales. Salud Uninorte, 28, 201–209
dc.relationMcCain, C. M., & Garfinkel, C. F. (2021). Climate change and elevational range shifts in insects. Current Opinion in Insect Science, 47, 111–118. doi:10.1016/j.cois.2021.06.003
dc.relationMeireles-Filho, A. C. A., da S. Rivas, G. B., Gesto, J. S. M., Machado, R. C., Britto, C., de Souza, N. A., & Peixoto, A. A. (2005). The biological clock of an hematophagous insect: Locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Letters, 580(1), 2–8. doi:10.1016/j.febslet.2005.11.031
dc.relationMilleron, R. S., Meneses, C. R., Elnaiem, D. A., & Lanzaro, G. C. (2008). Effects of Varying Moisture on Egg Production and Longevity of Lutzomyia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology, 45(1), 160–165. doi:10.1603/0022- 2585(2008)45[160:eovmoe]2.0.co;2
dc.relationOhm, J. R., Baldini, F., Barreaux, P., Lefevre, T., Lynch, P. A., Suh, E., Whitehead, S. & Thomas, M. B. (2018). Rethinking the extrinsic incubation period of malaria parasites. Parasites & Vectors, 11(1). doi:10.1186/s13071-018-2761-4
dc.relationOnyango, G. M., Bialosuknia, M. S., Payne, F. A., Mathias, N., Ciota, T. A. & Kramer, L. (2020). Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 10, 19135. https://doi.org/10.1038/s41598-020-76188-x
dc.relationPereyra, N., Lobbia, P. A., & Mougabure-Cueto, G. (2019). Effects of the infection with Trypanosoma cruzi on the feeding and excretion/defecation patterns of Triatoma infestans. Bulletin of Entomological Research, 110(1), 169–176. doi:10.1017/s0007485319000464
dc.relationRajpurohit, S., & Schmidt, P. S. (2016). Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior. Fly, 10(4), 149-161. DOI: 10.1080/19336934.2016.1194145
dc.relationR Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
dc.relationReinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects, 9(4), 158. https://doi.org/10.3390/insects9040158
dc.relationRivas, G. B., de Souza, N. A. & Peixoto, A. A. (2008). Analysis of the activity patterns of two sympatric sandfly siblings of the Lutzomyia longipalpis species complex from Brazil. Medical and Veterinary Entomology, 22(3), 288–290. doi:10.1111/j.1365- 2915.2008.00742.x
dc.relationRivas, G. B., de Souza, N. A., Peixoto, A. A., & Bruno, R. V. (2014). Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae). Parasites & Vectors, 7(1), 278. doi:10.1186/1756-3305-7-278
dc.relationRueda, L. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission. Zootaxa 589(1), 1 - 60
dc.relationSantander Gualdrón, R. (2020). Desarrollo de un prototipo de termoclina para el análisis de preferencia de temperatura en poblaciones de insectos vectores [Trabajo de grado, no publicado]. Universidad Nacional de Colombia, sede Medellín
dc.relationSantos, A. A. S., Leal Bevilaqua, C. M., de Castro Dias, E., Carneiro Feijó, F., Melo de Oliveira, P. G., Xavier Peixoto, G. C., Dutra Alves, N., Beserra de Oliveira, L. M. & Freitas Macedo, L. T. (2010). Monitoring of Lutzomyia longipalpis Lutz & Neiva, 1912 in an area of intense transmission of visceral leishmaniasis in Rio Grande do Norte, Northeast Brazil. Revista Brasileira de Parasitologia Veterinária, 19(1),41-45.[fecha de Consulta 13 de Febrero de 2022]. ISSN: 0103-846X. Disponible en: https://www.redalyc.org/articulo.oa? id=397841475007
dc.relationSt. Leger, R. J. (2021). Insects and their pathogens in a changing climate. Journal of Invertebrate Pathology, 184, 107644. doi:10.1016/j.jip.2021.107644
dc.relationThomas, S., Ravishankaran, S., Justin, N. A. J. A., Asokan, A., Kalsingh, T. M. J., Mathai, M. T., Valecha, N., Montgomery, J., Thomas, M. B. & Eapen, A. (2018). Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India. Malaria Journal, 17(1). doi:10.1186/s12936-018-2342-1
dc.relationTjaden, N. B., Thomas, S. M., Fischer, D., & Beierkuhnlein, C. (2013). Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. PLoS neglected tropical diseases, 7(6), e2207. https://doi.org/10.1371/journal.pntd.0002207
dc.relationTruitt, A.M., Kapun, M., Kaur, R. & Miller, W.J. (2018) Wolbachia modifies thermal preference in Drosophila melanogaster. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14347
dc.relationVivero, R. J., Villegas-Plazas, M., Cadavid-Restrepo, G. E., Herrera, C. X. M., Uribe, S. I., & Junca, H. (2019). Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Scientific Reports, 9(1). doi:10.1038/s41598-019-53769-z
dc.relationVivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., D Hurst, G., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 9(6), 1214. https://doi.org/10.3390/microorganisms9061214
dc.relationWhite, H. J., Caplat, P., Emmerson, M. C., & Yearsley, J. M. (2021). Predicting future stability of ecosystem functioning under climate change. Agriculture, Ecosystems & Environment, 320, 107600. doi:10.1016/j.agee.2021.107600
dc.relationWHO (2022). Leishmaniasis. Retrieved from: https://www.who.int/news-room/factsheets/ detail/leishmaniasis
dc.relationAl-Qaysi, S., Al-Haideri, H., Al-Shimmary, S. M., Abdulhameed, J. M., Alajrawy, O. I., Al- Halbosiy, M. M., Moussa, T., & Farahat, M. G. (2021). Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production. Journal of microbiology and biotechnology, 31(5), 696–704. https://doi.org/10.4014/jmb.2101.01025
dc.relationArango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. (2021). Experimental Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern Subterranean Termite, Reticulitermes flavipes (Kollar). Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2021.632715
dc.relationArévalo-Cortés, A., Mejia-Jaramillo, A. M., Granada, Y., Coatsworth, H., Lowenberger, C., & Triana-Chavez, O. (2020). The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin. Insects, 11(9), 584. doi:10.3390/insects11090584
dc.relationArnold, P.A., White, C.R. & Johnson, K.N. (2015) Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 96,3667–3671
dc.relationArnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures. Ecological Entomology. DOI: 10.1111/ccn.12696
dc.relationBalaska, S., Fotakis, E. A., Chaskopoulou, A. & Vontas, J. (2021). Chemical control and insecticide resistance status of sand fly vectors worldwide. PLOS Neglected Tropical Diseases, 15(8), e0009586, https://doi.org/10.1371/journal.pntd.0009586
dc.relationBelov, A. A., Cheptsov, V. S., Vorobyova, E. A., Manucharova, N. A., & Ezhelev, Z. S. (2019). Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample. Geosciences, 9(4), 166. doi:10.3390/geosciences9040166
dc.relationBhatt, P., Huang, Y., Zhan, H., & Chen, S. (2019). Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01778
dc.relationBohacsova M, Mediannikov O, Kazimirova M, Raoult D, Sekeyova Z (2016) Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri. PLoS ONE 11(2): e0149950. https://doi.org/10.1371/journal.pone.0149950
dc.relationCesa-Luna, C., Baez, A., Quintero-Hernández, V., De la Cruz-Enríquez, J., Castañeda- Antonio, M. D., & Muñoz-Rojas, J. (2020). The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica Colombiana, 25(1), 140–154. doi:10.15446/abc.v25n1.76867
dc.relationChang, C.-Y., Sun, X.-W., Tian, P.-P., Miao, N.-H., Zhang, Y.-L. & Liu, X.-D. (2022). Plant secondary metabolite and temperature determine the prevalence of Arsenophonus endosymbionts in aphid populations. Environmental Microbiology, https://doiorg. ezproxy.unal.edu.co/10.1111/1462-2920.15929
dc.relationChimwamurombe, P. M., Grönemeyer & J. L., Reinhold-Hurek, B. (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings, FEMS Microbiology Ecology, 92, (6), fiw083, https://doi.org/10.1093/femsec/fiw083
dc.relationChong, J., Liu, P., Zhou, G., and Xia. J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15, 799–821. DOI: 10.1038/s41596-019-0264-1
dc.relationCycoń, M., & Piotrowska-Seget, Z. (2016). Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Frontiers in microbiology, 7, 1463. https://doi.org/10.3389/fmicb.2016.01463
dc.relationContreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera colombiana. Biomédica, 34(3). DOI:10.7705/biomedica.v34i3.2121
dc.relationEspejo, R. T., Feijóo, C. G., Romero, J., & Vásquez, M. (1998). PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity. Microbiology (Reading, England), 144
dc.relationFerguson, L. V., Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair, B. J. (2018). Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology. doi:10.1111/1365-2435.13153
dc.relationFlórez, M., Martínez, J. P., Gutiérrez, R., Luna, K. P., Serrano, V. H., Ferro, C., Angulo, V. M. & Sandoval, C. M. (2006). Lutzomyia longipalpis (Diptera: Psychodidae) en un foco suburbano de leishmaniosis visceral en el Cañón del Chicamocha en Santander, Colombia. Biomédica, 26(Suppl. 1), 109-120. Retrieved February 17, 2022, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 41572006000500013&lng=en&tlng=es
dc.relationGalati, E.A.B., Andrade-Filho, J.D., Silva, A.C.L., Falcao, A.L. (2003)Description of a New Genus and a New Species of New World Phlebotominae (Diptera, Psychodidae). Rev Brasil Entomol, 47, (63-70)
dc.relationGoda, T., Leslie, J. R., & Hamada, F. N. (2014). Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila. Journal of Visualized Experiments, (83). doi:10.3791/51097
dc.relationGoda, T., & Hamada, F. N. (2019). Drosophila Temperature Preference Rhythms: An Innovative Model to Understand Body Temperature Rhythms. International journal of molecular sciences, 20(8), 1988. https://doi.org/10.3390/ijms20081988
dc.relationGutierrez, M. A. C., Lopez, R. O. H., Ramos, A. T., Vélez, I. D., Gomez, R. V., Arrivillaga- Henríquez, J., & Uribe, S. (2021). DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Tropica, 221, 105983.doi:10.1016/j.actatropica.2021.10
dc.relationGuzmán, H. & Tesh, R.B. (2000). Effects of temperature and diet on the growth and longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomédica 20, 190 - 9
dc.relationHillesland, H., Read, A., Subhadra, B., Hurwitz, I., McKelvey, R., Ghosh, K., Das, P., & Durvasula, R. (2008) Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. American Journal of Tropical Medicine and Hygiene ,79, 881–886
dc.relationHuang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules (Basel, Switzerland), 23(9), 2313. https://doi.org/10.3390/molecules23092313 Instituto Nacional de Salud. (2019). Informe de vigilancia epidemiológica de Leishmaniasis, Colombia, 2018. Retrieved from: https://www.ins.gov.co/buscadoreventos/ Informacin%20de%20laboratorio/Informe-vigilancia-entomologica-Leishmaniasis- Colombia-2018.pdf
dc.relationKamiya, T., Greischar, M.A., Wadhawan, K., Gilbert, b., Paaijmans, K., Mideo, N. (2019). Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics. DOI: https://doi.org/10.1016/j.epidem.2019.100382
dc.relationLage, D. P., Ribeiro, P. A. F., Dias, D. S., Mendonça, D. V. C., Ramos, F. F., Carvalho, L. M., de Oliveira, D., Steiner, B. T., Martins, V. T., Perin, L., Machado, A. S., Santos, T. T. O., Tavares, G. S. V., Oliveira-da-Silva, J.A., Oliveira, J. S., Roatt, B. M., Machado-deÁvila, M. A., Texeira, A. L ., Humbert, M. V., Coehlo, E. A. F. & Christodoulides, M. (2020). A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. Npj Vaccines, 5(1). doi:10.1038/s41541-020-00224-0
dc.relationLozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga- Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitol Int. 82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21. PMID: 33486127
dc.relationKaratepe, B., Aksoy, S. & Karatepe, M. Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. (2018). Sci Rep 8, 10616 . https://doi.org/10.1038/s41598-018-29031-3
dc.relationMinisterio del interior (2021). Boletín epidemiológico. Retrieved from: https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16-Boletin-Epidemiologico- Noviembre-2021-2.pdf
dc.relationMoghadam, N. N., Thorshauge, P. M., Kristensen, T. N., de Jonge, N., Bahrndorff, S., Kjeldal, H., & Nielsen, J. L. (2018). Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly, 12(1), 1–12. https://doi.org/10.1080/19336934.2017.1394558
dc.relationSakil Munna, M., Tahera, J., Mohibul Hassan Afrad, M., Nur, I. T., & Noor, R. (2015). Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC research notes, 8, 637. https://doi.org/10.1186/s13104-015-1631-9
dc.relationNováková, E., Hypša, V., Nguyen, P., Husník, F., & Darby, A. C. (2016). Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Standards in genomic sciences, 11, 72. https://doi.org/10.1186/s40793-016-0195-1
dc.relationNur, I., Munna, M. S., & Noor, R. (2014). Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp., and Salmonella spp. Turkish Journal of Biology, 38, 502–509. doi:10.3906/biy-1312-93
dc.relationOnyango, G.M., Bialosuknia, M.S., Payne, F.A., Mathias, N., Ciota, T.A., Kramer, D.L. (2020) Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Scientific Reports 10, 19135. https://doi.org/10.1038/s41598-020-76188-x
dc.relationPang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W. (2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS genetics, 14(10), e1007725. https://doi.org/10.1371/journal.pgen.1007725
dc.relationPimenta, P.F.P., de Freitas, V.C., Monteiro, C.C., Pires, A.C.M.A., Secundino, N.F.C. (2018). Biology of the Leishmania−Sand Fly Interaction. Rangel, F.E. & Shaw, J.J. (Ed.), Brazilian Sand Flies (pp. 319-339). Springer, Cham
dc.relationRomoli, O., & Gendrin, M. (2018). The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasites & vectors, 11(1), 200. https://doi.org/10.1186/s13071-018-2784-x
dc.relationRivas, G.B., de Souza, N.A., Peixoto, A.A., Bruno, R. (2014). Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae). Parasites Vectors 7, 278 . https://doi.org/10.1186/1756-3305-7-278
dc.relationSant’Anna, M. R., Diaz-Albiter, H., Aguiar-Martins, K., Al Salem, W. S., Cavalcante, R. R., Dillon, V. M., Bates, P. A., Genta, F. A. & Dillon, R. J. (2014). Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasites & Vectors, 7(1), 329. doi:10.1186/1756-3305-7-329
dc.relationSousa Paula, L. C. de, Otranto, D., & Dantas-‐ Torres, F. (2020). Lutzomyia longipalpis (Sand Fly). Trends in Parasitology. doi:10.1016/j.pt.2020.05.007
dc.relationTelleria, E. L., Martins-da-Silva, A., Tempone, A. J., & Traub-Csekö, Y. M. (2018). Leishmania, microbiota and sand fly immunity. Parasitology, 145(10), 1336–1353. https://doi.org/10.1017/S0031182018001014
dc.relationWorld Health Organization (2021). Retrieved from: https://www.who.int/news-room/factsheets/ detail/leishmaniasis
dc.relationWorld Health Organization - WHO. (2022). Leishmaniasis. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
dc.relationVivero, R. J., Mesa, G. B., Robledo, S. M., Herrera, C. X. M., & Cadavid-Restrepo, G. (2019). Enzymatic, antimicrobial, and leishmanicidal bioactivity of Gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in Colombia. Biotechnology Reports, e00379. doi:10.1016/j.btre.2019.e00379
dc.relationVivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo, G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 4, 9(6):1214. doi: 10.3390/microorganisms9061214. PMID: 34199688; PMCID: PMC8228094
dc.relationXue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z., Xu, H. J., Xi, Y., Zhu, Z. R., Zhou, W. W., Pan, P. L., Li, B. L., Colbourne, J. K., Noda, H., Suetsugu, Y., Kobayashi, T., Zheng, Y., Liu, S., Zhang, R., Liu, Y., … Cheng, J. A. (2014). Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome biology, 15(12), 521. https://doi.org/10.1186/s13059-014-0521-0
dc.relationZhao, D., Zhang, Z., Niu, H., & Guo, H. (2021). Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. Microbial ecology, 81(2), 523–534. https://doi.org/10.1007/s00248-020-01607-5
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDetección molecular de endosimbiontes en flebotomíneos y estimación de las preferencias de temperatura y su relación con la microbiota con énfasisen Lutzomyia longipalpis
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución