dc.relation | Abella, G. (2015). Mejora de las propiedades de materiales a base de cemento que contienen TiO2: propiedades autolimpiantes. Universidad Politécnica de Madrid, 1–79.
Abdrakhimova, E. S., & Abdrakhimov, V. Z. (2006). A Mössbauer Spectroscopy Study of the Transformation of Iron Compounds in Clay Materials. Russian Journal of Physical Chemistry, 80, 1077–1082. doi:10.1134/s0036024406070132
Almenares, R. S., Vizcaíno, L. M., Damas, S., Mathieu, A., Alujas, A., & Martirena, F. (2017). Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Studies in Construction Materials, 6(January), 225–232. https://doi.org/10.1016/j.cscm.2017.03.005
Alujas, A., Fernández, R., Quintana, R., Scrivener, K. L., & Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science, 108, 94–101. https://doi.org/10.1016/j.clay.2015.01.028
Amado, J. D. S., Villafrades, P. Y. M., & Tuta, E. M. C. (2011). Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de Barichara, Santander. DYNA (Colombia), 78(167), 50–58.
Analysis, A. S., Albeke, S. E., & Golovnya, M. (2014). An Introduction to Random Forests, 1–9.
Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006
Antoni, M., Rossen, J., Scrivener, K., Castillo, R., a, A. D., & Martirena, F. (2011). Investigation of cement substitution by combined addition of calcined clays and limestone. 13th International Congress on the Chemistry of Cement., 6001, 1–7. https://doi.org/10.5075/epfl-thesis-6001
Aparicio, P., & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47(1), 12–27. https://doi.org/10.1346/CCMN.1999.0470102
Aprianti S, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production – a review part II. Journal of Cleaner Production, 142, 4178–4194. https://doi.org/10.1016/j.jclepro.2015.12.115
Área Metropolitana del Valle de Aburra. (2012). Directrices y lineamientos para la elaboración de los estudios geológicos, geomorfológicos, hidrológicos, hidráulicos, hidrogeológicos y geotécnicos para intervenciones en zonas de ladera, en el Valle de Aburra.
ASTM D3385. (2009). Standard Test Method for Infiltration Rate Of Soils in Field Using Double-Ring Infiltrometer. West Conshohocken, USA: ASTM International.
Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015
Badogiannis, E., Kakali, G., & Tsivilis, S. (2005). Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry, 81, 457 - 462. doi:10.1007/s10973-005-0806-3
Balek, V., & Murat, M. (1996). The emanation thermal analysis of kaolinite clay minerals. Thermochimica Acta 282/283, 385 - 397. doi:10.1016/0040-6031(96)02886-9
Barshad, I. (1957). Factors Affecting Clay Formation. Clays and Clay Minerals, 6(1), 110–132. https://doi.org/10.1346/ccmn.1957.0060110
Barshad, I. (1964). Chemistry of soil development. In F. Bear (Ed.), Chemistry of the soil (2nd ed., pp. 1–70). New York: Reinold Publ. Corp.
Barton, C. D., & Karathanasis, A. D. (2002). Clay Minerals. Encyclopedia of Soil Science, 187–192. https://doi.org/10.1081/E-ESS-120001688
Bates, T. (1962). Halloysite and gibbsite formation in hawaii. Clay and Clay Minerals, (315–328). https://doi.org/10.1016/B978-1-4831-9842-2.50022-5
Besoain, E. (1985). Minerales de arcillas de suelos. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura.
Bich. (2005). Contribution À L’Étude De L’Activation Thermique Du Kaolin : Évolution De La Structure Cristallographique Et Activité Pouzzolanique. Institut National Des Sciences Appliquees De Lyon.
Bich, C., Ambroise, J., & Péra, J. (2009a). Applied Clay Science Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, 44(3–4), 194–200. https://doi.org/10.1016/j.clay.2009.01.014
Bich, C., Ambroise, J., & Péra, J. (2009b). Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, 44(3–4), 194–200. https://doi.org/10.1016/j.clay.2009.01.014
Blazek, A. (1973). Thermal Analysis. Van Nostrand Reinhold Company.
Botero, G. (1940). Geología Sobre el Ordoviciano de Antioquia.
Botero, G. (1942). Contribución al conocimiento de la petrografía del Batolito Antioqueño minería. Minería.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brigatti, M., Galán, E., & Theng, B. (2006). Structures and mineralogy of clay minerals. En F.
Bergaya, B. Theng, & G. Lagaly, Handbook of Clay Science (Vol. 1, págs. 19 - 86). Elsevier. doi:10.1016/S1572-4352(05)01002-0
Brindley, G. W., KAO, C.-C., Harrison, J., Lipsicas, M., & Raythatha, R. (1986). Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239 - 249. doi:10.1346/ccmn.1986.0340303
Brown, E. (1981). Rock characterization testing & monitoring: ISRM suggested methodts. (I. s. Mechanics, Ed.) Oxford: Pergamon for the commission on testing methods.
Brown, M., & Gallagher, P. (2003). Handbook of thermal analysis and calorimetry Applications to inorganic and miscellaneous materials. Elsevier.
Brown, M., & Gallagher, P. (2008). Handbook of thermal analysis and calorimetry. Recent advances, techniques and applications. Elsevier.
Bucher, K., & Grapes, R. (2011). Petrogenesis of Metamorphic Rocks. Springer (8th ed.). Springer.
B.W, S. (2018). Density estimation for statistics and data analysis. UK.
Camargo-Vega, J., Camargo-Ortega, J., & Joyanes-Aguilar, L. (2015). Knowing the Big Data. Facultad de Ingeniería, 24(38), 63–77.
Campos, M. (1981). Los procesos de formación de arcillas y su importancia en la utilización industrial. Bol.Soc.Esp.Ceram.Vidr, 20(2), 89-92.
Castillo, R., Fernández, R., Antoni, M., Scrivener, K., Alujas, A., & Martirena, J. F. (2010a). Activación de arcillas de bajo grado a altas temperaturas. Revista Ingeniería de Construcción, 25(3), 329–352. https://doi.org/10.4067/S0718-50732010000300001
Castillo, R., Fernández, R., Antoni, M., Scrivener, K., Alujas, A., & Martirena, J. F. (2010b). Activation of low grade clays at high temperatures. Revista Ingeniería de Construcción, 25(3), 329–352. https://doi.org/10.4067/S0718-50732010000300001
Cement Manufacturers Ireland Bureau. (2009). Sustainable cement production.
Chakchouk, A., Trifi, L., Samet, B., & Bouaziz, S. (2009). Formulation of blended cement: Effect of process variables on clay pozzolanic activity. Construction and Building Materials, 23(3), 1365–1373. https://doi.org/10.1016/j.conbuildmat.2008.07.015
Childs, C. W., Hayashi, S., & Newman, R. H. (1999). Five-coordinate aluminum in allophane. Clays and Clay Minerals, 47(1), 64–69. https://doi.org/10.1346/CCMN.1999.0470107
Clay Mineral Society. (2018). The Clay Minerals Society Glossary for Clay Science Project.
Coast, I., Aldon, L., Olivier-fourcade, J., Jumas, J. C., Laval, J. P., & Blanchart, P. (2003). Role of Iron in Mullite Formation from Kaolins by, 34, 129–134.
Contrato, C. R. U. C. (2018). Carbón metalúrgico.
Danner, T., Norden, G., & Justnes, H. (2018). Characterisation of calcined raw clays suitable as supplementary cementitious materials. Applied Clay Science, 162, 391–402. https://doi.org/10.1016/j.clay.2018.06.030
Da Silva Lopes, J., Veras, W., Valdimiro, V., Do Nascimento Simões Braga, A., Da Silva, R., &
Aparecida, A. (2019). Modification of kaolinite from Pará/Brazil region applied in the anionic dye photocatalytic discoloration. Applied Clay Science, 295-303. doi:https://doi.org/10.1016/j.clay.2018.11.028
Dassault Systèmes®. (2019). GEOVIA Surpac | Planificación de extracción y geología - Dassault Systèmes®. Retrieved December 9, 2019, from https://www.3ds.com/es/productos-y-servicios/geovia/productos/surpac/
Dietel, J., Warr, L. N., Bertmer, M., Steudel, A., Grathoff, G. H., & Emmerich, K. (2017). The importance of specific surface area in the geopolymerization of heated illitic clay. Applied Clay Science, 139, 99–107. https://doi.org/10.1016/j.clay.2017.01.001
Ding, S., Zhang, L., Ren, X., Xu, B., Zhang, H., & Ma, F. (2012). The Characteristics of Mechanical Grinding on Kaolinite Structure and Thermal Behavior. Energy Procedia, 16, 1237–1240. https://doi.org/10.1016/j.egypro.2012.01.197
Duane, M., & Reynolds, R. (1997). X-Ray Diffraction and the identification and analysis of clay minerals. New York: Oxford University press.
Feininger, T., Barrero L, D., & Castro Q, N. (1972). Geología de Parte de los Departamentos de Antioquia y Caldas (SUB-ZONA IIB). Boletín Geológico Ingeominas, XX, 1–173.
Fernández Jimenez, A., Puertas, F., & Fernández - Carrasco, L. (1996). Procesos de activación alcalino - Sulfáticos de una escoria española de alto horno. Materiales de Construcción, 1996(241), 23–37. https://doi.org/10.3989/mc.1996.v46.i241.538
Fernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013
Fernández, M., Alba, M., & Torres, R. (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: Insight into the surface and structural changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1-10. doi:https://doi.org/10.1016/j.colsurfa.2013.01.040
Ferreiro, S., Herfort, D., & Damtoft, J. S. (2017). Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay – Limestone Portland cements. Cement and Concrete Research, 101(March), 1–12. https://doi.org/10.1016/j.cemconres.2017.08.003
Foldvari, M. (2011). Handbook of thermo-gravimetric system of minerals and its use in geological practice (Vol. 213). Budapest.
Foth, H. D., & Ellis, B. G. (1996). Soil Fertility.
Földvári, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice (Vol. 213). Budapest: Occasional Papers of the Geological Institute of Hungary.
Freeze, R., & Cherrya, J. (1979). Groundwater.
Galán, E. (2006). Chapter 14 Genesis of Clay Minerals. Handbook of Clay Science, 1129-1162. doi:10.1016/S1572-4352(05)01042-1
Garcia Casco, A. (2012). Clasificación y nomenclatura de rocas metamórficas.
Garg, N., & Skibsted, J. (2016). Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cement and Concrete Research, 79, 101–111. https://doi.org/10.1016/j.cemconres.2015.08.006
Gaspar-Tebar, D. (1978). Normalización del cemento. Características químicas: Algunos comentarios sobre los métodos de ensayo. Materiales de Construcción, 28(172), 5–22. https://doi.org/10.3989/mc.1978.v28.i172.1128
Gaviria, X. (2017). Modelamiento de la retracción química a partir de la evolución microestructural de pastas de cemento a edad temprana.
Ghafari, E., Yuan, Y., Wu, C., Nantung, T., & Lu, N. (2018). Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor. Construction and Building Materials, 171, 504–510. https://doi.org/10.1016/j.conbuildmat.2018.03.165
Gimenez, Y. (2010). Clasificación no supervisada: El método de K - medias. Universidad de Buenos Aires.
Gobernación de Antioquia. (2016). Anuario Estadístico de Antioquia 2016. Retrieved August 8, 2019, from http://www.antioquiadatos.gov.co/index.php/2-2-4-precipitacion-promedio-anual-por-subregiones-y-municipios-ano-2016
Goldich, S. (1938). A Study in Rock-Weathering. The Journal of Geology, 46(1), 17–58.
Gonzalez, H. (1980). Boletín Geológico. Geología de las planchas 167 (Sonsón) y 187 (Salamina). Escala 1:100.000. Informe 1760. Instituto Nacional de Investigaciones Geológico - Mineras. INGEOMINAS. Ministerio de Minas y Energía. Bogotá: INGEOMINAS. Obtenido de https://revistas.sgc.gov.co/index.php/boletingeo/article/view/396/343
González, H. (2001). Mapa Geológico del Departamento de Antioquia (Memoria explicativa). Boletin Geológico. Ingeominas, 1–240.
Goodman, B., & Wilson, M. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Journal of Environment Quality (Vol. 24). Springer Netherlands. https://doi.org/10.2134/jeq1995.00472425002400040041x
Grim, R., Bray, R., & Bradley, W. (1937). The mica in argillaceous sediments. American Mineralogist. Retrieved from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/22/7/813/537901/The-Mica-in-Argillaceous-Sediments?redirectedFrom=fulltext
Grimshaw, R. (1971). The Chemistry and Physics of Clays and Allied Ceramic Materials.
Gruner, J. (1944). The hydrothermal alteration of feldspars in acid solutions between 300 degrees and 400 degrees C. Society of Economic Geology, Inc, 39, 1578–1589.
He, C., Osbaeck, B., & Makovicky, E. (1995). Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cement and Concrete Research, 25(8), 1691–1702. https://doi.org/10.1016/0008-8846(95)00165-4
Henin, S. (1962). Descomposition des roches silicates. In Contribution a l’etude de la désagrégation des roches (pp. 85–176). Paris.
Hinckley, D. N. (1963). Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Clays and Clay Minerals, 11(1), 229–235. https://doi.org/10.1346/ccmn.1962.0110122
Hollanders, S., Adriaens, R., Skibsted, J., Cizer, Ö., & Elsen, J. (2016). Pozzolanic reactivity of pure calcined clays. Applied Clay Science, 132–133, 552–560. https://doi.org/10.1016/j.clay.2016.08.003
Hu, P., & Yang, H. (2013). Insight into the physicochemical aspects of kaolins with different morphologies. Applied Clay Science, 74, 58–65. https://doi.org/10.1016/j.clay.2012.10.003
IDEAM. (2010). Atlas Interactivo - Climatológico - IDEAM. Retrieved November 23, 2019, from http://atlas.ideam.gov.co/visorAtlasClimatologico.html
IDEAM. (2019). Modelación hidrogeológica - IDEAM.
INGEOMINAS. (2002). Memoria Técnica Mapa de Minerales Industriales Zonas Potenciales para Materiales de Construcción, 7–9. https://doi.org/10.1192/bjp.112.483.211-a
Izadi, H., Sadri, J., & Mehran, N. A. (2015). A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering. Computers and Geosciences, 81, 38–52. https://doi.org/10.1016/j.cageo.2015.04.008
Jaber, M., Komarneni, S., & Zhou, C. H. (2013). Synthesis of clay minerals. Developments in Clay Science, 5(1), 223–241. https://doi.org/10.1016/B978-0-08-098258-8.00009-2
Jang, K. O., Nunna, V. R. M., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014). Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Minerals Engineering, 60(June), 14–22. https://doi.org/10.1016/j.mineng.2014.01.021
Jenny, H., & Overstreet, R. (1950). Origen of soils. In Applied Sedimentation (pp. 41–61). Jhon Willey & Son Inc.
Ji, J., & Browne, P. R. L. (2000). Relationship between illite crystallinity and temperature inactive geothermal systems of New Zealand. Clays and Clay Minerals, 48(1), 139–144. https://doi.org/10.1346/CCMN.2000.0480117
Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018
Juo, A., & Franzluebbers, K. (2003). Tropical soils Properties and Managemente for Sustainable Agriculture. Journal of Chemical Information and Modeling (Vol. 53). Oxford Univervisity Presss. https://doi.org/10.1017/CBO9781107415324.004
Kakali, G., Perraki, T., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20(1–2), 73–80. https://doi.org/10.1016/S0169-1317(01)00040-0
Kleeberg, R. (2005). Outcomes of the second Reynolds Cup in quantitative mineral analysis. In: Dohrmann, R., Kaufhold, S. (Eds.). Contributions of the annual meeting DTTG, 26–35.
Klein, C., & Hurlbut, C. (2001). Manual de Mineralogía.
Kubaschewski, O. (1982). Iron binary phase diagrams. Aachen , Alemania: Springer-Verlag Berlin Heidelberg GmbH
Kuechler, A. H. (1926). Influence of Fe2O3 and TiO2 on pure clays. Journal of the American Ceramic Society, 9(2), 104–109. doi:10.1111/j.1151-2916.1926.tb18309.x
Kupwade-Patil, K., Palkovic, S. D., Bumajdad, A., Soriano, C., & Büyüköztürk, O. (2018). Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography. Construction and Building Materials, 158, 574–590. https://doi.org/10.1016/j.conbuildmat.2017.09.165
Le Bas, M. J., & Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. Journal of the Geological Society, 148(5), 825–833. https://doi.org/10.1144/gsjgs.148.5.0825
Lecomte-Nana, G., Bonnet, J. P., & Soro, N. (2013). Influence of iron on the occurrence of primary mullite in kaolin based materials: A semi-quantitative X-ray diffraction study. Journal of the European Ceramic Society, 33(4), 669–677. https://doi.org/10.1016/j.jeurceramsoc.2012.10.033
León, R., Polanco, D., Zárraga, P., Zambrano, M., Ramos, E., Central, T., & Seguel, I. (1996). Bancos de Germoplasma Nativo. Conservación Ex Situ, 39(2), 572–579.
Li, J., & Hitch, M. (2018). Mechanical activation of magnesium silicates for mineral carbonation, a review. Minerals Engineering, 128(January), 69–83. https://doi.org/10.1016/j.mineng.2018.08.034
Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079
Little, A. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.
Liu, D., Tian, Q., Yuan, P., Du, P., Zhou, J., Li, Y., & Bu, H. (2019). Facile sample preparation method allowing TEM characterization of the stacking structures and interlayer spaces of clay minerals. Applied Clay Science, 171(January), 1–5. https://doi.org/10.1016/j.clay.2019.01.019
Liu, Y., Alessi, D. S., Flynn, S. L., Alam, M. S., Hao, W., Gingras, M., … Konhauser, K. O. (2018). Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chemical Geology, 483(January), 191–200. https://doi.org/10.1016/j.chemgeo.2018.01.018
Liu, Z., Shao, J., Xie, S., Conil, N., & Zha, W. (2018). Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. International Journal of Rock Mechanics and Mining Sciences, 103(November 2017), 68–76. https://doi.org/10.1016/j.ijrmms.2018.01.015
López Rendón, J. E. (1973). Génesis de las arcillas de la Unión (Antioquia). Universidad Nacional de Colombia.
Lorentz, B., Shanahan, N., Stetsko, Y. P., & Zayed, A. (2018). Characterization of Florida kaolin clays using multiple-technique approach. Applied Clay Science, 161(May), 326–333. https://doi.org/10.1016/j.clay.2018.05.001
Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., & Li, D. (2013). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, https://doi.org/10.1016/j.apt.2013.08.002. doi:https://doi.org/10.1016/j.apt.2013.08.002
MacEWAN, D. (1948). A trioctahedral montmorillonite derived from biotite. XVIII Intern. Geol. Congr. Great Britain.
ManiatisANIATIS, Y., SimopoulosSIMOPOULOS, A., KOSTIKASKostikas, A., & PerdikatsisPERDIKATSIS, V. (1983). Effect of Reducing Atmosphere on Minerals and Iron Oxides Developed in Fired Clays: The Role of Ca. Journal of the American Ceramic Society, 66(11), 773–781. https://doi.org/10.1111/j.1151-2916.1983.tb10561.x
McCarty, D. (2002). Quantitative mineral analysis of clay-bearing mixtures: the Reynolds Cup contest. International Union of Crystallography, Commission on Powder Diffraction Newsletter, 12-15.
McQueen, K. G. (2009). Regolith Geochemistry. In regolith SCIENCE (p. 80). Springer.
Mechti, W., Mnif, T., Samet, B., & Rouis, M. J. (2012). Effect of the secondary minerals on the pozzolanic activity of calcined clay: case of quartz. Ijrras, 12(1), 61–71. https://doi.org/10.1684/bdc.2011.1430
Mendoza, O., & Tobon, J. I. (2013). An alternative thermal method for identification of pozzolanic activity in Ca(OH)2 / pozzolan pastes. J Therm Anal Calorim (2013), 589–596. https://doi.org/10.1007/s10973-013-2973-y
Mendoza, O., & Tobón, J. I. (2013). An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes. Journal of Thermal Analysis and Calorimetry, 114(2), 589–596. https://doi.org/10.1007/s10973-013-2973-y
Mineralogical Society of America. (04 de 04 de 2019). http://www.handbookofmineralogy.com. Obtenido de http://www.handbookofmineralogy.com
Mohammed, S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, 10-19. doi:https://doi.org/10.1016/j.conbuildmat.2017.02.078
Morey, G., & Chen, W. (1955). The action of hot water on some feldspars. Am. Mineralogist, 996–1000.
Morre, D., & Reynolds, R. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford Univervisity Presss.
Msinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Cartens Kuhne, H. (2019). Comparison of calcined illitic clays (brick clays) and low- grade kaolinitic clays as supplementary cementitious materials. Materials and Structures.
Msinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Kühne, H.-C. (2019). Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures, 52(5). https://doi.org/10.1617/s11527-019-1393-2
Muhd Norhasri, M., Hamidah, M., & Mohd Fadzil, A. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7(DEC). https://doi.org/10.3389/fnbot.2013.00021
Ndlovu, B., Farrokhpay, S., & Bradshaw, D. (2013). The effect of phyllosilicate minerals on mineral processing industry. International Journal of Mineral Processing, 125, 149–156. https://doi.org/10.1016/j.minpro.2013.09.011
Nesbitt, H. ., & Young, G. . (1989). Formation and diagenesis of weathering profiles. The Journal Of Geology, 97(1), 129–147.
Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0
Nicholls V, E. (1961). Arcillas y caolines del municipio de La Unión, Antioquia. Bogotá, Colombia.
Nie, S., Hu, S., Wang, F., Hu, C., Li, X., & Zhu, Y. (2017). Pozzolanic reaction of lightweight fine aggregate and its influence on the hydration of cement. Construction and Building Materials, 153, 165–173. https://doi.org/10.1016/j.conbuildmat.2017.07.111
Ojanuga, A. (1973). Weathering of Biotite in Soils of a Humid Tropical Climate. Soil Science Society of America Journal.
Ollier, C., & Pain, C. (1996). Regolith, Soils and Landforms. New York: Wiley.
Otero, J., & Sánchez, L. (s.f.). Disenos experimentales y tests estadísticos, tendencias actuales en Machine Learning. Oviedo; España: Dpto. Informatica, Grupo de Metrología y Modelos.
Pabon, J. D., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2011). La atmósfera, el tiempo y el clima. Instituto de Hidrología, Meteorología y Estudios Ambientales.
Pang, M., Sun, Z., Chen, M., Lang, J., Dong, J., Tian, X., & Sun, J. (2020). Influence of Phosphorus Slag on Physical and Mechanical Properties of Cement Mortars. Materials MDPI, 10, 2390. doi: doi:10.3390/ma13102390
Parmelee, C. W., & Rodríguez, A. R. (1942). Catalytic mullitization of kaolinlte by metallic oxide. Journal of The American Ceramic Society, 25, 1 - 10. doi:10.1111/j.1151-2916.1942.tb14286.x
Peñas, J. (12 de Junio de 2004). Radios iónicos de elementos químicos. Obtenido de EducaMadrid: http://herramientas.educa.madrid.org/tabla/4propiedades/?C=D;O=A
Plouffe, A., McClenaghan, M. B., Paulen, R. C., McMartin, I., Campbell, J. E., & Spirito, W. A. (2013).
Quality assurance and quality control measures applied to indicator mineral studies at the Geological Survey of Canada. Geological Survey of Canada, (New frontiers for exploration in glaciated terrain, Open File 7374), 13–20.
Poppe, L.., Paskevich;V.F, Hathaway, J. ., & Blackwood, D. . (2019). USGS science for a changing world. Retrieved from https://pubs.usgs.gov/of/2001/of01-041/
Querol, X., Fernandez, J. L., & Lopez, A. (1994). The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals. Mineralogical Magazine, 58(390), 119–133. doi:10.1180/minmag.1994.058.390.11
Ramadan, A. R., Esawi, A. M. K., & Abdel, A. (2010). Effect of ball milling on the structure of Na + -montmorillonite and organo-montmorillonite (Cloisite 30B). Applied Clay Science, 47(3–4), 196–202. https://doi.org/10.1016/j.clay.2009.10.002
Ramanathan, S., Moon, H., Croly, M., Chung, C. W., & Suraneni, P. (2019). Predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test. Construction and Building Materials, 204, 621–630. https://doi.org/10.1016/j.conbuildmat.2019.01.173
Rashwan, M. A., Saeed, E., Lasheen, R., & Shalaby, B. N. (2019). Incorporation of metagabbro as cement replacement in cement-based materials : A role of mafic minerals on the physico-mechanical and durability properties, 210, 256–268.
Rengasamy, P. (1976). Substitution of iron and titanium in kaolinites. En U. o. Adelaide, Clays and Clay Minerals (Vol. 24, págs. 265 - 266). Glen Osmond, Australia: Pergamon Press.
Rengasamy, P., Krishna, G. S., & Sarma, V. A. (1975). Isomorphous substitution of iron for aluminium in some soil kaolinites. (I. A. Institute, Ed.) Clays and Clay Minerals, 23, 211 - 214.
Reyes, C. (2017). Modelación del intercambio iónico de arcillas en un flujo turbulento de una pulpa con agua de mar dentro de una tubería. Santiago de Chile: Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería de Minas.
Ringdalen, E. (2015). Changes in Quartz During Heating and the Possible Effects on Si Production. Jom, 67(2), 484–492. https://doi.org/10.1007/s11837-014-1149-
Rodas, M. (n.d.). Feldespatos M. Rodas.
Rodríguez, G., González Ireguí, H., & Zapata, G. (2005). Geología De La Plancha 147 Medellín Oriental. Medellìn.
Rodríguez, E. (2012). Efecto de la incorporación de materiales basados en sílice sobre las propiedades de matrices de cemento pórtland y activadas alcalinamente.
Rosell-Lam, M., Villar-Cociña, E., & Frías, M. (2011). Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Construction and Building Materials, 25(2), 644–650. https://doi.org/10.1016/j.conbuildmat.2010.07.027
Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcinded clays as pozzolans for concrete: a review. Cement & Concrete Composites, 23, 441–454.
Sánchez, I., Iñiguez, J., & Rasines, I. (1976). Arcillas cerámicas de Navarra.Yacimientos de Tudela. (U. d. Facultad de Ciencias, Ed.) Bol. Soc. Esp. Ceram. Vidr., 15(1), 19-25.
Santos, M. B. (2009). Evaluation methods of alkali-silica reaction in concrete with recycled aggre-gates. Lisboa.
Schaetzl, R., & Anderson, S. (2005). Soil genesis ands geomorphology.
Shang, D., Wang, M., Xia, Z., Hu, S., & Wang, F. (2017). Incorporation mechanism of titanium in Portland cement clinker and its effects on hydration properties. . Construction and Building Materials, 146, 344 – 349. doi: 10.1016/j.conbuildmat.2017.03.129
Schmid, R., Fettes, D., Harte, B., Davis, E., & Desmons, J. (2007). Metamorphic Terminology. Subcommission on the Systematics of Metamorphic Rocks.
Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
Schulze, S. E., & Rickert, J. (2019). Suitability of natural calcined clays as supplementary cementitious material. Cement and Concrete Composites, 95(May 2017), 92–97. https://doi.org/10.1016/j.cemconcomp.2018.07.006
Scott. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. New York.
Scrivener, K., Snellings, R., & Lothenbach, B. (2016). A Practical Guide to Microstructural Analysis of Cementitious Materials. Boca Raton, United States: CRC Press. Taylor and Francis Group.
Sheather. (1991). A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation.
Shvarzman, A., Kovler, K., Schamban, I., Grader, G., & Shter, G. (2002). Influence of chemical and phase composition of minerals admixtures on their pozzolanic activity. Advances in Cement Research, 14, 35 - 41.
Singh, M., & Garg, M. (2006). Reactive pozzolana from Indian clays-their use in cement mortars. Cement and Concrete Research, 36(10), 1903–1907. https://doi.org/10.1016/j.cemconres.2004.12.002
Sistem, V. N. O. (1995). Capítulo 8, 183–234.
Skibsted, J., & Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124(July), 105799. https://doi.org/10.1016/j.cemconres.2019.105799
Smykatz Kloss, W. (1974). Differential thermal analysis Application and results in mineralogy. New York: Springer-Verlag Berlin Heidelberg New York. https://doi.org/10.5650/jos1956.8.267
Snellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-z
Sorathiya, J., Shah, S., & Kacha, S. (2017). Effect on Addition of Nano “Titanium Dioxide” (TiO2) on Compressive Strength of Cementitious Concrete. Kalpa Publications in Civil Engineering, 1, 219-225.
Sorathiya, J., Shah, S., & Kacha, S. (2017). Effect on Addition of Nano “Titanium Dioxide” (TiO2) on Compressive Strength of Cementitious Concrete. Kalpa Publications in Civil Engineering, 1, 219-225.
Souri, A., Kazemi-Kamyab, H., Snellings, R., Naghizadeh, R., Golestani-Fard, F., & Scrivener, K. (2015). Pozzolanic activity of mechanochemically and thermally activated kaolins in cement. Cement and Concrete Research, 77, 47–59. https://doi.org/10.1016/j.cemconres.2015.04.017
S´ Rodon, J. (2006). Identification and quantitative analysis of clay minerals Chapter 12.2. En F. Bergaya, B. Theng, & G. Lagaly, Handbook of clay science (págs. 765-787). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01028-7
Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597
Sun, T., Ge, K., Wang, G., Geng, H., Shui, Z., Cheng, S., & Chen, M. (2019). Comparing pozzolanic activity from thermal-activated water-washed and coal-series kaolin in Portland cement mortar. Construction and Building Materials, 227. doi: https://doi.org/10.1016/j.conbuildmat.2019.117092
Taylor, R. M. (1978). Tthe influence of aluminum on iron oxides. part Ii. the influence of Aal on Ffe oxide formation from the Ffe ( IIii ) system. Clays and Clay Minerals, 26(6), 373–383.
Taylor-Lange, S. C., Riding, K. A., & Juenger, M. C. G. (2012). Increasing the reactivity of metakaolin-cement blends using zinc oxide. Cement and Concrete Composites, 34(7), 835–847. doi: 10.1016/j.cemconcomp.2012.03.004
Técnica, N. (2018). NTC, (571).
Tironi, A. (2013). Materiales cementicios de baja energía. Activación térmica de arcillas, relación entre estructura y actividad puzolánica. Trabajo de tesis doctoral, Facultad de Ciencias Exactas. Universidad Nacional de la Plata, Departamento de Química.
Tironi, A., Castellano, C. C., Bonavetti, V. L., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2014). Kaolinitic calcined clays - Portland cement system: Hydration and properties. Construction and Building Materials, 64, 215–221. https://doi.org/10.1016/j.conbuildmat.2014.04.065
Tironi, A., Cravero, F., Scian, A. N., & Irassar, E. F. (2017). Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Applied Clay Science, 147(March), 11–18. https://doi.org/10.1016/j.clay.2017.07.018
Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064
Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37(1), 319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002
Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2014). Potential use of Argentine kaolinitic clays as pozzolanic material. Applied Clay Science, 101, 468–476. https://doi.org/10.1016/j.clay.2014.09.009
Torres Roldán, R. L., García-Casco, A., & Molina Palma, J. F. (2004). Petrología metamórfica - Asistente de Prácticas, 1–45.
Toussaint, J. (1996). Evolución Geológica de Colombia.
UCA. (2002). Estructuras Cristalinas. Obtenido de Universidad Centoamericana José Simeón Cañas: http://www.uca.edu.sv/facultad/clases/ing/m210031/Tema%2002.pdf
UNAM. (2017). ¿Se puede medir de una forma más precisa la acumulación o tendencia y la variabilidad ?. Universidad Nacional Autónoma de México. UNAM. Facultad de Estudios Superiores Cuautitlán, 44.
USGS. (2019). Drilling Methods Used by the Western Region Research Drilling Program.
Ustabaş, İ., & Kaya, A. (2018). Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag. Construction and Building Materials, 164, 297–307. https://doi.org/10.1016/j.conbuildmat.2017.12.185
Valá, M., Barabaszová, K., Hundáková, M., Ritz, M., & Plevová, E. (2011). Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures. Applied Clay Science, 54, 70–76. https://doi.org/10.1016/j.clay.2011.07.014
Velez, M. (1999). Hidráulica de aguas subterráneas (2nd ed.). Universidad Nacional de Colombia.
Vieira, R. (2013). Estudo sobre as reações pozolânicas de argilas calcinadas: contributo para o desenvolvimento de geomateriais.
Wilson, M. J. (1966). The weathering of biotite in some Aberdeenshire soils. Mineralogical Magazine and Journal of the Mineralogical Society, 36(276), 1080–1093. https://doi.org/10.1180/minmag.1966.036.276.04
Winter, J. D. (2001). An Introduction To Igneous And Metamorphic Petrology. Prentice Hall.
Wolska, E., & Schwertmann, U. (1989). Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift Für Kristallographie - Crystalline Materials, 189(1–4), 223–237. https://doi.org/10.1524/zkri.1989.189.14.223
Wolska, E., & Szajda, W. (1985). Structural and spectroscopic characteristics of synthetic hydrohematite. Journal of Materials Science.
Yaalon, D. H. (1962). Weathering reactions. Journal of Chemical Education, 36, 73–76. https://doi.org/10.1021/ed036p73
Yanguatin, H. (2016). Evaluación y mejoramiento del desempeño como Material Cementante Suplementario de un Residuo de Construcción y Demolición (Finos de excavación).
Yanguatin, H., Ramírez, J. H., Tironi, A., & Tobón, J. I. (2019). Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, 211, 814–823. https://doi.org/10.1016/j.conbuildmat.2019.03.300
Yanguatin, H., Tobón, J., & Ramírez, J. (2017). Pozzolanic reactivity of kaolin clays, a review. Revista Ingenieria de Construccion, 32(2), 13–24. https://doi.org/10.4067/S0718-50732017000200002
Zampieri, V. A. (1989). Mineralogia e Mecanismos de Ativação e Reação das Pozolanas de Argilas Calcinadas. Universidade de São Paulo. Instituto de Geociências. Programa de Pós-Graduação Em Mineralogia e Petrologia. Dissertação de Mestrado., 212. https://doi.org/10.11606/D.44.1989.tde-15092015-145928
Zhang, D., Ghouleh, Z., & Shao, Y. (2017). Review on carbonation curing of cement-based materials. Journal of CO2 Utilization, 21(July), 119–131. https://doi.org/10.1016/j.jcou.2017.07.003
Zhang, Y. B., Li, G. H., Jiang, T., Guo, Y. F., & Huang, Z. C. (2012). Reduction behavior of tin-bearing iron concentrate pellets using diverse coals as reducers. International Journal of Mineral Processing, 110–111, 109–116. https://doi.org/10.1016/j.minpro.2012.04.003
Zhou, M., Wang, J., Cai, L., & Fan, Y. (2015). Laboratory investigations on factors affecting soil electrical resistivity and the measurement. IEEE Transactions on Industry Applications, 2015(c). https://doi.org/10.1109/TIA.2015.2465931 | |