dc.contributor | Alméciga Díaz, Carlos Javier | |
dc.contributor | Salazar Pulido, Luz Mary | |
dc.contributor | Instituto de Errores Innatos del Metabolismo | |
dc.creator | Olarte Avellaneda, Sergio | |
dc.date.accessioned | 2022-08-23T12:54:41Z | |
dc.date.available | 2022-08-23T12:54:41Z | |
dc.date.created | 2022-08-23T12:54:41Z | |
dc.date.issued | 2022-08-21 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82006 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La mucopolisacaridosis IV A (MPS IVA) es una enfermedad autosómica recesiva causada por la deficiencia de la enzima N-acetilgalactosamina-6-sulfato sulfatasa (GALNS). La mayoría de mutaciones que afectan a esta enzima son de sentido errado, afectando su plegamiento y tráfico intracelular. En este sentido, se ha propuesto el uso de chaperonas farmacológicas (CFs) como una alternativa de tratamiento. Las CFs tienen la capacidad de mejorar el plegamiento, evitar la degradación y favorecer el tráfico intracelular de la proteína mutada, recuperando su función biológica. Aunque estas moléculas han sido evaluadas en otras enfermedades de depósito lisosomal, su estudio en la MPS IVA se encuentra en etapas iniciales. Con el objetivo de identificar nuevas moléculas que puedan ser empleadas como CFs, en este estudio se realizó inicialmente un análisis computacional de las interacciones de la enzima GALNS humana con sustratos naturales y artificiales. Todos los sustratos naturales se localizaron al fondo de la cavidad activa con el grupo sulfato interactuando con el residuo catalítico (formilglicina, FGly) y cercanos al calcio. Queratán sulfato (QS) fue el sustrato con el valor más bajo de energía de afinidad en comparación con los otros sustratos evaluados. Posteriormente, con base en esta información se realizó un estudio de reutilización de fármacos a través de un tamizaje virtual. Mediante este protocolo fue posible predecir moléculas con la capacidad de interactuar con la cavidad activa de GALNS y con afinidades mayores que las predichas para el sustrato natural QS. Las simulaciones predijeron que estos compuestos interactúan con aminoácidos claves como Leu78, Tyr108, Ile294, Gln311 y Ser521, los cuales participan en la interacción con los sustratos naturales de la enzima. Entre los compuestos identificados se encontraron bromocriptina, devazepida, tadalafilo y telmisartán. Las simulaciones de dinámica molecular sugieren que la posición de los compuestos fue estable durante el tiempo evaluado. En conclusión, la evaluación in-silico ha permitido identificar nuevos candidatos, expandiendo el estudio y búsqueda de CFs como una terapia alternativa para la MPS IVA. | |
dc.description.abstract | Mucopolysaccharidosis type IV A (MPS IVA) is an autosomal recessive disorder caused by a deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Most of the mutations that affect this enzyme are missense, affecting the folding and intracellular traffic. In this sense, it has been proposed the use of small molecules, called pharmacological chaperones (PCs), as an alternative treatment. PCs have the capacity to promote the correct folding, prevent degradation, and favor the correct intracellular trafficking of the mutated protein, recovering the biological function of the enzyme. Although these molecules have been evaluated in other lysosomal storage disorders, their assessment in MPS IVA is on the early stages. To identify new molecules that can be used as PCs, in this study a computational analysis of the interactions of the human GALNS enzyme with natural and artificial substrates was initially carried out. All-natural substrates were placed at the bottom of the active cavity with the sulfate group interacting with the catalytic residue (formylglycine, FGly) and close to calcium. Keratan sulfate (QS) was the substrate with the lowest value of affinity energy compared to the other evaluated substrates. Subsequently, based on this information, a drug repurposing study was carried out through a virtual screening. Using this protocol, it was possible to predict molecules with the ability to interact with the active cavity of GALNS and with affinities greater than those predicted for the natural substrate QS. The simulations predicted that these compounds interact with key amino acids such as Leu78, Tyr108, Ile294, Gln311 and Ser521, which participate in the interaction with the natural substrates of the enzyme. Bromocriptine, devazepide, tadalafil, and telmisartan were among the identified compounds. Molecular dynamics simulations suggest that the position of the compounds was stable during the evaluated time. In conclusion, in-silico assessment may allow the prediction of novel candidates expanding the study and search of PCs as alternative therapy for MPS IVA. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Farmacología | |
dc.publisher | Departamento de Farmacia | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Tomatsu S, Montano AM, Oikawa H, Smith M, Barrera L, Chinen Y, et al. Mucopolysaccharidosis type IVA (Morquio A disease): clinical review and current treatment. Curr Pharm Biotechnol. 2011;12(6):931-45. Epub 2011/04/22. | |
dc.relation | Tomatsu S, Montano AM, Lopez P, Trandafirescu G, Gutierrez MA, Oikawa H, et al. Determinant factors of spectrum of missense variants in mucopolysaccharidosis IVA gene. Mol Genet Metab. 2006;89(1-2):139-49. Epub 2006/07/14. | |
dc.relation | Sawamoto K, Alméciga-Díaz CJ, Mason RW, Orii T, Tomatsu S. Mucopolysaccharidosis type IVA: clinical features, biochemistry, diagnosis, genetics, and treatment. In: Tomatsu S, Lavery C, Giugliani R, Harmatz P, Scarpa M, Węgrzyn G, et al., editors. Mucopolysaccharidoses update (2 volume set). Hauppauge, NY: Nova Science Publishers, Inc.; 2018. p. 235-72. | |
dc.relation | Sawamoto K, Stapleton M, Almeciga-Diaz CJ, Espejo-Mojica AJ, Losada JC, Suarez DA, et al. Therapeutic Options for Mucopolysaccharidoses: Current and Emerging Treatments. Drugs. 2019;79(10):1103-34. Epub 2019/06/19. | |
dc.relation | Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med. 2009;1(5):268-79. Epub 2010/01/06. | |
dc.relation | Olarte-Avellaneda S, Rodriguez-Lopez A, Almeciga-Diaz CJ, Barrera LA. Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype-phenotype correlation for Morquio A. Mol Biol Rep. 2014;41(11):7073-88. Epub 2014/10/08. | |
dc.relation | Rivera-Colon Y, Schutsky EK, Kita AZ, Garman SC. The Structure of Human GALNS Reveals the Molecular Basis for Mucopolysaccharidosis IV A. J Mol Biol. 2012. Epub 2012/09/04. | |
dc.relation | Olarte-Avellaneda S, Rodríguez-López A, Alméciga-Díaz CJ. In-silico analysis of the active cavity of N-acetylgalactosamine-6-sulfate sulfatase in eight species. In: Castillo LF, Cristancho M, Isaza G, Pinzón A, Corchado JM, editors. Advances in Computational Biology: Springer International Publishing; 2014. p. 141-6. | |
dc.relation | Almeciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodriguez-Lopez A, Guzman E, Garzon R, et al. Identification of ezetimibe and pranlukast as pharmacological chaperones for treatment of the rare disease Mucopolysaccharidosis type IVA. J Med Chem. 2019. Epub 2019/06/13. | |
dc.relation | Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the development of pharmacological chaperones for the mucopolysaccharidoses. Int J Mol Sci. 2020;21(1):232. | |
dc.relation | Montano AM, Tomatsu S, Gottesman GS, Smith M, Orii T. International Morquio A Registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis. 2007;30(2):165-74. Epub 2007/03/10. | |
dc.relation | Tomatsu S, Montano AM, Nishioka T, Gutierrez MA, Pena OM, Tranda Firescu GG, et al. Mutation and polymorphism spectrum of the GALNS gene in mucopolysaccharidosis IVA (Morquio A). Hum Mutat. 2005;26(6):500-12. Epub 2005/11/16. | |
dc.relation | ADRES. Análisis de los recobros correspondientes al principio activo elosulfasa alfa (Vimizim) para las vigencias 2016 y 2017. Medicamento para el síndrome de Morquio tipo A. . https://wwwadresgovco/Portals/0/Noticias/Publicaciones/Vimizimpdf?ver=2018-04-26-091843-653. 2018:17. | |
dc.relation | Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol. 2018;11(6):611-24. Epub 2018/06/01. | |
dc.relation | Pereira DM, Valentao P, Andrade PB. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chem Sci. 2018;9(7):1740-52. Epub 2018/05/03. | |
dc.relation | Leidenheimer NJ. Pharmacological chaperones: Beyond conformational disorders. Handb Exp Pharmacol. 2018;245:135-53. | |
dc.relation | Tao YX, Conn PM. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol Rev. 2018;98(2):697-725. | |
dc.relation | Beck M. Treatment strategies for lysosomal storage disorders. Dev Med Child Neurol. 2018;60(1):13-8. Epub 2017/11/02. | |
dc.relation | Colombia-Congreso-de-la-República. LEY 1392 DE 2010. 2010. | |
dc.relation | Alméciga-Díaz CJ, Suárez AMM, Tomatsu S, A. LAB. Contribución colombiana al conocimiento de la enfermedad de Morquio A IMBIOMED. 2012;34(3):221-41. | |
dc.relation | Puentes-Tellez MA, Lerma-Barbosa PA, Garzon-Jaramillo RG, Suarez DA, Espejo-Mojica AJ, Guevara JM, et al. A perspective on research, diagnosis, and management of lysosomal storage disorders in Colombia. Heliyon. 2020;6(3):e03635. Epub 2020/04/08. | |
dc.relation | Tapiero-Rodriguez SM, Acosta Guio JC, Porras-Hurtado GL, Garcia N, Solano M, Pachajoa H, et al. Determination of genotypic and clinical characteristics of Colombian patients with mucopolysaccharidosis IVA. The application of clinical genetics. 2018;11:45-57. Epub 2018/05/08. | |
dc.relation | Moreno GLJ, Escudero RAM, Sanchez GA, Satizabal SJM. Clinical and molecular characteristics of colombian patients with mucopolysaccharidosis IVA, and description of a new galns gene mutation. Mol Genet Metab Rep. 2018;16:53-6. Epub 2018/08/11. | |
dc.relation | Gómez A, Robles R, Suárez-Obando F. Estimation of the mucopolysaccharidoses frequencies and cluster analysis in the Colombian provinces of Cundinamarca and Boyacá. Biomedica : revista del Instituto Nacional de Salud. 2012;32:602-9. | |
dc.relation | Leadley RM, Lang S, Misso K, Bekkering T, Ross J, Akiyama T, et al. A systematic review of the prevalence of Morquio A syndrome: challenges for study reporting in rare diseases. Orphanet J Rare Dis. 2014;9:173. Epub 2014/11/19. | |
dc.relation | Bernal J, Briceño I. Genetic and other diseases in the pottery of Tumaco-La Tolita culture in Colombia–Ecuador. Clin Genet. 2006;70:188-91. | |
dc.relation | Pachajoa H, Rodriguez CA, Isaza C. Possible case of Morquio syndrome in the pottery of Tumaco-Tolita culture. Rev Neurol. 2009;48(1):52. Epub 2009/01/16. Posible caso de sindrome de Morquio en la ceramica de la cultura tumaco-tolita. | |
dc.relation | Tomatsu S, Sawamoto K, Shimada T, Bober MB, Kubaski F, Yasuda E, et al. Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs. 2015;3(11):1279-90. | |
dc.relation | Sáenz H, Lareo L, Poutou RA, Sosa AC, Barrera LA. Predicción computacional de la estructura terciaria de la iduronato 2-sulfato sulfatasa. Biomedica. 2007;27(001):7-20. | |
dc.relation | Echeverri OY, Guevara JM, Espejo-Mojica AJ, Ardila A, Pulido N, Reyes M, et al. Research, diagnosis and education in inborn errors of metabolism in Colombia: 20 years' experience from a reference center. Orphanet J Rare Dis. 2018;13(1):141. Epub 2018/08/18. | |
dc.relation | Rodriguez A, Espejo AJ, Hernandez A, Velasquez OL, Lizaraso LM, Cordoba HA, et al. Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21. J Ind Microbiol Biotechnol. 2010;37(11):1193-201. Epub 2010/06/29. | |
dc.relation | Mosquera A, Rodríguez A, Soto C, Leonardi F, Espejo A, Sánchez OF, et al. Characterization of a recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in E. coli for enzyme replacement therapy of Morquio A disease. Process Biochemistry. 2012:1-6. | |
dc.relation | Hernandez A, Velasquez O, Leonardi F, Soto C, Rodriguez A, Lizaraso L, et al. Effect of Culture Conditions and Signal Peptide on Production of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase in Escherichia coli BL21. J Microbiol Biotechnol. 2013;23(5):689-98. Epub 2013/05/08. | |
dc.relation | Reyes LH, Cardona C, Pimentel L, Rodriguez-Lopez A, Almeciga-Diaz CJ. Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Scientific reports. 2017;7(1):5844. Epub 2017/07/21. | |
dc.relation | Rodriguez-Lopez A, Almeciga-Diaz CJ, Sanchez J, Moreno J, Beltran L, Diaz D, et al. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep. 2016;6:29329. Epub 2016/07/06. | |
dc.relation | Alméciga-Diaz CJ, A. R-PM, Echeverri OY, Montaño AM, Tomatsu S, Barrera LA. Uso de vectores derivados de virus adenoasociados para el tratamiento de la enfermedad de Morquio A. Univ Med. 2009;50(3):356-79. | |
dc.relation | Almeciga-Diaz CJ, Montano AM, Tomatsu S, Barrera LA. Adeno-associated virus gene transfer in Morquio A disease - effect of promoters and sulfatase-modifying factor 1. FEBS J. 2010;277(17):3608-19. Epub 2010/08/19. | |
dc.relation | Almeciga-Diaz CJ, Rueda-Paramo MA, Espejo AJ, Echeverri OY, Montano A, Tomatsu S, et al. Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol Biol Rep. 2009;36(7):1863-70. Epub 2008/11/08. | |
dc.relation | Gutierrez MA, Vallejo F, Tomatsu S, Cerón F, Almeciga-Diaz CJ, Dominguez MC, et al. Construcción de un vector de expresión derivado de virus adenoasociados para corregir In vitro el defecto genético de la enfermedad de Morquio A. Biomedica. 2008;28(003):448-59. | |
dc.relation | Almeciga C, Cuaspa R, Herrera J, Barbosa H, Barrera L. New viral vectors for Morquio syndrome type A gene therapy. Molecular Genetics and Metabolism. 2013;108(2):19. | |
dc.relation | Alméciga-Díaz CJ MA, Barrera LA., Tomatsu S. . Tailoring the AAV2 capsid vector for bone-targeting. . Pediatr Res 2018. | |
dc.relation | Alméciga-Diaz CJ, Barrera LA. Design and applications of gene therapy vectors for mucopolysaccharidosis in Colombia. Gene Therapy. 2019. | |
dc.relation | Alméciga-Diaz C, Alexander R. A system biology view of the glycosaminoglycans degradation pathways. Molecular Genetics and Metabolism. 2012. | |
dc.relation | Salazar DA, Rodriguez-Lopez A, Herreno A, Barbosa H, Herrera J, Ardila A, et al. Systems biology study of mucopolysaccharidosis using a human metabolic reconstruction network. Mol Genet Metab. 2016;117(2):129-39. Epub 2015/08/16. | |
dc.relation | Clark NE, Metcalf MC, Best D, Fleet GW, Garman SC. Pharmacological chaperones for human alpha-N-acetylgalactosaminidase. Proc Natl Acad Sci U S A. 2012;109(43):17400-5. Epub 2012/10/10. | |
dc.relation | Olarte Sergio R-LA, Almeciga-Diaz Carlos A pharmacological chaperone for human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an in-silico analysis. Molecular Genetics and Metabolism. 2014;111(2):S82. | |
dc.relation | Alméciga-Díaz CJ, Pimentel-Vera LN, Caro A, Mosquera A, Castellanos Moreno CA, Manosalva Rojas JP, et al. Virtual Screening of Potential Inhibitors for SARS-CoV-2 Main Protease. Preprints. 2020:2020040146. | |
dc.relation | Lanpher B, Brunetti-Pierri N, Lee B. Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet. 2006;7(6):449-60. Epub 2006/05/19. | |
dc.relation | Scriver CR. Garrod's Croonian Lectures (1908) and the charter 'Inborn Errors of Metabolism': albinism, alkaptonuria, cystinuria, and pentosuria at age 100 in 2008. J Inherit Metab Dis. 2008;31(5):580-98. Epub 2008/10/14. | |
dc.relation | Barrera LA. Los Errores Innatos del Metabolismo, fuente inagotable de conocimiento médico por más de un siglo, siguen sin diagnosticarse y tratarse en Colombia. Redalyc. 2005;3(13-17). | |
dc.relation | Barrera LA. Estudios bioquímicos de los errores innatos del metabolismo en Colombia, durante dos décadas. . Rev Acad Colomb Cienc. 2009;33(128):377-94. | |
dc.relation | Barrera LA, Sáenz H, Cuéllar YM, Ospina SY, Garzón K, Cabrera MA, et al. Manual de enfermedades metabolicas 2004. | |
dc.relation | Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet. 2011;20(R1):R54-60. Epub 2011/03/23. | |
dc.relation | Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem. 2010;285(27):20423-7. Epub 2010/05/01. | |
dc.relation | Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, et al. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl). 2020;In press:1-16. Epub 2020/06/11. | |
dc.relation | Esko JD, Kimata K, Lindahl U. Proteoglycans and Sulfated Glycosaminoglycans. 2009. Epub 2010/03/20. | |
dc.relation | Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Accounts of chemical research. 2004;37(7):431-8. Epub 2004/07/21. | |
dc.relation | Jakobkiewicz-Banecka J, Piotrowska E, Gabig-Ciminska M, Borysiewicz E, Slominska-Wojewodzka M, Narajczyk M, et al. Substrate reduction therapies for mucopolysaccharidoses. Curr Pharm Biotechnol. 2011;12(11):1860-5. Epub 2011/09/10. | |
dc.relation | Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50 Suppl 5:v49-59. Epub 2012/01/11. | |
dc.relation | Coutinho MF, Lacerda L, Alves S. Glycosaminoglycan storage disorders: a review. Biochem Res Int. 2012;2012:471325. Epub 2011/10/21. | |
dc.relation | Tomatsu S, Fukuda S, Masue M, Sukegawa K, Fukao T, Yamagishi A, et al. Morquio disease: isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase. Biochem Biophys Res Commun. 1991;181(2):677-83. Epub 1991/12/16. | |
dc.relation | Masue M, Sukegawa K, Orii T, Hashimoto T. N-acetylgalactosamine-6-sulfate sulfatase in human placenta: purification and characteristics. J Biochem. 1991;110(6):965-70. Epub 1991/12/01. | |
dc.relation | Sardiello M, Annunziata I, Roma G, Ballabio A. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet. 2005;14(21):3203-17. Epub 2005/09/22. | |
dc.relation | Ghosh D. Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci. 2007;64(15):2013-22. Epub 2007/06/15. | |
dc.relation | Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PNAS. 2006;103(1):81–6. | |
dc.relation | Sistema de vigilancia en salud pública (Sivigila). Enfermedades huérfanas - raras, Colombia, periodo epidemiológico II. Instituto Nacional de Salud; 2020 [cited 2020 Mayo]; Available from: http://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES%20HUÉRFANAS-RARAS%20PE%20II%202020.pdf | |
dc.relation | Dung VC, Tomatsu S, Montano AM, Gottesman G, Bober MB, Mackenzie W, et al. Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels. Mol Genet Metab. 2013;110(1-2):129-38. Epub 2013/07/24. | |
dc.relation | Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, et al. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab. 2018. Epub 2018/05/22. | |
dc.relation | Wood TC, Harvey K, Beck M, Burin MG, Chien YH, Church HJ, et al. Diagnosing mucopolysaccharidosis IVA. J Inherit Metab Dis. 2013;36(2):293-307. Epub 2013/02/02. | |
dc.relation | Lavery C, Hendriksz C. Mortality in patients with morquio syndrome a. JIMD reports. 2015;15:59-66. Epub 2014/04/11. | |
dc.relation | Tuysuz B, Alkaya DU, Toksoy G, Gunes N, Yildirim T, Bayhan IA, et al. Mutation spectrum and pivotal features for differential diagnosis of Mucopolysaccharidosis IVA patients with severe and attenuated phenotype. Gene. 2019;704:59-67. Epub 2019/04/14. | |
dc.relation | Montaño AM, Tomatsu S, Brusius A, Smith M, Orii T. Growth charts for patients affected with Morquio A Disease. Am J Med Genet. 2008;15(10):1286-95. | |
dc.relation | Pachajoa H, Ruiz-Botero F, Hernández-Amariz M, Eichler S, AO. C-G. Morquio syndrome: New heterozygous mutation of the GALNS gene in two siblings from south-west Colombia. Clinical, molecular, and bioinformatic analysis. Rev Mex Pediatr. 2016;83(3):85-92. | |
dc.relation | Satizabal J, Moreno L. Evaluation and Impact on the Quality of Life of Patients With Mucopolysaccharidosis IV-A (Morquio A) at the Colombian Southwestern. J Inborn Errors Metab Screen. 2017;5:273. | |
dc.relation | Kubaski F, Brusius-Facchin AC, Palhares HM, Balarin MA, Viapiana-Camelier M, Guidobono R, et al. Identification of a novel missense mutation in Brazilian patient with a severe form of mucopolysaccharidosis type IVA. Gene. 2013;517(1):112-5. Epub 2013/01/15. | |
dc.relation | Zanetti A, D'Avanzo F, AlSayed M, Brusius-Facchin AC, Chien Y-H, Giugliani R, et al. Molecular basis of mucopolysaccharidosis IVA (Morquio A syndrome): A review and classification of GALNS gene variants and reporting of 68 novel variants. Human Mutation. 2021;42:1384–98. | |
dc.relation | Pachajoa H, Acosta MA, Alméciga-Díaz CJ, Ariza Y, Diaz-Ordoñez L, Caicedo-Herrera G, et al. Molecular characterization of mucopolysaccharidosis type IVA patients in the Andean region of Colombia. American Journal of Medical Genetics 2021;187(3):388-95. | |
dc.relation | Sukegawa K, Nakamura H, Kato Z, Tomatsu S, Montano AM, Fukao T, et al. Biochemical and structural analysis of missense mutations in N-acetylgalactosamine-6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes. Hum Mol Genet. 2000;9(9):1283-90. Epub 2000/05/18. | |
dc.relation | Sudhakar SC, Mahalingam K. Structural and functional analysis of N-acetylgalactosamine-6-sulfate sulfatase using bioinformatics tools: Insight into Mucopolysaccharidosis IVA. Journal of Pharmacy Research. 2011;4(11):3958-62. | |
dc.relation | Olarte-Avellaneda S, Rodríguez A, Alméciga C, Barrera L. Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme. Molecular Genetics and Metabolism. 2013;108(2):70-1. | |
dc.relation | Martell L, Lau K, Mei M, Burnett V, Decker C, Foehr ED. Biomarker analysis of Morquio syndrome: identification of disease state and drug responsive markers. Orphanet J Rare Dis. 2011;6:84. Epub 2011/12/20. | |
dc.relation | Tomatsu S, Mackenzie WG, Theroux MC, Mason RW, Thacker MM, Shaffer TH, et al. Current and emerging treatments and surgical interventions for Morquio A syndrome: a review. Research and Reports in Endocrine Disorders. 2012;2:65-77. | |
dc.relation | Sawamoto K, Alvarez Gonzalez JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, et al. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. International journal of molecular sciences. 2020;21(4). Epub 2020/02/28. | |
dc.relation | Clark BM, Sprung J, Weingarten TN, Warner ME. Anesthesia for patients with mucopolysaccharidoses: Comprehensive review of the literature with emphasis on airway management. Bosnian journal of basic medical sciences. 2018;18(1):1-7. Epub 2017/06/08. | |
dc.relation | Sáenz H, Barrera LA. La terapia de remplazo enzimático en el tratamiento de enfermedades genéticas Universitas Scientiarum. 2003;8(2):31-42. | |
dc.relation | Tomatsu S, Sawamoto K, Almeciga-Diaz CJ, Shimada T, Bober MB, Chinen Y, et al. Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome. Drug design, development and therapy. 2015;9:1937-53. Epub 2015/04/22. | |
dc.relation | Sanford M, Lo JH. Elosulfase alfa: first global approval. Drugs. 2014;74(6):713-8. Epub 2014/04/05. | |
dc.relation | Hendriksz C, Burton BK, Fleming T, Giugliani R, Harmatz P, Hughes D, et al. A multi-national, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of BMN 110 treatment for mucopolysaccharidosis IVA (Morquio syndrome type A). Molecular Genetics and Metabolism. 2013;108(2):S48. | |
dc.relation | Hendriksz CJ, Burton B, Fleming TR, Harmatz P, Hughes D, Jones SA, et al. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study. J Inherit Metab Dis. 2014;37(6):979-90. | |
dc.relation | Hendriksz CJ, Giugliani R, Harmatz P, Mengel E, Guffon N, Valayannopoulos V, et al. Multi-domain impact of elosufase alfa in Morquio A syndrome in the pivotal phase III trial. Mol Genet Metab. 2014;114(2):178-85. | |
dc.relation | Cleary M, Davison J, Gould R, Geberhiwot T, Hughes D, Mercer J, et al. Impact of long-term elosulfase alfa treatment on clinical and patient-reported outcomes in patients with mucopolysaccharidosis type IVA: results from a Managed Access Agreement in England. Orphanet Journal Rare Diseases. 2021;16(1). | |
dc.relation | Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, et al. Immunogenicity of elosulfase alfa, an enzyme replacement therapy in patients with Morquio A syndrome: results from MOR-004, a phase III trial. Clin Ther. 2015;37(5):1012-21. Epub 2014/12/10. | |
dc.relation | Do CJ, Wiedemann A, Quinaux T, Battaglia-Hsu SF, Mainard L, Froissart R, et al. 30 months follow-up of an early enzyme replacement therapy in a severe Morquio A patient: About one case. Mol Genet Metab Rep. 2016;9:42-5. Epub 2016/10/21. | |
dc.relation | Doherty C, Stapleton M, Piechnik M, Mason RW, Mackenzie WG, Yamaguchi S, et al. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J Hum Genet. 2019;64:625–35. | |
dc.relation | Tomatsu S, Alméciga-Díaz CJ, Montaño AM, Yabe H, Tanaka A, Dung VC, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114(2):94-109. | |
dc.relation | Tomatsu S., Montaño A., Ohashi A., Oikawa. H, Oguma. T, Dung. VC, et al. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet. 2007;17(6):815-24. | |
dc.relation | Dvorak-Ewell M, Wendt D, Hague C, Christianson T, Koppaka V, Crippen D, et al. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One. 2010;5(8):e12194. Epub 2010/09/03. | |
dc.relation | Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, et al. Recommendations for the management of MPS IVA: systematic evidence- and consensus-based guidance. Orphanet J Rare Dis. 2019;14(1):137. Epub 2019/06/15. | |
dc.relation | Hendriksz CJ, Berger KI, Giugliani R, Harmatz P, Kampmann C, Mackenzie WG, et al. International guidelines for the management and treatment of Morquio A syndrome. American journal of medical genetics Part A. 2015;167A(1):11-25. Epub 2014/10/28. | |
dc.relation | Puentes-Tellez A, Rojas-Rodríguez F, Suarez D, Hidalgo OA, Almeciga-Diaz CJ. Evaluation of lentiviral vectors in Morquio syndrome type A patients' fibroblasts. Molecular Genetics and Metabolism. 2019;126(2):S120. | |
dc.relation | Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, et al. Liver-Targeted AAV8 Gene Therapy Ameliorates Skeletal and Cardiovascular Pathology in a Mucopolysaccharidosis IVA Murine Model. Molecular therapy Methods & clinical development. 2020;18:50-61. Epub 2020/06/25. | |
dc.relation | Toietta G, Severini GM, Traversari C, Tomatsu S, Sukegawa K, Fukuda S, et al. Various cells retrovirally transduced with N-acetylgalactosoamine-6-sulfate sulfatase correct Morquio skin fibroblasts in vitro. Hum Gene Ther. 2001;12(16):2007-16. | |
dc.relation | Álvarez JV, Herrero Filgueira C, González AF, Colón Mejeras C, Beiras Iglesias A, Tomatsu S, et al. Enzyme-Loaded Gel Core Nanostructured Lipid Carriers to Improve Treatment of Lysosomal Storage Diseases: Formulation and In Vitro Cellular Studies of Elosulfase Alfa-Loaded Systems. Pharmaceutics. 2019;11(10). Epub 2019/10/11. | |
dc.relation | Rodriguez-Lopez A, Pimentel-Vera LN, Espejo-Mojica AJ, Van HA, Tiels P, Tomatsu S, et al. Characterization of human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Pichia pastoris as potential enzyme for mucopolysaccharidosis IVA treatment. J Pharm Sci. 2019;108(8):2534-41. Epub 2019/04/09. | |
dc.relation | Sawamoto K, Tomatsu S. Development of substrate degradation enzyme therapy for Mucopolysaccharidosis IVA murine model. Int J Mol Sci. 2019;20(17). Epub 2019/08/24. | |
dc.relation | Pereira DM, Valentao P, Andrade PB. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chemical science. 2018;9(7):1740-52. Epub 2018/05/03. | |
dc.relation | Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Frontiers in pharmacology. 2017;8:448. Epub 2017/07/25. | |
dc.relation | Fan J-Q, Ishii S. Active-site-specific chaperone therapy for Fabry disease Yin and Yang of enzyme inhibitors. FEBS Journal. 2007;274:4962-71. | |
dc.relation | Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, et al. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol. 2011;9(3):213-35. Epub 2011/05/27. | |
dc.relation | Gamez A, Yuste-Checa P, Brasil S, Briso-Montiano A, Desviat LR, Ugarte M, et al. Protein misfolding diseases: Prospects of pharmacological treatment. Clin Genet. 2018;93(3):450-8. Epub 2017/07/04. | |
dc.relation | McCafferty EH, Scott LJ. Migalastat: A Review in Fabry Disease. Drugs. 2019;79(5):543-54. Epub 2019/03/16. | |
dc.relation | Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. Journal of medical genetics. 2017;54(4):288-96. Epub 2016/11/12. | |
dc.relation | Maegawa GH, Tropak M, Buttner J, Stockley T, Kok F, Clarke JT, et al. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J Biol Chem. 2007;282(12):9150-61. Epub 2007/01/24. | |
dc.relation | Ho SL. Structural Bioinformatics Analysis of Acid Alpha-Glucosidase Mutants with Pharmacological Chaperones. Bioinformatics – Trends and Methodologies. 2011:313-24. | |
dc.relation | Parenti G, Andria G, Valenzano KJ. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders. Molecular therapy : the journal of the American Society of Gene Therapy. 2015;23(7):1138-48. Epub 2015/04/17. | |
dc.relation | Hoshina H, Shimada Y, Higuchi T, Kobayashi H, Ida H, Ohashi T. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II. Molecular genetics and metabolism. 2017;123(2):118-22. Epub 2018/01/01. | |
dc.relation | Narita A, Shirai K, Itamura S, Matsuda A, Ishihara A, Matsushita K, et al. Ambroxol chaperone therapy for neuronopathic Gaucher disease: A pilot study. Annals of clinical and translational neurology. 2016;3(3):200-15. Epub 2016/04/05. | |
dc.relation | Zimran A, Altarescu G, Elstein D. Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease. Blood cells, molecules & diseases. 2013;50(2):134-7. Epub 2012/10/23. | |
dc.relation | Priya Kishnani BS, Drago Bratkovic, Barry J. Byrn, Paula R. Clemens, Ozlem Goker-Alpan, Xue Ming, Mark Roberts, Peter Schwenkreis, Kumaraswamy Sivakumar, Ans T. van der Ploeg, Vipul Jain, Sheela Sitaraman, Jay A. Barth, Hjalmar Lagast, Tahseen Mozaffar. . First-in-human study of advanced and targeted acid α-glucosidase (AT-GAA) (ATB200/AT2221) in patients with Pompe disease: preliminary functional assessment results from the ATB200-02 trial. Molecular Genetics and Metabolism. 2019;126(2):S86. | |
dc.relation | Clarke JT, Mahuran DJ, Sathe S, Kolodny EH, Rigat BA, Raiman JA, et al. An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants). Mol Genet Metab. 2011;102(1):6-12. Epub 2010/10/12. | |
dc.relation | Osher E, Fattal-Valevski A, Sagie L, Urshanski N, Sagiv N, Peleg L, et al. Effect of cyclic, low dose pyrimethamine treatment in patients with Late Onset Tay Sachs: an open label, extended pilot study. Orphanet J Rare Dis. 2015;10:45. Epub 2015/04/22. | |
dc.relation | Udwadia-Hegde A, Hajirnis O. Temporary Efficacy of Pyrimethamine in Juvenile-Onset Tay-Sachs Disease Caused by 2 Unreported HEXA Mutations in the Indian Population. Child neurology open. 2017;4:2329048X16687887. Epub 2017/05/16. | |
dc.relation | Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Computational and structural biotechnology journal. 2016;14:177-84. Epub 2016/06/14. | |
dc.relation | Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019):862-5. Epub 2004/12/17. | |
dc.relation | Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 2012;14(1):133-41. Epub 2012/01/28. | |
dc.relation | Batool M, Ahmad B, Choi S. A Structure-Based Drug Discovery Paradigm. International journal of molecular sciences. 2019;20(11). Epub 2019/06/09. | |
dc.relation | Chen G, Seukep AJ, Guo M. Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine drugs. 2020;18(11). Epub 2020/11/05. | |
dc.relation | Olarte-Avellaneda S, Rodríguez A, Sánchez O, Alméciga-Díaz C. Docking Molecular para evaluar la relación estrutura - actividad en fructosiltransferasas producidas por Aspergillus sp. Hechos Microbiológicos. 2012;2:53. | |
dc.relation | Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. Epub 2011/05/04. | |
dc.relation | De Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Advances and applications in bioinformatics and chemistry : AABC. 2016;9:1-11. Epub 2016/07/09. | |
dc.relation | Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. Epub 2009/06/06. | |
dc.relation | Osvel CH. Análisis del desempeño de herramientas de acoplamiento molecular para el estudio de interacciones proteína-péptido: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California; 2019. | |
dc.relation | Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. International journal of molecular sciences. 2019;20(18). Epub 2019/09/07. | |
dc.relation | Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129-43. Epub 2018/09/22. | |
dc.relation | Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-18. Epub 2005/10/08. | |
dc.relation | Leonardo BC. Simulación por dinámica molecular de membranas de fosfolípidos usando GROMACS: Universidad de Sonora; 2013. | |
dc.relation | Delavan B, Roberts R, Huang R, Bao W, Tong W, Liu Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug discovery today. 2018;23(2):382-94. Epub 2017/10/22. | |
dc.relation | Rognan D. Development and virtual screening of target libraries. J Physiol Paris. 2006;99(2-3):232-44. Epub 2006/02/07. | |
dc.relation | Breda A, Basso LA, Santos DS, Jr. WFdA. Virtual Screening of Drugs: Score Functions, Docking, and Drug Design. Current Computer-Aided Drug Design. 2008;4:265-72. | |
dc.relation | Hay Mele B, Citro V, Andreotti G, Cubellis MV. Drug repositioning can accelerate discovery of pharmacological chaperones. Orphanet J Rare Dis. 2015;10:55. Epub 2015/05/08. | |
dc.relation | Losada JC, Alméciga CJ, Gonzalez J. In silico identification of pharmacological chaperones for mucopolysaccharidosis type IIIB. Molecular Genetics and Metabolism. 2020;129(2):S101. | |
dc.relation | Olarte-Avellaneda S, Rodríguez-López A, Patiño JD, Alméciga-Díaz CJ, Sánchez OF. In Silico Analysis of the Structure of Fungal Fructooligosaccharides-Synthesizing Enzymes. Interdiscip Sci. 2018;10(1):53-67. Epub 2016/02/15. | |
dc.relation | Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12. | |
dc.relation | Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of chemical theory and computation. 2015;11(8):3696-713. Epub 2015/11/18. | |
dc.relation | Schrödinger. The PyMOL Molecular Graphics System, Version 1.5.0.3. 2009-2012. | |
dc.relation | Laskowski RA, Chistyakov VV, Thornton JM. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 2005;33(Database issue):D266-8. Epub 2004/12/21. | |
dc.relation | Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363-W7. Epub 2018/06/04. | |
dc.relation | Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074-5. Epub 2012/05/26. | |
dc.relation | Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-86. | |
dc.relation | Irwin J, Sterling T, Mysinger M, Bolstad E, Coleman R. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757-68. Epub 2012/05/17. | |
dc.relation | Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29(7):845-54. Epub 2013/02/15. | |
dc.relation | Koziara KB, Stroet M, Malde AK, Mark AE. Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies. Journal of computer-aided molecular design. 2014;28(3):221-33. Epub 2014/01/31. | |
dc.relation | Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315-21. Epub 2006/05/26. | |
dc.relation | Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, et al. Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study. Glycoconj J. 2009;26(8):1029-45. Epub 2009/04/22. | |
dc.relation | Olarte-Avellaneda S, Cepeda Del Castillo J, Rojas-Rodriguez AF, Sanchez O, Rodriguez-Lopez A, Suarez Garcia DA, et al. Bromocriptine as a Novel Pharmacological Chaperone for Mucopolysaccharidosis IV A. ACS medicinal chemistry letters. 2020;11(7):1377-85. Epub 2020/07/18. | |
dc.relation | Tapiero S. Determinación de características clínicas y genotípicas de pacientes colombianos con síndrome de Morquio A: Universidad Ncional de Colombia 2016. | |
dc.relation | Olarte-Avellaneda S, Almeciga-Diaz CJ. In-silico assessment of a potential pharmacological chaperone for human GALNS: evaluation in a mutated protein model. Molecular Genetics and Metabolism. 2018;123(2):S109-S10. | |
dc.relation | Almeciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodriguez-Lopez A. Characterization of two potential pharmacological chaperones for N-acetylgalactosamine-6-sulfate sulfates (GALNS) enzyme. Molecular Genetics and Metabolism. 2018;123(2):S18. | |
dc.relation | Warriner AH, Saag KG. Prevention and treatment of bone changes associated with exposure to glucocorticoids. Current osteoporosis reports. 2013;11(4):341-7. Epub 2013/10/08. | |
dc.relation | Holt RI, Barnett AH, Bailey CJ. Bromocriptine: old drug, new formulation and new indication. Diabetes, obesity & metabolism. 2010;12(12):1048-57. Epub 2010/10/28. | |
dc.relation | Zabielski R, Lesniewska V, Borlak J, Gregory PC, Kiela P, Pierzynowski SG, et al. Effects of intraduodenal administration of tarazepide on pancreatic secretion and duodenal EMG in neonatal calves. Regulatory peptides. 1998;78(1-3):113-23. Epub 1999/01/08. | |
dc.relation | Herranz R. Cholecystokinin antagonists: pharmacological and therapeutic potential. Medicinal research reviews. 2003;23(5):559-605. Epub 2003/06/06. | |
dc.relation | Walker NM, Simpson JE, Levitt RC, Boyle KT, Clarke LL. Talniflumate increases survival in a cystic fibrosis mouse model of distal intestinal obstructive syndrome. The Journal of pharmacology and experimental therapeutics. 2006;317(1):275-83. Epub 2005/12/16. | |
dc.relation | Hochhaus G, Barth J, al-Fayoumi S, Suarez S, Derendorf H, Hochhaus R, et al. Pharmacokinetics and pharmacodynamics of dexamethasone sodium-m-sulfobenzoate (DS) after intravenous and intramuscular administration: a comparison with dexamethasone phosphate (DP). Journal of clinical pharmacology. 2001;41(4):425-34. Epub 2001/04/18. | |
dc.relation | Miller E, Bates R, Bjorndahl J, Allen D, Burgio D, Bouma C, et al. 16-Epiestriol, a novel anti-inflammatory nonglycogenic steroid, does not inhibit IFN-gamma production by murine splenocytes. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 1998;18(11):921-5. Epub 1998/12/19. | |
dc.relation | Scarpignato C, Varga G, Corradi C. Effect of CCK and its antagonists on gastric emptying. J Physiol Paris. 1993;87(5):291-300. Epub 1993/01/01. | |
dc.relation | Wang HH, Portincasa P, Wang DQ. The cholecystokinin-1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. European journal of clinical investigation. 2016;46(2):158-69. Epub 2015/12/20. | |
dc.relation | MedicaLook. Dihydroergotoxine review. http://wwwmedicalookcom/reviews/Dihydroergotoxinehtml. | |
dc.relation | Jarquin Gonzalez JD, Elda de Aguirre L, Rodriguez C, Abrego de Aguilar M, Carrillo F, Leon DA, et al. Dihydroxyprogesterone acetophenide 150 mg + estradiol enantate 10 mg as monthly injectable contraceptives. Advances in contraception : the official journal of the Society for the Advancement of Contraception. 1996;12(3):213-25. Epub 1996/09/01. | |
dc.relation | Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. P & T : a peer-reviewed journal for formulary management. 2013;38(7):407-19. Epub 2013/09/21. | |
dc.relation | Montani D, Chaumais MC, Savale L, Natali D, Price LC, Jais X, et al. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Advances in therapy. 2009;26(9):813-25. Epub 2009/09/22. | |
dc.relation | Chile PV. Nimorazol. 2015 | |
dc.relation | Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 1998;46(2):135-46. Epub 1998/03/24. | |
dc.relation | Henk JM, Bishop K, Shepherd SF. Treatment of head and neck cancer with CHART and nimorazole: phase II study. Radiother Oncol. 2003;66(1):65-70. | |
dc.relation | Tochowicz A, Dalziel S, Eidam O, O'Connell JD, 3rd, Griner S, Finer-Moore JS, et al. Development and binding mode assessment of N-[4-[2-propyn-1-yl[(6S)-4,6,7,8-tetrahydro-2-(hydroxymethyl)-4-oxo-3H-cyclopenta [g]quinazolin-6-yl]amino]benzoyl]-l-gamma-glutamyl-D-glutamic acid (BGC 945), a novel thymidylate synthase inhibitor that targets tumor cells. J Med Chem. 2013;56(13):5446-55. Epub 2013/05/29. | |
dc.relation | Wang DS, Buckinx R, Lecorronc H, Mangin JM, Rigo JM, Legendre P. Mechanisms for picrotoxinin and picrotin blocks of alpha2 homomeric glycine receptors. J Biol Chem. 2007;282(22):16016-35. Epub 2007/04/05. | |
dc.relation | Wark PAB, Cookson K, Thiruchelvam T, Brannan J, Dorahy DJ. Lumacaftor/ Ivacaftor improves exercise tolerance in patients with Cystic Fibrosis and severe airflow obstruction. BMC pulmonary medicine. 2019;19(1):106. Epub 2019/06/19. | |
dc.relation | Pehlivan Y, Dokuyucu R, Demir T, Kaplan DS, Koc I, Orkmez M, et al. Palosuran treatment effective as bosentan in the treatment model of pulmonary arterial hypertension. Inflammation. 2014;37(4):1280-8. Epub 2014/03/08. | |
dc.relation | Nelson GR, Bale JF, Kerr LM. Outcome and Cost of Inpatient Hospitalization for Intravenous Dihydroergotamine Treatment of Refractory Pediatric Headache. Pediatric neurology. 2017;66:76-81. Epub 2016/11/17. | |
dc.relation | Drug Enforcement Administration (DEA) DoJ. Control of Ergocristine, a Chemical Precursor Used in the Illicit Manufacture of Lysergic Acid Diethylamide, as a List I Chemical. https://wwwdeadiversionusdojgov/fed_regs/rules/2011/fr0331htm. 2011. | |
dc.relation | Zur E. Penfluridol, a Unique Psychiatric Medicine for the Treatment of Chronic Schizophrenia. International journal of pharmaceutical compounding. 2019;23(2):113-9. Epub 2019/05/16. | |
dc.relation | Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Scientific reports. 2019;9(1):5066. Epub 2019/03/27. | |
dc.relation | Matsui T, Chiyo T, Kobara H, Fujihara S, Fujita K, Namima D, et al. Telmisartan Inhibits Cell Proliferation and Tumor Growth of Esophageal Squamous Cell Carcinoma by Inducing S-Phase Arrest In Vitro and In Vivo. International journal of molecular sciences. 2019;20(13). Epub 2019/07/03. | |
dc.relation | EMA. Telmisartán. Ficha técnica o resumen de las características del producto. | |
dc.relation | Kim TO, Despotovic J, Lambert MP. Eltrombopag for use in children with immune thrombocytopenia. Blood advances. 2018;2(4):454-61. Epub 2018/03/01. | |
dc.relation | Michael Besser G, Pfeiffer RF, Thorner MO. ANNIVERSARY REVIEW: 50 years since the discovery of bromocriptine. European journal of endocrinology. 2018;179(2):R69-R75. Epub 2018/05/13. | |
dc.relation | Ozery M, Wadhwa R. Bromocriptine. StatPearls. Treasure Island (FL)2020. | |
dc.relation | Schwartz SS, Zangeneh F. Evidence-based practice use of quick-release bromocriptine across the natural history of type 2 diabetes mellitus. Postgraduate medicine. 2016;128(8):828-38. Epub 2016/07/28. | |
dc.relation | Chan JF, Chik KK, Yuan S, Yip CC, Zhu Z, Tee KM, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral research. 2017;141:29-37. Epub 2017/02/12. | |
dc.relation | Carrillo J, Agra N, Fernandez N, Pestana A, Alonso J. Devazepide, a nonpeptide antagonist of CCK receptors, induces apoptosis and inhibits Ewing tumor growth. Anti-cancer drugs. 2009;20(7):527-33. Epub 2009/05/02. | |
dc.relation | Springer A. Devazepide. https://adisinsightspringercom/drugs/800000913. 2008. | |
dc.relation | Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011;108(46):18843-8. Epub 2011/10/07. | |
dc.relation | Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. The New England journal of medicine. 2015;373(3):220-31. Epub 2015/05/20. | |
dc.relation | Ratjen F, Hug C, Marigowda G, Tian S, Huang X, Stanojevic S, et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6-11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. The Lancet Respiratory medicine. 2017;5(7):557-67. Epub 2017/06/14. | |
dc.relation | Lancho IE. Búsqueda de moléculas con potencial terapéutico para la enfermedad de Alzheimer mediante análisis de virtual screening. Universitat Oberta de Catalunya 2019. | |
dc.relation | Liu Q, Sabirzhanova I, Bergbower EAS, Yanda M, Guggino WG, Cebotaru L. The CFTR Corrector, VX-809 (Lumacaftor), Rescues ABCA4 Trafficking Mutants: a Potential Treatment for Stargardt Disease. Cell Physiol Biochem. 2019;53(2):400-12. | |
dc.relation | Vogt L, Chiurchiu C, Chadha-Boreham H, Danaietash P, Dingemanse J, Hadjadj S, et al. Effect of the urotensin receptor antagonist palosuran in hypertensive patients with type 2 diabetic nephropathy. Hypertension. 2010;55(5):1206-9. Epub 2010/03/17. | |
dc.relation | Wang Y, Qiao S, Han DW, Rong XR, Wang YX, Xue JJ, et al. Telmisartan Improves Insulin Resistance: A Meta-Analysis. American journal of therapeutics. 2018;25(6):e642-e51. Epub 2018/03/21. | |
dc.relation | Billecke SS, Marcovitz PA. Long-term safety and efficacy of telmisartan/amlodipine single pill combination in the treatment of hypertension. Vascular health and risk management. 2013;9:95-104. Epub 2013/05/11. | |
dc.relation | Wells TG, Portman R, Norman P, Haertter S, Davidai G, Fei W. Safety, efficacy, and pharmacokinetics of telmisartan in pediatric patients with hypertension. Clinical pediatrics. 2010;49(10):938-46. Epub 2010/08/21. | |
dc.relation | EMA. Restrictions on use of medicines containing ergot derivatives. http://wwwemaeuropaeu/docs/en_GB/document_library/Referrals_document/Ergot_derivatives-containing_products/WC500161278pdf. 2014. | |
dc.relation | Catli G, Abaci A, Altincik A, Demir K, Can S, Buyukgebiz A, et al. Hyperprolactinemia in children: clinical features and long-term results. Journal of pediatric endocrinology & metabolism : JPEM. 2012;25(11-12):1123-8. Epub 2013/01/19. | |
dc.relation | Jara CFJ. Diseños de análogos de isoxazol-5-ilmetanol como posibles inhibidores de acetilcolinesterasa (AChE). Tesis de grado Universidad Austral de Chile 2016 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2022 | |
dc.title | Identificación de moléculas pequeñas con potencial uso como chaperonas farmacológicas para la enzima humana N-acetilgalactosamina-6-sulfato sulfatasa (GALNS) | |
dc.type | Trabajo de grado - Maestría | |