dc.contributor | Moreno Herrera, Claudia Ximena | |
dc.contributor | VIVERO GOMEZ, RAFAEL JOSE | |
dc.contributor | Microbiodiversidad y Bioprospección | |
dc.creator | Duque Granda, Daniela | |
dc.date.accessioned | 2022-08-26T21:28:15Z | |
dc.date.available | 2022-08-26T21:28:15Z | |
dc.date.created | 2022-08-26T21:28:15Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82150 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Due to climate change, there is an increase in tropical diseases such as leishmaniasis, transmitted by some species of the genus Lutzomyia, as Lutzomyia longipalpis, vector of Leishmania infantum in America. In addition, the microbiota of insects is known to play a role in their immunity, directly impacting their vector competence to transmit pathogens. This justifies the need to explore the composition of the microbiota, the presence of endosymbionts and their potential relationship with temperature variations in Lu. longipalpis. For this reason, the molecular detection of Arsenophonus was conducted in populations of wild phlebotomines of Lu. longipalpis, Pintomyia evansi and Psychodopygus panamensis from Colombia. Subsequently, with a device with temperature gradient "MB-Thermocline", it was evaluated the temperature preference of Lu. longipalpis, Pi. evansi while populations of Aedes aegypti were used as a control in the assay. The PCR results showed the presence of Arsenophonus and interspecific differences (p-value < 0.05) were observed between phlebotomines, specifically between 25 °C and 31 °C where there was a greater abundance of Pi. evansi found in such compartments, however both species showed a marked preference towards the temperature of 21-23 °C, while Ae. aegypti prefered temperatures between 27-29 °C. Representative groups of Lu. longipalpis that presented temperature preference
(phenotypes) in each compartment of the device, were used to perform an analysis of the microbiota using New Generation Sequencing techniques. The analysis of the microbiota of these groups shows that the communities have a significantly different taxonomic structure between temperature ranges (p-value < 0.013), the most abundant genera were Pseudomonas (57.36% at 25-27 °C, 6.55% at 29-31 °C and 13.20% at 31-33 °C) and Bacillus (1.21% at 25-27 °C, 61.54% at 29-31 °C and 37.64% at 31-33 °C).
It was possible to detect the natural infection of secondary endosymbionts such as Arsenophonus, Rickettsia, Spiroplasma and Asaia. Significantly, Arsenophonus is more abundant in groups of Lu. longipalpis that preferred warm temperatures (p-value < 0.02). In general, it was possible to observe that there are endosymbionts of interest that naturally infect Lu. longipalpis and that these and the microbial community vary according to the temperature to which the sand flies were exposed. This is relevant to understand the transmission dynamics of leishmaniasis and how some species may have a greater
capacity to adapt to climate variability. | |
dc.description.abstract | Debido al cambio climático, existe un aumento en enfermedades tropicales como la leishmaniasis, transmitida por algunas especies del género Lutzomyia, como Lutzomyia longipalpis, vector de Leishmania infantum en América. Además, se sabe que la microbiota de los insectos juega un papel en su inmunidad, impactando directamente su competencia vectorial para transmitir patógenos. Lo expuesto justifica la necesidad de explorar la composición de la microbiota, la presencia de endosimbiontes y su potencial relación con variaciones de temperatura en Lu. Longipalpis. Para ello se llevó a cabo la detección molecular de Arsenophonus en poblaciones de flebotomíneos silvestres de Lu. longipalpis, Pintomyia evansi y Psychodopygus panamensis de Colombia. Posteriormente, con un dispositivo con gradiente de Temperatura “MB-Termoclina”, se evaluó la preferencia de temperatura de Lu. longipalpis, Pi. evansi y se usaron poblaciones de Aedes aegypti como control en el ensayo. Los resultados de PCR mostraron la presencia de Arsenophonus y se observaron diferencias interespecíficas (valor-p < 0,05) entre flebotomíneos, específicamente entre los 25 °C y 31 °C donde se encontró una mayor abundancia de Pi. evansi en tales compartimientos, sin embargo ambas especies mostraron una marcada preferencia hacia la temperatura de 21-23 °C, mientras que Ae. aegypti prefirió temperaturas entre 27-29 °C. A grupos representativos de Lu. longipalpis que presentaron preferencia de temperaturas (fenotipos) en cada una de las cabinas del dispositivo, se les realizó un análisis de la microbiota usando la secuenciación de nueva generación. El análisis de la microbiota de estos grupos, muestra que las comunidades tienen una estructura taxonómica significativamente diferente entre rangos de temperatura (valor-p < 0.013), los géneros más abundantes fueron Pseudomonas (57.36% a los 25-27 °C, 6.55% a los 29-31 °C y 13.20% a los 31-33 °C) y Bacillus (1.21% a los 25-27 °C, 61.54% a los 29-31 °C y 37.64% a los 31-33 °C). Fue posible detectar la infección natural de endosimbiontes secundarios como Arsenophonus, Rickettsia, Spiroplasma y Asaia. Significativamente, Arsenophonus es más abundante en grupos de Lu. longipalpis que prefirieron temperaturas cálidas (valor-p< 0.02). En general, fue posible observar que existen endosimbiontes de interés que infectan de manera natural a Lu. longipalpis y que estos y la comunidad microbiana varían según la temperatura a la que fueron expuestos los flebótomos. Lo anterior es relevante para entender las dinámicas de transmisión de la leishmaniasis y como algunas especies pueden tener una mayor capacidad de adaptación a la variabilidad climática. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Medellín, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abalain-Colloc, M. L., Rosen, L., Tully, J. G., Bove, J. M., Chastel, C., & Williamson, D. L.
(1988). Spiroplasma taiwanense sp. nov. from Culex tritaeniorhynchus Mosquitoes
Collected in Taiwan. International Journal of Systematic Bacteriology, 38(1), 103–107.
doi:10.1099/00207713-38-1-103 | |
dc.relation | Aguirre-Obando, O. A., Duarte Gandica, I. (2020). Control of Aedes (Stegomyia) aegypti
using Bacillus thuringiensis var. israelensis in Armenia, Quindío, Colombia. Revista
U.D.C.A Actualidad & Divulgación Científica, 23(1).
https://doi.org/10.31910/rudca.v23.n1.2020.1067 | |
dc.relation | Arnold, P.A., White, C.R. & Johnson, K.N. (2015) Drosophila melanogaster does not
exhibit a behavioural fever response when infected with Drosophila C virus. Journal of
General Virology, 96,3667–3671 | |
dc.relation | Arnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila
melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures.
Ecological Entomology. DOI: 10.1111/ccn.12696 | |
dc.relation | Azpurua, J., De La Cruz, D., Valderama, A., & Windsor, D. (2010). Lutzomyia Sand Fly
Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro
Colorado Island, Panama. PLoS Neglected Tropical Diseases, 4(3), e627.
doi:10.1371/journal.pntd.0000627 | |
dc.relation | Barua, S., Hoque, M. M., Kelly, P. J., Poudel, A., Adekanmbi, F., Kalalah, A., Yang, Y., &
Wang, C. (2020). First report of Rickettsia felis in mosquitoes, USA. Emerging microbes &
infections, 9(1), 1008–1010. https://doi.org/10.1080/22221751.2020.1760736 | |
dc.relation | Bravo, A., Gómez, I., Porta, H., García-Gómez, B. I., Rodriguez-Almazan, C., Pardo, L., &
Soberón, M. (2013). Evolution of Bacillus thuringiensis Cry toxins insecticidal
activity. Microbial biotechnology, 6(1), 17–26. https://doi.org/10.1111/j.1751-
7915.2012.00342.x | |
dc.relation | Chepkemoi, S. T., Mararo, E., Butungi, H., Paredes, J., Masiga, D., Sinkins, S. P., &
Herren, J. K. (2017). Identification of Spiroplasmainsolitum symbionts in Anopheles
gambiae. Wellcome open research, 2, 90.
https://doi.org/10.12688/wellcomeopenres.12468.1 | |
dc.relation | Contreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada
de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera
colombiana. Biomédica, 34(3). doi:10.7705/biomedica.v34i3.2121 | |
dc.relation | De Barjac, H., Larget, I., Killick-Kendrick, R. (1981). Toxicity of Bacillus thuringiensis var.
israelensis, serotype H14, to the larvae of phlebotomine sandflies. Bulletin de la Societe
de pathologie exotique et de ses filiales 74, 485-489. | |
dc.relation | Díaz, S., Villavicencio, B., Correia, N., Costa, J., & Haag, K. L. (2016). Triatomine bugs,
their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected
blood meal. Parasites & vectors, 9(1), 636. https://doi.org/10.1186/s13071-016-1926-2 | |
dc.relation | Díaz-Nieto, L. M., Gil, M. F., Lazarte, J. N., Perotti, M. A. & Berón, C.M. Culex
quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria.
Scientific Reports, 11, 1094 (2021). https://doi.org/10.1038/s41598-020-80034-5 | |
dc.relation | Drew, G.C., Budge, G.E., Frost, C.L. et al. (2021). Transitions in symbiosis: evidence for
environmental acquisition and social transmission within a clade of heritable symbionts.
ISME J. https://doi.org/10.1038/s41396-021-00977-z | |
dc.relation | Duron, O., Schneppat, U. E., Berthomieu, A., Goodman, S. M., Droz, B., Paupy, C.,
Obame Nkoghe, J., Rahola, N., Tortosa, P. (2014) Origin, acquisition and diversification
of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol 23: 2105–2117. | |
dc.relation | Ferguson, Laura V. (2017). Thermal Biology of Insect Immunity and Host-Microbe
Interactions. Electronic Thesis and Dissertation Repository. 4406.
https://ir.lib.uwo.ca/etd/4406 | |
dc.relation | García, C., Escovar, J., Londoño, Y., Moncada, L. (2010). Altitud y tablas de vida de
poblaciones de Culex quinquefasciatus (Diptera Cucilidae). Revista Colombiana de
Entomología 36(1), 62-67 | |
dc.relation | García San Miguel, L., Sierra, M. J., Vazquez, A., Fernandez-Martínez, B., Molina, R.,
Sanchez-Seco, M. P., Lucientes, J., Figuerola, J., de Ory, F., Monge, S., Suarez, B., &
Simón, F. (2021). Phlebovirus-associated diseases transmitted by phlebotominae in
Spain: Are we at risk?. Enfermedades infecciosas y microbiologia clinica (English
ed.), 39(7), 345–351. https://doi.org/10.1016/j.eimce.2021.05.001 | |
dc.relation | Guzmán, H. & Tesh, R.B. (2000). Effects of temperature and diet on the growth and
longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomédica 20, 190 - 9. | |
dc.relation | Hu, Y., Xi, Z., Liu, X. et al. (2020). Identification and molecular characterization of
Wolbachia strains in natural populations of Aedes albopictus in China. Parasites Vectors
13, 28 https://doi.org/10.1186/s13071-020-3899-4 | |
dc.relation | Instituto Nacional de Salud (2021). Boletín Epidemiológico del Ministerio del Interior,
2021. Retrieved from: https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16-
Boletin-Epidemiologico-Noviembre-2021-2.pdf | |
dc.relation | Karatepe, B., Aksoy, S. & Karatepe, M. Investigation of Wolbachia spp. and Spiroplasma
spp. in Phlebotomus species by molecular methods. (2018). Sci Rep 8, 10616 .
https://doi.org/10.1038/s41598-018-29031-3 | |
dc.relation | Karatepe, M., Aksoy, S. & Karatepe, B. Wolbachia spp. and Spiroplasma spp. in Musca
spp.: Detection Using Molecular Approaches. (2021) Turkiye Parazitol Derg. Aug
4;45(3):211-215. English. doi: 10.4274/tpd.galenos.2021.35229. PMID: 34346878. | |
dc.relation | Kelly, P. H., Bahr, S. M., Serafim, T. D., Ajami, N. J., Petrosino, J. F., Meneses, C., Kirby,
J. R., Valenzuela, J. G., Kamhawi, S., & Wilson, M. E. (2017). The Gut Microbiome of the
Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio, 8(1),
e01121-16. https://doi.org/10.1128/mBio.01121-16 | |
dc.relation | Kwon, M.-O., Wayadande, A. C., and Fletcher, J. (1999). Spiroplasma citri movement into
the intestines and salivary glands of its leafhopper vector, Circulifer tenellus.
Phytopathology 89:1144-1151. | |
dc.relation | Li, K., Chen, H., Jiang, J., Li, X., Xu, J., Ma, Y. (2016). Diversity of bacteriome associated
with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations
from China. Sci Rep. Nov 7;6:36406. doi: 10.1038/srep36406. PMID: 27819272; PMCID:
PMC5098245. | |
dc.relation | Lindh, J. M., Terenius, O. & Faye, I. (2020). 16S rRNA Gene-Based Identification of
Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus
Mosquitoes Reveals New Species Related to Known Insect Symbionts. Applied and
Environmental Microbiology, ASM Journals Vol. 71, No. 11 | |
dc.relation | Lozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-
Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the
genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz,
Mexico. Parasitol Int. Jun;82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21.
PMID: 33486127. | |
dc.relation | Maina AN, Klein TA, Kim H-C, Chong S-T, Yang Y, Mullins K, et al. (2017). Molecular
characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the
Demilitarized Zone of the Republic of Korea. PLoS ONE 12(11): e0188327.
https://doi.org/10.1371/journal.pone.0188327 | |
dc.relation | Mirkery-Pachecho O, Marina C, Ibañez B, Sanchez D, Castillo V. (2012). Infección natural
de Lutzomyia cruciata (Diptera: Psychodidae, Phlebotominae) con Wolbachia en
cafetales de Chiapas, México. Act Zoológica Mex., 8(2):401–13. | |
dc.relation | Ministerio de Protección Social, Instituto Nacional de Salud & Organización
Panamericana de la Salud (no date). Gestión para la vigilancia entomológica y gestión de
la Leishmaniasis. Retrieved from:
http://simudatsalud-risaralda.co/normatividad_inv7/Entomologica%20Leishmaniasis.pdf | |
dc.relation | Monteiro, C. C., Villegas, L. E., Campolina, T. B., Pires, A. C., Miranda, J. C., Pimenta, P.
F., & Secundino, N. F. (2016). Bacterial diversity of the American sand fly Lutzomyia
intermedia using high-throughput metagenomic sequencing. Parasites & vectors, 9(1),
480. https://doi.org/10.1186/s13071-016-1767-z | |
dc.relation | Montenegro, H., Solferini, V. N., Klaczko, L. B. & Hurst, G. D. D. (2005). Male-killing
Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol. Biol. 14, 281–287. | |
dc.relation | Mouches C, Bové JM, Tully JG, Rose DL, McCoy RE, Carle-Junca P, Garnier M, Saillard
C. Spiroplasma apis, a new species from the honey-bee Apis mellifera. (1983). Ann
Microbiol (Paris). May-Jun;134A(3):383-97. PMID: 6195951. | |
dc.relation | Ono, M., Braig, H. R., Munstermann, L. E., Ferro, C., & O’NeilL, S. L. (2001).
WolbachiaInfections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of
Medical Entomology, 38(2), 237–241. doi:10.1603/0022-2585-38.2.237 | |
dc.relation | Onyango, G.M., Bialosuknia, M.S., Payne, F.A., Mathias, N., Ciota, T.A., Kramer, D.L.
(2020) Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci
Rep 10, 19135. https://doi.org/10.1038/s41598-020-76188-x | |
dc.relation | Organización Panamericana de la Salud (2021). Leishmaniasis: Informe epidemiológico
de las Américas. Retrieved from:
file:///C:/Users/danid/Downloads/OPSCDEVT210019_spa.pdf | |
dc.relation | Organización Panamericana de la Salud. (2019). Manual de procedimientos para
vigilancia y control de las leishmaniasis en las Américas. Washington, D.C.: OPS. | |
dc.relation | Padilla JC, Lizarazo FE, Murillo OL, Mendigana FA, Pachon E, Vera MJ. Epidemiologia
de las principales enfermedades transmitidas por vectores en Colombia, 1990–2016.
(2017). Biomedica 37:27–40. pmid:29165933 | |
dc.relation | Papadopoulos C, Karas PA, Vasileiadis S, Ligda P, Saratsis A, Sotiraki S, Karpouzas DG.
Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus
Sandflies. Pathogens. 2020; 9(6):428. https://doi.org/10.3390/pathogens9060428 | |
dc.relation | Pascar, J., & Chandler, C. H. (2018). A bioinformatics approach to identifying Wolbachia
infections in arthropods. PeerJ, 6, e5486. https://doi.org/10.7717/peerj.5486 | |
dc.relation | Pilgrim J, Siozios S, Baylis M, Hurst GDD. Tissue Tropisms and Transstadial
Transmission of a Rickettsia Endosymbiont in the Highland Midge, Culicoides
impunctatus (Diptera: Ceratopogonidae). (2020). Appl Environ Microbiol. Oct
1;86(20):e01492-20. doi: 10.1128/AEM.01492-20. PMID: 32801177; PMCID:
PMC7531967. | |
dc.relation | Rivas, G.B., de Souza, N.A., Peixoto, A.A., Bruno, R. (2014). Effects of temperature and
photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae).
Parasites Vectors 7, 278 . https://doi.org/10.1186/1756-3305-7-278 | |
dc.relation | Rocklöv, J., Dubrow, R. Climate change: an enduring challenge for vector-borne disease
prevention and control. Nat Immunol 21, 479–483 (2020). https://doi.org/10.1038/s41590-
020-0648-y | |
dc.relation | Rodrigues, M.S., Morelli, K.A. & Jansen, A.M. (2017). Cytochrome c oxidase subunit 1
gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related
species. Parasites Vectors 10, 488 https://doi.org/10.1186/s13071-017-2457-1 | |
dc.relation | Saxena, D., Pushalkar, S. & Stotsky, G. (2010). Fate and Effects in Soil of Cry Proteins
from Bacillus thuringiensis: Influence of Physicochemical and Biological Characteristics of
Soil. The Open Toxinology Journal, 133 – 153. | |
dc.relation | Socolovschi, C., Mediannikov, O., Raoult, D., & Parola, P. (2009). The relationship
between spotted fever group Rickettsiae and ixodid ticks. Veterinary research, 40(2), 34.
https://doi.org/10.1051/vetres/2009017 | |
dc.relation | Socolovschi, C., Pages, F., Ndiath, M. O., Ratmanov, P., Raoult, D. (2012a). Rickettsia
species in African Anopheles mosquitoes. PLoS One. ;7(10):e48254. doi:
10.1371/journal.pone.0048254. Epub 2012 Oct 30. PMID: 23118963; PMCID:
PMC3484133. | |
dc.relation | Socolovschi, C., Reynaud, P., Kernif, T., Raoult, D., & Parola, P. (2012b). Rickettsiae of
spotted fever group, Borrelia valaisiana, and Coxiella burnetii in ticks on passerine birds
and mammals from the Camargue in the south of France. Ticks and Tick-Borne Diseases,
3(5-6), 355–360. doi:10.1016/j.ttbdis.2012.10.019 | |
dc.relation | Socolovschi, C., Pagés, F., & Raoult, D. (2012c). Rickettsia felis in Aedes albopictus
Mosquitoes, Libreville, Gabon. Emerging Infectious Diseases, 18(10), 1687-1689.
https://doi.org/10.3201/eid1810.120178 | |
dc.relation | Segata, N., Baldini, F., Pompon, J., Garrett, W. S., Truong, D. T., Dabiré, R. K., …
Catteruccia, F. (2016). The reproductive tracts of two malaria vectors are populated by a
core microbiome and by gender- and swarm-enriched microbial biomarkers. Scientific
Reports, 6(1). doi:10.1038/srep24207 | |
dc.relation | Tabbabi, A., Watanabe, S., Mizushima, D., Caceres, A. G., Gomez, E. A., Yamamoto, D.
S., Kato, H. (2020). Comparative Analysis of Bacterial Communities in Lutzomyia
ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in
Ecuador and Peru. Microorganisms, 9(1), 68. doi:10.3390/microorganisms9010068 | |
dc.relation | Tang, X. T., Cai, L., Shen, Y., & Du, Y. Z. (2018). Diversity and evolution of the
endosymbionts of Bemisia tabaci in China. PeerJ, 6, e5516.
https://doi.org/10.7717/peerj.5516 | |
dc.relation | Truitt, A.M., Kapun, M., Kaur, R. & Miller, W.J. (2018) Wolbachia modifies thermal
preference in Drosophila melanogaster.Environmental Microbiology.
https://doi.org/10.1111/1462-2920.14347 | |
dc.relation | Varotto-Boccazzi, I., Epis, S., Arnoldi, I., Corbett, Y., Gabrieli, P., Paroni, M., Nodari, R.,
Basilico, N., Sacchi, L., Gramiccia, M., Gradoni, L., Tranquillo, V. & Bandi, C.
(2020). Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein
from Wolbachia determine M1 macrophage activation and killing of Leishmania
protozoans. Pharmacological Research, 105288. doi:10.1016/j.phrs.2020.105288 | |
dc.relation | Vasconcelos Dos Santos, T., Santos Neto, N. F., Sánchez Uzcátegui, Y., & Galardo, A.
(2019). Trichophoromyia iorlandobaratai (Diptera: Psychodidae), a new phlebotomine
species from the Brazilian Amazonia. Journal of medical entomology, 56(2), 416–420.
https://doi.org/10.1093/jme/tjy194 | |
dc.relation | Vivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo,
G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of
Pintomyia evansi under Experimental Infection with Leishmania infantum.
Microorganisms. Jun 4;9(6):1214. doi: 10.3390/microorganisms9061214. PMID:
34199688; PMCID: PMC8228094. | |
dc.relation | Williamson, D. L., Tully, J. G., Rosen, L., Rose, D. L., Whitcomb, R. F., Abalain-Colloc, M.
L., Carle, P., Bové, J. M., Smyth, J. (1996). Spiroplasma diminutum sp. nov., from Culex
annulus mosquitoes collected in Taiwan. Int J Syst Bacteriol. Jan;46(1):229-33. doi:
10.1099/00207713-46-1-229. PMID: 8573499. | |
dc.relation | Wong, M.L., Liew, J.W.K., Wong, W.K. et al. (2020).Natural Wolbachia infection in fieldcollected
Anopheles and other mosquito species from Malaysia. Parasites Vectors 13,
414. https://doi.org/10.1186/s13071-020-04277-x | |
dc.relation | Zorrilla, V., Vásquez, G., Espada, Liz, & Ramírez, P. (2017). Vectores de la leishmaniasis
tegumentaria y la Enfermedad de Carrión en el Perú: una actualización. Revista Peruana
de Medicina Experimental y Salud Pública, 34(3), 485-496.
https://dx.doi.org/10.17843/rpmesp.2017.343.2398 | |
dc.relation | Ayoubi, A., Talebi, A. A., Fathipour, Y., & Mehrabadi, M. (2018). Coinfection of the
secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the
performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect
Science. doi:10.1111/1744-7917.12603 | |
dc.relation | Ballinger, M. J. & Perlman, S. J. (2018). The defensive Spiroplasma. Current Opinion in
Insect Science 32, 36-41. | |
dc.relation | Barua, S., Hoque, M. M., Kelly, P. J., Poudel, A., Adekanmbi, F., Kalalah, A., Yang, Y., &
Wang, C. (2020). First report of Rickettsia felis in mosquitoes, USA. Emerging microbes &
infections, 9(1), 1008–1010. https://doi.org/10.1080/22221751.2020.1760736 | |
dc.relation | Binetruy, F., Bailly, X., Chevillon, C., Martin, O.Y., Bernasconi, M.V., Duron, O. (2019).
Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between
ticks and other arthropods. Ticks Tick Borne Dis. (3):575-584. doi:
10.1016/j.ttbdis.2019.02.001. Epub 2019 Feb 5. PMID: 30744948. | |
dc.relation | Bohacsova M, Mediannikov O, Kazimirova M, Raoult D, Sekeyova Z (2016)
Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp
Ixodiphagus hookeri. PLoS ONE 11(2): e0149950.
https://doi.org/10.1371/journal.pone.0149950 | |
dc.relation | Boyd, B. M., Allen, J. M., Nguyen, N.-P., Vachaspati, P., Quicksall, Z. S., Warnow, T.,
Mugisha, L., Johnson, K., Reed, D. L. (2017). Primates, Lice, and Bacteria: Speciation
and Genome Evolution in the Symbionts of Hominid Lice. Molecular Biology and
Evolution, 34(7), 1743–1757. doi:10.1093/molbev/msx117 | |
dc.relation | Bressan A. (2014). Emergence and evolution of Arsenophonus bacteria as insectvectored
plant pathogens. Infection, genetics and evolution: journal of molecular
epidemiology and evolutionary genetics in infectious diseases, 22, 81–90.
https://doi.org/10.1016/j.meegid.2014.01.004 | |
dc.relation | Chiang, C. L., & Reeves, W. C. (1962). Statistical estimation of virus infection rates in
mosquito vector populations. American Journal of Epidemiology, 75(3), 377–391.
doi:10.1093/oxfordjournals.aje.a120259 | |
dc.relation | Cordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the
evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341.
doi:10.1016/j.tig.2011.05.002 | |
dc.relation | Douglas, A. E. (2015). Multiorganismal Insects: Diversity and Function of Resident
Microorganisms. Annual Review of Entomology, 60(1), 17–34. doi:10.1146/annurev-ento-
010814-020822 | |
dc.relation | Douglas, A. E. (2017). The B vitamin nutrition of insects: the contributions of diet,
microbiome and horizontally acquired genes. Current Opinion in Insect Science, 23, 65–
69. doi:10.1016/j.cois.2017.07.012 | |
dc.relation | Doudoumis, V., Blow, F., Saridaki, A., Doudoumis, V., Blow, F., Saridaki, A., Augustinos,
A., Dyer, N. A., Goodhead, I., Solano, P., Rayaisse, J.-B., Takac, P., Mekonnen, S.,
Parker, A.G., Abd-Alla, A.M.M., Darby, A., Bourtzis, K., Tsiamis, G. (2017). Challenging
the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is
present in both laboratory and natural populations. Scientific Reports, 7(1).
doi:10.1038/s41598-017-04740-3 | |
dc.relation | Duron, O., Wilkes, T. E., & Hurst, G. D. D. (2010). Interspecific transmission of a malekilling
bacterium on an ecological timescale. Ecology Letters, 13(9), 1139–1148.
doi:10.1111/j.1461-0248.2010.01502.x | |
dc.relation | Duron, O., Schneppat, U.E., Berthomieu, A., Goodman, S.M., Droz, B., Paupy, C.,
Nkoghe, J.O., Rahola, N., Tortosa, P. (2014). Origin, acquisition and diversification of
heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology 23:2105-
2117 | |
dc.relation | Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J., Hurst, G.D.
(2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk
alone . BMC Biol 6, 27. https://doi.org/10.1186/1741-7007-6-27 | |
dc.relation | Durovni B., Saraceni V., Eppinghaus A., Riback T. I. S., Moreira L. A., Jewell N. P., et al. .
(2020). The impact of large-scale deployment of Wolbachia mosquitoes on dengue and
other aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a
controlled interrupted time series analysis using routine disease surveillance data.
F1000Res. 8:1328. 10.12688/f1000research.19859.2 | |
dc.relation | Eleftherianos I, Atri J, Accetta J, Castillo JC. (2013) Endosymbiotic bacteria in insects:
guardians of the immune system?. Front Physiol. 2013;4:46.
doi:10.3389/fphys.2013.00046 | |
dc.relation | Elston, Katherine & Leonard, Sean & Geng, Peng & Bialik, Sarah & Robinson, Elizabeth
& Barrick, Jeffrey. (2021). Engineering insects from the endosymbiont out. Trends in
Microbiology. 10.1016/j.tim.2021.05.004. | |
dc.relation | Fan, H.-W., Lu, J.-B., Ye, Y.-X., Yu, X.-P., & Zhang, C.-X. (2016). Characteristics of the
draft genome of “Candidatus Arsenophonus nilaparvatae”, a facultative endosymbiont of
Nilaparvata lugens. Insect Science, 23(3), 478–486. doi:10.1111/1744-7917.12318 | |
dc.relation | Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994). DNA primers for
amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan
invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294 - 299. | |
dc.relation | Forattini, O. P. (2002). Culicidologia médica. In: De E da U, São Paulo SP, (Ed.)
Culicidologia médica. Editora da Universidade de São Paulo, São Paulo, p. 860. | |
dc.relation | Galati, E.A.B., Andrade-Filho, J.D., Silva, A.C.L., Falcao, A.L. (2003)Description of a New
Genus and a New Species of New World Phlebotominae (Diptera, Psychodidae). Rev
Brasil Entomol, 47, (63-70). | |
dc.relation | Gherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., Mandelco, L., and
Brenner, D. J. 1991. Arsenophonus nasoniae gen.-nov., sp.-nov., the causative agent of
the son killer trait in the parasitic wasp Nasonia vitripennis. Int. J. Syst. Bact., 41, 563–
565. | |
dc.relation | Golczer, G. & Arrivillaga, J. (2008). Modificación de un protocolo estándar de extracción
de ADN para flebotominos pequeños (Phlebotominae: Lutzomyia). Rev. Col. Entomol, 34,
199-202. | |
dc.relation | Ghosh, S., Bouvaine, S. & Maruthi, M. (2015). Prevalence and genetic diversity of
endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol 15, 93
https://doi.org/10.1186/s12866-015-0425-5 | |
dc.relation | Hypsa, V., & Dale, C. (1997). In Vitro Culture and Phylogenetic Analysis of “Candidatus
Arsenophonus triatominarum,” an Intracellular Bacterium from the Triatomine Bug,
Triatoma infestans. International Journal of Systematic Bacteriology, 47(4), 1140–1144.
doi:10.1099/00207713-47-4-1140 | |
dc.relation | Hoyos-López, R., Suaza-Vasco, J., Rúa-Uribe, G., Uribe, S., & Gallego-Gómez, J. C.
(2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera:
Culicidae) from coastal ecosystems in the Colombian Caribbean. Memorias do Instituto
Oswaldo Cruz, 111(10), 625–634. https://doi.org/10.1590/0074-02760160096 | |
dc.relation | Hoyos-López, R., Uribe-Soto, S., & Gallego-Gómez, J. C. (2015). Evolutionary
relationships of West Nile virus detected in mosquitoes from a migratory bird zone of
Colombian Caribbean. Virology journal, 12, 80. https://doi.org/10.1186/s12985-015-0310-
8 | |
dc.relation | Hunter, D. J., Torkelson, J. L., Bodnar, J., Mortazavi, B., Laurent, T., Deason, J.,
Thephavongsa, K., & Zhong, J. (2015). The Rickettsia Endosymbiont of Ixodes pacificus
Contains All the Genes of De Novo Folate Biosynthesis. PloS one, 10(12), e0144552.
https://doi.org/10.1371/journal.pone.0144552 | |
dc.relation | Jouzani, G. S., Valijanian, E., & Sharafi, R. (2017). Bacillus thuringiensis: a successful
insecticide with new environmental features and tidings. Applied Microbiology and
Biotechnology, 101(7), 2691–2711. doi:10.1007/s00253-017-8175-y | |
dc.relation | Karimi, S., Askari Seyahooei, M., Izadi, H., Bagheri, A., & Khodaygan, P. (2019). Effect of
Arsenophonus Endosymbiont Elimination on Fitness of the Date Palm Hopper,
Ommatissus lybicus (Hemiptera: Tropiduchidae). Environmental Entomology.
doi:10.1093/ee/nvz047 | |
dc.relation | Kikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability.
Microbes and Environments, 24(3), 195–204. doi:10.1264/jsme2.me09140s | |
dc.relation | Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., Fukatsu, T. (2012).
Symbiont-mediated insecticide resistance Proc. Natl. Acad. Sci. USA, 109, pp. 8618-
8622. | |
dc.relation | Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular
Evolutionary Genetics Analysis across computing platforms. Molecular Biology and
Evolution 35:1547-1549 | |
dc.relation | Lane J. (1953). Neotropical Culicidae. São Paulo Univ São Paulo; 1112. | |
dc.relation | Li, K., Chen, H., Jiang, J., Li, X., Xu, J., Ma, Y. (2016). Diversity of bacteriome associated
with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations
from China. Sci Rep. 2016;6(1):36406. | |
dc.relation | Lozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-
Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the
genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz,
Mexico. Parasitol Int. 82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21. PMID:
33486127. | |
dc.relation | Maina AN, Klein TA, Kim H-C, Chong S-T, Yang Y, Mullins K, et al. (2017). Molecular
characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the
Demilitarized Zone of the Republic of Korea. PLoS ONE 12(11): e0188327.
https://doi.org/10.1371/journal.pone.0188327 | |
dc.relation | Marceló, C., Cabrera Quintero, O. L., & Santamaría, E. (2014). Concentraciones
diagnósticas de tres insecticidas de uso en salud pública en una cepa experimental de
Lutzomyia longipalpis (Diptera: Psychodidae) en Colombia. Biomédica, 34(4).
doi:10.7705/biomedica.v34i4.2233 | |
dc.relation | McCutcheon, J. P., Boyd, B. M., & Dale, C. (2019). The Life of an Insect Endosymbiont
from the Cradle to the Grave. Current Biology, 29(11), R485–R495.
doi:10.1016/j.cub.2019.03.032 | |
dc.relation | Meyer, C.P. & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive
sampling. PLoS Biol, 3, 2229–2238. | |
dc.relation | Morse, S.F., Bush, S.E., Patterson, B.D., Dick, C.W., Gruwell, M.E., Dittmar, K. (2013).
Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera:
Hippoboscoidea: Streblidae and Nycteribiidae). Applied and Environmental Microbiology,
79, 2952-2961 | |
dc.relation | Mouton, L., Thierry, M., Henri, H. Boudin, R., Gnankine, O., Reynaud, B., Zchori-Fein, E.,
Becker, N., Fleury, F., Delatte, H. (2012). Evidence of diversity and recombination in
Arsenophonus symbionts of the Bemisia tabaci species complex. BMC Microbiol 12, S10
https://doi.org/10.1186/1471-2180-12-S1-S10 | |
dc.relation | Nováková, E., Hypša, V., Nguyen, P., Husník, F., & Darby, A. C. (2016). Genome
sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood
sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Standards in genomic sciences, 11,
72. https://doi.org/10.1186/s40793-016-0195-1 | |
dc.relation | Nováková, M., & Šmajs, D. (2018). Rickettsial Endosymbionts of Ticks. Ticks and Tick-
Borne Pathogens. doi:10.5772/intechopen.80767 | |
dc.relation | Nováková, E., Hypša, V. & Moran, N.A. (2009). Arsenophonus, an emerging clade of
intracellular symbionts with a broad host distribution. BMC Microbiol 9, 143.
https://doi.org/10.1186/1471-2180-9-143 | |
dc.relation | PAHO. (2016). Plan estratégico del subprograma de Dengue Chikunguña 2014 - 2021 en
el marco de la EGI ETV y articulado al plan nacional mesoamericano de Dengue -
Chikunguña. Retrieved from:
http://www.proyectomesoamerica.org:8088/smsp/phocadownload/Institucional/
PlanesNacionales/PNDengue/COL%20PN%20Dengue.pdf | |
dc.relation | Pang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W.
(2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its
insect host. PLoS genetics, 14(10), e1007725.
https://doi.org/10.1371/journal.pgen.1007725 | |
dc.relation | Papadopoulos, C., Karas, P.A., Vasileiadis, S., Ligda, P., Saratsis, A., Sotiraki, S.,
Karpouzas, D.G. Host Species Determines the Composition of the Prokaryotic Microbiota
in Phlebotomus Sandflies. Pathogens 9(6), 428.
https://doi.org/10.3390/pathogens9060428 | |
dc.relation | Perlmutter, J. I., & Bordenstein, S. R. (2018). Microbial Misandry: Discovery of a
Spiroplasma Male-Killing Toxin. Cell Host & Microbe, 23(6), 689–690.
doi:10.1016/j.chom.2018.05.011 | |
dc.relation | Pilgrim, J., Siozios, S., Baylis, M., Hurst, G.D.D. (2020). Tissue Tropisms and
Transstadial Transmission of a Rickettsia Endosymbiont in the Highland Midge,
Culicoides impunctatus (Diptera: Ceratopogonidae). Appl Environ Microbiol. Oct
1;86(20):e01492-20. doi: 10.1128/AEM.01492-20. PMID: 32801177; PMCID:
PMC7531967 | |
dc.relation | Raina, H.S., Singh, A., Popli, S., Pandey, N., & Rajagopal, R. (2015) Infection of Bacterial
Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH
for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci. PLoS ONE 10(8):
e0136159. https://doi.org/10.1371/journal.pone.0136159 | |
dc.relation | Reeves, W. K., Kato, C. Y., & Gilchriest, T. (2008). Pathogen screening and bionomics of
Lutzomyia apache (Diptera: Psychodidae) in Wyoming, USA. Journal of the American
Mosquito Control Association, 24(3), 444–447. https://doi.org/10.2987/5745.1 | |
dc.relation | Rio, R., Attardo, G. M., & Weiss, B. L. (2016). Grandeur Alliances: Symbiont Metabolic
Integration and Obligate Arthropod Hematophagy. Trends in parasitology, 32(9), 739–
749. https://doi.org/10.1016/j.pt.2016.05.002 | |
dc.relation | Rosenblueth, M., Martínez-Romero, J., Ramírez-Puebla, S.T., Vera-Ponce de León, A.,
Rosas-Pérez, T., Bustamante-Brito, R., Rincón-Rosales, R., Martínez-Romero, E. (2018).
Endosymbiotic microorganisms of scale insects. TIP Revista Especializada en Ciencias
Químico - Biológicas, 21(1). https://doi.org/10.1016/j.recqb.2017.08.006 | |
dc.relation | Rueda, L. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae)
associated with Dengue Virus Transmission. Zootaxa 589(1), 1 - 60. | |
dc.relation | Sazama, E. J., Ouellette, S. P., & Wesner, J. S. (2019). Bacterial Endosymbionts Are
Common Among, but not Necessarily Within, Insect Species. Environmental Entomology.
doi:10.1093/ee/nvy188 | |
dc.relation | Salgado-Almario J, Hernández CA, Ovalle CE. (2019). Geographical distribution of
Leishmania species in Colombia, 1985-2017. Biomédica, 39, 278-90.
https://doi.org/10.7705/biomedica.v39i3.4312 | |
dc.relation | Šochová E, Husník F, Nováková E, Halajian A, Hypša V. (2017). Arsenophonus and
Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5:e4099
https://doi.org/10.7717/peerj.4099 | |
dc.relation | Socolovschi, C., Pagés, F., & Raoult, D. (2012). Rickettsia felis in Aedes albopictus
Mosquitoes, Libreville, Gabon. Emerging Infectious Diseases, 18(10), 1687-1689.
https://doi.org/10.3201/eid1810.120178 | |
dc.relation | Thao, M. L., & Baumann, P. (2004). Evidence for multiple acquisition of Arsenophonus by
whitefly species (Sternorrhyncha: Aleyrodidae). Current microbiology, 48(2), 140–144.
https://doi.org/10.1007/s00284-003-4157-7 | |
dc.relation | Vivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo,
G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of
Pintomyia evansi under Experimental Infection with Leishmania infantum.
Microorganisms, 4, 9(6):1214. doi: 10.3390/microorganisms9061214. PMID: 34199688;
PMCID: PMC8228094 | |
dc.relation | Wilkes, T.E., Darby, A.C., Choi, J.H., Colbourne, J.K., Werren, J.H., Hurst, G.D.D. (2010).
The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia
vitripennis, reveals genes associated with virulence and symbiosis. Insect Molecular
Biology, 19, 59–73. pmid:20167018 | |
dc.relation | Wilkes, T.E, Duron, O., Darby, A.C., Hypša, V., Nováková, E., Hurst, G.D.D. (2012). The
Genus Arsenophonus. In Zchori-Fein, E. & Bourtzis, K. (Ed.), Manipulative Tenants,
Bacteria Associated with Arthropods. (225 - 244). CRC Press | |
dc.relation | Williamson, D. L., Tully, J. G., Rosen, L., Rose, D. L., Whitcomb, R. F., Abalain-Colloc, M.
L., Carle, P., Bové, J. M., Smyth, J. (1996). Spiroplasma diminutum sp. nov., from Culex
annulus mosquitoes collected in Taiwan. Int J Syst Bacteriol, 46(1), 229-33. doi:
10.1099/00207713-46-1-229. PMID: 8573499 | |
dc.relation | World Mosquito Program. (2021). Retrieved from:
https://www.worldmosquitoprogram.org/en/global-progress/colombia | |
dc.relation | Xue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z., Xu, H. J., Xi, Y., Zhu, Z.
R., Zhou, W. W., Pan, P. L., Li, B. L., Colbourne, J. K., Noda, H., Suetsugu, Y.,
Kobayashi, T., Zheng, Y., Liu, S., Zhang, R., Liu, Y., … Cheng, J. A. (2014). Genomes of
the rice pest brown planthopper and its endosymbionts reveal complex complementary
contributions for host adaptation. Genome biology, 15(12), 521.
https://doi.org/10.1186/s13059-014-0521-0 | |
dc.relation | Yañez, O., Gauthier, L., Chantawannakul, P., & Neumann, P. (2016). Endosymbiotic
bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS
microbiology letters, 363(14), fnw147. https://doi.org/10.1093/femsle/fnw147 | |
dc.relation | Zhang, J., Lu, G., Li, J., Kelly, P., Li, M., Wang, J., Huang, K., Qiu, H., You, J., Zhang, R.,
Wang, Y., Zhang, Y., Wu, H., Wang, C. (2019). Molecular Detection of Rickettsia felis and
Rickettsia bellii in Mosquitoes. Vector-Borne and Zoonotic Diseases.
doi:10.1089/vbz.2019.2456 | |
dc.relation | Almeida, P. S. de, Sciamarelli, A., Batista, P. M., Ferreira, A. D., Nascimento, J., Raizer,
J., Andrade Filho, J. D., & Gurgel-Goncalves, R. (2013). Predicting the geographic
distribution of Lutzomyia longipalpis (Diptera: Psychodidae) and visceral leishmaniasis in
the state of Mato Grosso do Sul, Brazil. Memórias Do Instituto Oswaldo Cruz, 108(8),
992–996. doi:10.1590/0074-0276130331 | |
dc.relation | Arnold, P.A., White, C.R. & Johnson, K.N. (2015). Drosophila melanogaster does not
exhibit a behavioural fever response when infected with Drosophila C virus. Journal of
General Virology, 96, 3667–3671 | |
dc.relation | Arnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila
melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures.
Ecological Entomology. DOI: 10.1111/ccn.12696 | |
dc.relation | Bellone, R., & Failloux, A.-B. (2020). The Role of Temperature in Shaping Mosquito-
Borne Viruses Transmission. Frontiers in Microbiology, 11.
doi:10.3389/fmicb.2020.584846 | |
dc.relation | Colares, C., Roza, A. S., Mermudes, J. R. M., Silveira, L. F. L., Khattar, G., Mayhew, P.
J., Monteiro, R. F., Nunes, M. F. S. Q. C. & Macedo, M. V. (2021). Elevational
specialization and the monitoring of the effects of climate change in insects: Beetles in a
Brazilian rainforest mountain. Ecological Indicators, 120, 106888.
doi:10.1016/j.ecolind.2020.106888 | |
dc.relation | Costa, P. L., Dantas-Torres, F., da Silva, F. J., Guimarães, V. C. F. V., Gaudêncio, K., &
Brandão-Filho, S. P. (2013). Ecology of Lutzomyia longipalpis in an area of visceral
leishmaniasis transmission in north-eastern Brazil. Acta Tropica, 126(2), 99–102.
doi:10.1016/j.actatropica.2013.01 | |
dc.relation | El Hajj, R., El Hajj, H., & Khalifeh, I. (2018). Fatal Visceral Leishmaniasis Caused by
Leishmania infantum, Lebanon. Emerging infectious diseases, 24(5), 906–907.
https://doi.org/10.3201/eid2405.180019 | |
dc.relation | Erguler, K., Pontiki, I., Zittis, G., Proestos, Y., Christodoulou, V., Tsirigotakis, N.,
Antoniou, M., Kasap, O. E., Lelieveld, J. (2019). A climate-driven and field dataassimilated
population dynamics model of sand flies. Scientific Reports, 9(1).
doi:10.1038/s41598-019-38994-w | |
dc.relation | Falcão de Oliveira, E., Oshiro, E. T., Fernandes, W. S., Murat, P. G., de Medeiros, M. J.,
Souza, A. I., de Oliveira, A. G., & Galati, E. A. (2017). Experimental infection and
transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the
ecology of parasite-vector interactions. PLoS neglected tropical diseases, 11(2), | |
dc.relation | Frid, L. & Myers, J. H. (2002). Thermal ecology of western tent caterpillars Malacosoma
californicum pluviale and infection by nucleopolyhedrovirus. Ecological Entomology, 27,
665-673 | |
dc.relation | Goda, T., Leslie, J. R., & Hamada, F. N. (2014). Design and Analysis of Temperature
Preference Behavior and its Circadian Rhythm in Drosophila. Journal of Visualized
Experiments, 83. doi:10.3791/51097. | |
dc.relation | Goda, T., & Hamada, F. N. (2019). Drosophila Temperature Preference Rhythms: An
Innovative Model to Understand Body Temperature Rhythms. International journal of
molecular sciences, 20(8), 1988. https://doi.org/10.3390/ijms20081988 | |
dc.relation | González, C., Paz, A., & Ferro, C. (2014). Predicted altitudinal shifts and reduced spatial
distribution of Leishmania infantum vector species under climate change scenarios in
Colombia. Acta Tropica, 129, 83–90. doi:10.1016/j.actatropica.2013.08 | |
dc.relation | Guernaoui, S., Boussaa, S., Pesson, B., & Boumezzough, A. (2005). Nocturnal activity of
phlebotomine sandflies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus in
Chichaoua, Morocco. Parasitology Research, 98(3), 184–188. doi:10.1007/s00436-005-
0032-8 | |
dc.relation | Guzmán & Tesh. (2000). Effects of temperature and diet on the growth and longevity of
phlebotomine sand flies (Diptera: Psychodidae). Biomédica, 20, 190-9 | |
dc.relation | Hague, M. T. J., Caldwell, C. N., & Cooper, B. S. (2020). Pervasive Effects of Wolbachia
on Host Temperature Preference. mBio, 11(5). doi:10.1128/mbio.01768-20 | |
dc.relation | Haider, N., Kirkeby, C., Kristensen, B., Kjær, L. J., Sørensen, J. H., & Bødker, R. (2017).
Microclimatic temperatures increase the potential for vector-borne disease transmission in
the Scandinavian climate. Scientific Reports, 7(1). doi:10.1038/s41598-017-08514-9 | |
dc.relation | Hlavacova, J., Votypka, J., & Volf, P. (2013). The effect of temperature on Leishmania
(Kinetoplastida: Trypanosomatidae) development in sand flies. Journal of medical
entomology, 50(5), 955–958 | |
dc.relation | IDEAM - UNAL. (2018). Variabilidad Climática y Cambio Climático en Colombia, Bogotá,
D.C. | |
dc.relation | IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S.
Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,
J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
Cambridge University Press. In Press | |
dc.relation | Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2014). Thermal adaptation
generates a diversity of thermal limits in a rainforest ant community. Global Change
Biology, 21(3), 1092–1102. doi:10.1111/gcb.12750 | |
dc.relation | Macedo-Silva, V. P., Martins, D. R., De Queiroz, P. V., Pinheiro, M. P., Freire, C. C.,
Queiroz, J. W., Dupnik, K. M., Pearson, R. D., Wilson, M. E., Jeronimo, S. M., & Ximenes,
M. (2014). Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand
fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae). Journal of
medical entomology, 51(1), 237–244. https://doi.org/10.1603/me12131 | |
dc.relation | Martínez-Suárez, C., Almanza-Rodríguez, C., Bejarano, E.E. (2012). Estimación del
tiempo de desarrollo de Lutzomyia evansi bajo condiciones experimentales. Salud
Uninorte, 28, 201–209 | |
dc.relation | McCain, C. M., & Garfinkel, C. F. (2021). Climate change and elevational range shifts in
insects. Current Opinion in Insect Science, 47, 111–118. doi:10.1016/j.cois.2021.06.003 | |
dc.relation | Meireles-Filho, A. C. A., da S. Rivas, G. B., Gesto, J. S. M., Machado, R. C., Britto, C., de
Souza, N. A., & Peixoto, A. A. (2005). The biological clock of an hematophagous insect:
Locomotor activity rhythms, circadian expression and downregulation after a blood meal.
FEBS Letters, 580(1), 2–8. doi:10.1016/j.febslet.2005.11.031 | |
dc.relation | Milleron, R. S., Meneses, C. R., Elnaiem, D. A., & Lanzaro, G. C. (2008). Effects of
Varying Moisture on Egg Production and Longevity of Lutzomyia longipalpis (Diptera:
Psychodidae). Journal of Medical Entomology, 45(1), 160–165. doi:10.1603/0022-
2585(2008)45[160:eovmoe]2.0.co;2 | |
dc.relation | Ohm, J. R., Baldini, F., Barreaux, P., Lefevre, T., Lynch, P. A., Suh, E., Whitehead, S. &
Thomas, M. B. (2018). Rethinking the extrinsic incubation period of malaria parasites.
Parasites & Vectors, 11(1). doi:10.1186/s13071-018-2761-4 | |
dc.relation | Onyango, G. M., Bialosuknia, M. S., Payne, F. A., Mathias, N., Ciota, T. A. & Kramer, L.
(2020). Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci
Rep 10, 19135. https://doi.org/10.1038/s41598-020-76188-x | |
dc.relation | Pereyra, N., Lobbia, P. A., & Mougabure-Cueto, G. (2019). Effects of the infection with
Trypanosoma cruzi on the feeding and excretion/defecation patterns of Triatoma
infestans. Bulletin of Entomological Research, 110(1), 169–176.
doi:10.1017/s0007485319000464 | |
dc.relation | Rajpurohit, S., & Schmidt, P. S. (2016). Measuring thermal behavior in smaller insects: A
case study in Drosophila melanogaster demonstrates effects of sex, geographic origin,
and rearing temperature on adult behavior. Fly, 10(4), 149-161. DOI:
10.1080/19336934.2016.1194145 | |
dc.relation | R Core Team (2014). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ | |
dc.relation | Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the Environmental
Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects,
9(4), 158. https://doi.org/10.3390/insects9040158 | |
dc.relation | Rivas, G. B., de Souza, N. A. & Peixoto, A. A. (2008). Analysis of the activity patterns of
two sympatric sandfly siblings of the Lutzomyia longipalpis species complex from Brazil.
Medical and Veterinary Entomology, 22(3), 288–290. doi:10.1111/j.1365-
2915.2008.00742.x | |
dc.relation | Rivas, G. B., de Souza, N. A., Peixoto, A. A., & Bruno, R. V. (2014). Effects of
temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera:
Psychodidae). Parasites & Vectors, 7(1), 278. doi:10.1186/1756-3305-7-278 | |
dc.relation | Rueda, L. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae)
associated with Dengue Virus Transmission. Zootaxa 589(1), 1 - 60 | |
dc.relation | Santander Gualdrón, R. (2020). Desarrollo de un prototipo de termoclina para el análisis
de preferencia de temperatura en poblaciones de insectos vectores [Trabajo de grado, no
publicado]. Universidad Nacional de Colombia, sede Medellín | |
dc.relation | Santos, A. A. S., Leal Bevilaqua, C. M., de Castro Dias, E., Carneiro Feijó, F., Melo de
Oliveira, P. G., Xavier Peixoto, G. C., Dutra Alves, N., Beserra de Oliveira, L. M. & Freitas
Macedo, L. T. (2010). Monitoring of Lutzomyia longipalpis Lutz & Neiva, 1912 in an area
of intense transmission of visceral leishmaniasis in Rio Grande do Norte, Northeast Brazil.
Revista Brasileira de Parasitologia Veterinária, 19(1),41-45.[fecha de Consulta 13 de
Febrero de 2022]. ISSN: 0103-846X. Disponible en: https://www.redalyc.org/articulo.oa?
id=397841475007 | |
dc.relation | St. Leger, R. J. (2021). Insects and their pathogens in a changing climate. Journal of
Invertebrate Pathology, 184, 107644. doi:10.1016/j.jip.2021.107644 | |
dc.relation | Thomas, S., Ravishankaran, S., Justin, N. A. J. A., Asokan, A., Kalsingh, T. M. J., Mathai,
M. T., Valecha, N., Montgomery, J., Thomas, M. B. & Eapen, A. (2018). Microclimate
variables of the ambient environment deliver the actual estimates of the extrinsic
incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a
malaria-endemic urban setting, Chennai in India. Malaria Journal, 17(1).
doi:10.1186/s12936-018-2342-1 | |
dc.relation | Tjaden, N. B., Thomas, S. M., Fischer, D., & Beierkuhnlein, C. (2013). Extrinsic Incubation
Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence.
PLoS neglected tropical diseases, 7(6), e2207.
https://doi.org/10.1371/journal.pntd.0002207 | |
dc.relation | Truitt, A.M., Kapun, M., Kaur, R. & Miller, W.J. (2018) Wolbachia modifies thermal
preference in Drosophila melanogaster. Environmental Microbiology.
https://doi.org/10.1111/1462-2920.14347 | |
dc.relation | Vivero, R. J., Villegas-Plazas, M., Cadavid-Restrepo, G. E., Herrera, C. X. M., Uribe, S. I.,
& Junca, H. (2019). Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of
leishmaniasis, show high abundance of Methylobacterium and natural carriage of
Wolbachia and Cardinium types in the midgut microbiome. Scientific Reports, 9(1).
doi:10.1038/s41598-019-53769-z | |
dc.relation | Vivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., D Hurst, G., Cadavid-Restrepo,
G., & Moreno-Herrera, C. X. (2021). Gut Microbiota Dynamics in Natural Populations of
Pintomyia evansi under Experimental Infection with Leishmania infantum.
Microorganisms, 9(6), 1214. https://doi.org/10.3390/microorganisms9061214 | |
dc.relation | White, H. J., Caplat, P., Emmerson, M. C., & Yearsley, J. M. (2021). Predicting future
stability of ecosystem functioning under climate change. Agriculture, Ecosystems &
Environment, 320, 107600. doi:10.1016/j.agee.2021.107600 | |
dc.relation | WHO (2022). Leishmaniasis. Retrieved from: https://www.who.int/news-room/factsheets/
detail/leishmaniasis | |
dc.relation | Al-Qaysi, S., Al-Haideri, H., Al-Shimmary, S. M., Abdulhameed, J. M., Alajrawy, O. I., Al-
Halbosiy, M. M., Moussa, T., & Farahat, M. G. (2021). Bioactive Levan-Type
Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and
Optimization for Enhanced Production. Journal of microbiology and biotechnology, 31(5),
696–704. https://doi.org/10.4014/jmb.2101.01025 | |
dc.relation | Arango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. (2021). Experimental
Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern
Subterranean Termite, Reticulitermes flavipes (Kollar). Frontiers in Microbiology,
https://doi.org/10.3389/fmicb.2021.632715 | |
dc.relation | Arévalo-Cortés, A., Mejia-Jaramillo, A. M., Granada, Y., Coatsworth, H., Lowenberger, C.,
& Triana-Chavez, O. (2020). The Midgut Microbiota of Colombian Aedes aegypti
Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin.
Insects, 11(9), 584. doi:10.3390/insects11090584 | |
dc.relation | Arnold, P.A., White, C.R. & Johnson, K.N. (2015) Drosophila melanogaster does not
exhibit a behavioural fever response when infected with Drosophila C virus. Journal of
General Virology, 96,3667–3671 | |
dc.relation | Arnold, P.A., Levin, S. C., Stevanovic, A. L. & Johnson, K.N. (2018). Drosophila
melanogaster infected with Wolbachia strain wMelCS prefer cooler temperatures.
Ecological Entomology. DOI: 10.1111/ccn.12696 | |
dc.relation | Balaska, S., Fotakis, E. A., Chaskopoulou, A. & Vontas, J. (2021). Chemical control and
insecticide resistance status of sand fly vectors worldwide. PLOS Neglected Tropical
Diseases, 15(8), e0009586, https://doi.org/10.1371/journal.pntd.0009586 | |
dc.relation | Belov, A. A., Cheptsov, V. S., Vorobyova, E. A., Manucharova, N. A., & Ezhelev, Z. S.
(2019). Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated
from a Central Mojave Desert Soil Sample. Geosciences, 9(4), 166.
doi:10.3390/geosciences9040166 | |
dc.relation | Bhatt, P., Huang, Y., Zhan, H., & Chen, S. (2019). Insight Into Microbial Applications for
the Biodegradation of Pyrethroid Insecticides. Frontiers in Microbiology, 10.
doi:10.3389/fmicb.2019.01778 | |
dc.relation | Bohacsova M, Mediannikov O, Kazimirova M, Raoult D, Sekeyova Z (2016)
Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp
Ixodiphagus hookeri. PLoS ONE 11(2): e0149950.
https://doi.org/10.1371/journal.pone.0149950 | |
dc.relation | Cesa-Luna, C., Baez, A., Quintero-Hernández, V., De la Cruz-Enríquez, J., Castañeda-
Antonio, M. D., & Muñoz-Rojas, J. (2020). The importance of antimicrobial compounds
produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica
Colombiana, 25(1), 140–154. doi:10.15446/abc.v25n1.76867 | |
dc.relation | Chang, C.-Y., Sun, X.-W., Tian, P.-P., Miao, N.-H., Zhang, Y.-L. & Liu, X.-D. (2022). Plant
secondary metabolite and temperature determine the prevalence of Arsenophonus
endosymbionts in aphid populations. Environmental Microbiology, https://doiorg.
ezproxy.unal.edu.co/10.1111/1462-2920.15929 | |
dc.relation | Chimwamurombe, P. M., Grönemeyer & J. L., Reinhold-Hurek, B. (2016) Isolation and
characterization of culturable seed-associated bacterial endophytes from gnotobiotically
grown Marama bean seedlings, FEMS Microbiology Ecology, 92, (6), fiw083,
https://doi.org/10.1093/femsec/fiw083 | |
dc.relation | Chong, J., Liu, P., Zhou, G., and Xia. J. (2020). Using MicrobiomeAnalyst for
comprehensive statistical, functional, and meta-analysis of microbiome data. Nature
Protocols 15, 799–821. DOI: 10.1038/s41596-019-0264-1 | |
dc.relation | Cycoń, M., & Piotrowska-Seget, Z. (2016). Pyrethroid-Degrading Microorganisms and
Their Potential for the Bioremediation of Contaminated Soils: A Review. Frontiers in
microbiology, 7, 1463. https://doi.org/10.3389/fmicb.2016.01463 | |
dc.relation | Contreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada
de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera
colombiana. Biomédica, 34(3). DOI:10.7705/biomedica.v34i3.2121 | |
dc.relation | Espejo, R. T., Feijóo, C. G., Romero, J., & Vásquez, M. (1998). PAGE analysis of the
heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence
similarity and rDNA complexity. Microbiology (Reading, England), 144 | |
dc.relation | Ferguson, L. V., Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair, B.
J. (2018). Seasonal shifts in the insect gut microbiome are concurrent with changes in
cold tolerance and immunity. Functional Ecology. doi:10.1111/1365-2435.13153 | |
dc.relation | Flórez, M., Martínez, J. P., Gutiérrez, R., Luna, K. P., Serrano, V. H., Ferro, C., Angulo, V.
M. & Sandoval, C. M. (2006). Lutzomyia longipalpis (Diptera: Psychodidae) en un foco
suburbano de leishmaniosis visceral en el Cañón del Chicamocha en Santander,
Colombia. Biomédica, 26(Suppl. 1), 109-120. Retrieved February 17, 2022, from
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-
41572006000500013&lng=en&tlng=es | |
dc.relation | Galati, E.A.B., Andrade-Filho, J.D., Silva, A.C.L., Falcao, A.L. (2003)Description of a New
Genus and a New Species of New World Phlebotominae (Diptera, Psychodidae). Rev
Brasil Entomol, 47, (63-70) | |
dc.relation | Goda, T., Leslie, J. R., & Hamada, F. N. (2014). Design and Analysis of Temperature
Preference Behavior and its Circadian Rhythm in Drosophila. Journal of Visualized
Experiments, (83). doi:10.3791/51097 | |
dc.relation | Goda, T., & Hamada, F. N. (2019). Drosophila Temperature Preference Rhythms: An
Innovative Model to Understand Body Temperature Rhythms. International journal of
molecular sciences, 20(8), 1988. https://doi.org/10.3390/ijms20081988 | |
dc.relation | Gutierrez, M. A. C., Lopez, R. O. H., Ramos, A. T., Vélez, I. D., Gomez, R. V., Arrivillaga-
Henríquez, J., & Uribe, S. (2021). DNA barcoding of Lutzomyia longipalpis species
complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta
Tropica, 221, 105983.doi:10.1016/j.actatropica.2021.10 | |
dc.relation | Guzmán, H. & Tesh, R.B. (2000). Effects of temperature and diet on the growth and
longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomédica 20, 190 - 9 | |
dc.relation | Hillesland, H., Read, A., Subhadra, B., Hurwitz, I., McKelvey, R., Ghosh, K., Das, P., &
Durvasula, R. (2008) Identification of aerobic gut bacteria from the kala azar vector,
Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand
flies. American Journal of Tropical Medicine and Hygiene ,79, 881–886 | |
dc.relation | Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial
Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin
and 3-phenoxy Benzoic Acid: A Review. Molecules (Basel, Switzerland), 23(9), 2313.
https://doi.org/10.3390/molecules23092313
Instituto Nacional de Salud. (2019). Informe de vigilancia epidemiológica de
Leishmaniasis, Colombia, 2018. Retrieved from: https://www.ins.gov.co/buscadoreventos/
Informacin%20de%20laboratorio/Informe-vigilancia-entomologica-Leishmaniasis-
Colombia-2018.pdf | |
dc.relation | Kamiya, T., Greischar, M.A., Wadhawan, K., Gilbert, b., Paaijmans, K., Mideo, N. (2019).
Temperature-dependent variation in the extrinsic incubation period elevates the risk of
vector-borne disease emergence. Epidemics. DOI:
https://doi.org/10.1016/j.epidem.2019.100382 | |
dc.relation | Lage, D. P., Ribeiro, P. A. F., Dias, D. S., Mendonça, D. V. C., Ramos, F. F., Carvalho, L.
M., de Oliveira, D., Steiner, B. T., Martins, V. T., Perin, L., Machado, A. S., Santos, T. T.
O., Tavares, G. S. V., Oliveira-da-Silva, J.A., Oliveira, J. S., Roatt, B. M., Machado-deÁvila,
M. A., Texeira, A. L ., Humbert, M. V., Coehlo, E. A. F. & Christodoulides, M.
(2020). A candidate vaccine for human visceral leishmaniasis based on a specific T cell
epitope-containing chimeric protein protects mice against Leishmania infantum infection.
Npj Vaccines, 5(1). doi:10.1038/s41541-020-00224-0 | |
dc.relation | Lozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-
Salas, P., Sánchez-Cordero, V., Becker, I. (2021). Rickettsial agents detected in the
genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz,
Mexico. Parasitol Int. 82:102286. doi: 10.1016/j.parint.2021.102286. Epub Jan 21. PMID:
33486127 | |
dc.relation | Karatepe, B., Aksoy, S. & Karatepe, M. Investigation of Wolbachia spp. and Spiroplasma
spp. in Phlebotomus species by molecular methods. (2018). Sci Rep 8, 10616 .
https://doi.org/10.1038/s41598-018-29031-3 | |
dc.relation | Ministerio del interior (2021). Boletín epidemiológico. Retrieved from:
https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16-Boletin-Epidemiologico-
Noviembre-2021-2.pdf | |
dc.relation | Moghadam, N. N., Thorshauge, P. M., Kristensen, T. N., de Jonge, N., Bahrndorff, S.,
Kjeldal, H., & Nielsen, J. L. (2018). Strong responses of Drosophila melanogaster
microbiota to developmental temperature. Fly, 12(1), 1–12.
https://doi.org/10.1080/19336934.2017.1394558 | |
dc.relation | Sakil Munna, M., Tahera, J., Mohibul Hassan Afrad, M., Nur, I. T., & Noor, R. (2015).
Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of
its ability to protect heat-stressed Escherichia coli cells. BMC research notes, 8, 637.
https://doi.org/10.1186/s13104-015-1631-9 | |
dc.relation | Nováková, E., Hypša, V., Nguyen, P., Husník, F., & Darby, A. C. (2016). Genome
sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood
sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Standards in genomic sciences, 11,
72. https://doi.org/10.1186/s40793-016-0195-1 | |
dc.relation | Nur, I., Munna, M. S., & Noor, R. (2014). Study of exogenous oxidative stress response in
Escherichia coli, Pseudomonas spp., Bacillus spp., and Salmonella spp. Turkish Journal
of Biology, 38, 502–509. doi:10.3906/biy-1312-93 | |
dc.relation | Onyango, G.M., Bialosuknia, M.S., Payne, F.A., Mathias, N., Ciota, T.A., Kramer, D.L.
(2020) Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts.
Scientific Reports 10, 19135. https://doi.org/10.1038/s41598-020-76188-x | |
dc.relation | Pang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W.
(2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its
insect host. PLoS genetics, 14(10), e1007725.
https://doi.org/10.1371/journal.pgen.1007725 | |
dc.relation | Pimenta, P.F.P., de Freitas, V.C., Monteiro, C.C., Pires, A.C.M.A., Secundino, N.F.C.
(2018). Biology of the Leishmania−Sand Fly Interaction. Rangel, F.E. & Shaw, J.J. (Ed.),
Brazilian Sand Flies (pp. 319-339). Springer, Cham | |
dc.relation | Romoli, O., & Gendrin, M. (2018). The tripartite interactions between the mosquito, its
microbiota and Plasmodium. Parasites & vectors, 11(1), 200.
https://doi.org/10.1186/s13071-018-2784-x | |
dc.relation | Rivas, G.B., de Souza, N.A., Peixoto, A.A., Bruno, R. (2014). Effects of temperature and
photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae).
Parasites Vectors 7, 278 . https://doi.org/10.1186/1756-3305-7-278 | |
dc.relation | Sant’Anna, M. R., Diaz-Albiter, H., Aguiar-Martins, K., Al Salem, W. S., Cavalcante, R. R.,
Dillon, V. M., Bates, P. A., Genta, F. A. & Dillon, R. J. (2014). Colonisation resistance in
the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection.
Parasites & Vectors, 7(1), 329. doi:10.1186/1756-3305-7-329 | |
dc.relation | Sousa Paula, L. C. de, Otranto, D., & Dantas-‐ Torres, F. (2020). Lutzomyia longipalpis
(Sand Fly). Trends in Parasitology. doi:10.1016/j.pt.2020.05.007 | |
dc.relation | Telleria, E. L., Martins-da-Silva, A., Tempone, A. J., & Traub-Csekö, Y. M. (2018).
Leishmania, microbiota and sand fly immunity. Parasitology, 145(10), 1336–1353.
https://doi.org/10.1017/S0031182018001014 | |
dc.relation | World Health Organization (2021). Retrieved from: https://www.who.int/news-room/factsheets/
detail/leishmaniasis | |
dc.relation | World Health Organization - WHO. (2022). Leishmaniasis. Retrieved from:
https://www.who.int/news-room/fact-sheets/detail/leishmaniasis | |
dc.relation | Vivero, R. J., Mesa, G. B., Robledo, S. M., Herrera, C. X. M., & Cadavid-Restrepo, G.
(2019). Enzymatic, antimicrobial, and leishmanicidal bioactivity of Gram-negative bacteria
strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in
Colombia. Biotechnology Reports, e00379. doi:10.1016/j.btre.2019.e00379 | |
dc.relation | Vivero, R.J., Castañeda-Monsalve, V.A, Romero, L.R., D Hurst, G., Cadavid-Restrepo,
G., Moreno-Herrera, C.X. (2021). Gut Microbiota Dynamics in Natural Populations of
Pintomyia evansi under Experimental Infection with Leishmania infantum.
Microorganisms, 4, 9(6):1214. doi: 10.3390/microorganisms9061214. PMID: 34199688;
PMCID: PMC8228094 | |
dc.relation | Xue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z., Xu, H. J., Xi, Y., Zhu, Z.
R., Zhou, W. W., Pan, P. L., Li, B. L., Colbourne, J. K., Noda, H., Suetsugu, Y.,
Kobayashi, T., Zheng, Y., Liu, S., Zhang, R., Liu, Y., … Cheng, J. A. (2014). Genomes of
the rice pest brown planthopper and its endosymbionts reveal complex complementary
contributions for host adaptation. Genome biology, 15(12), 521.
https://doi.org/10.1186/s13059-014-0521-0 | |
dc.relation | Zhao, D., Zhang, Z., Niu, H., & Guo, H. (2021). Win by Quantity: a Striking Rickettsia-Bias
Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci.
Microbial ecology, 81(2), 523–534. https://doi.org/10.1007/s00248-020-01607-5 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Detección molecular de endosimbiontes en flebotomíneos y estimación de las preferencias de temperatura y su relación con la microbiota con énfasisen Lutzomyia longipalpis | |
dc.type | Trabajo de grado - Maestría | |