| dc.contributor | Díaz Ortiz, Sandra Lorena | |
| dc.contributor | Pinzón Velasco, Andrés Mauricio | |
| dc.creator | Vargas Ardila, Mónica Liliana | |
| dc.date.accessioned | 2020-07-15T19:26:40Z | |
| dc.date.available | 2020-07-15T19:26:40Z | |
| dc.date.created | 2020-07-15T19:26:40Z | |
| dc.date.issued | 2019 | |
| dc.identifier | Vargas Ardila, Mónica Liliana (2020). Exploración de características genéticas asociadas al desarrollo del fenotipo de resistencia intermedia heterogénea a vancomicina (hVISA), en aislamientos de Staphylococcus aureus resistente a meticilina (MRSA) causantes de bacteriemia. Tesis de Maestría en Ciencias - Microbiología, Universidad Nacional de Colombia - Sede Bogotá. | |
| dc.identifier | https://repositorio.unal.edu.co/handle/unal/77777 | |
| dc.description.abstract | Vancomycin is the main therapeutic option to treat severe methicillin-resistant Staphylococcus aureus (MRSA) infections; therefore, the emergence of isolates with decreased susceptibility to this antibiotic is a concern. Isolates with heterogeneous intermediate resistance to vancomycin (hVISA) are a clinical and epidemiological challenge, as they are associated with therapeutic and long hospital stays, it is not detectable by standard methodologies, and the genetic mechanism of resistance is not completely understood. However, numerous genes and mutations have been related with this phenotype. For this reason, the aim of this study was to identify genetic characteristics associated with the development of the hVISA phenotype, in MRSA isolates causing bacteremia in 9 Latin American countries. From 538 MRSA isolates, 30 exhibited a positive result for the hVISA phenotype by E-test based methods, however, from these, only 3 were confirmed by population analysis profile/area under the curve (PAP/AUC). Whole genome sequencing was performed to the 30 isolates and amino acid substitutions were identified in 46 proteins associated with intermediate resistance phenotypes (VISA/hVISA) in previous studies. In total, 98 substitutions were found, most related to cell wall biogenesis, DNA/RNA processing, membrane biosynthesis and regulatory systems, from which the most frequent were in VraT (E156G), WalK (L14I), and Atl (Y38H). In addition, changes were also explored in subpopulations of hVISA isolates that grew at concentrations ≥3μg/mL of vancomycin and maintained the hVISA phenotype (no VISA subpopulations). Consistently, no amino acid substitutions were detected other than those found in the isolates from which they were obtained, except for the Y121D change in transport protein PotD. Likewise, a low number of SNPs was detected in the subpopulations when compared with the genomes of the hVISA isolates from which they belonged. In this study, the genetic characterization of hVISA isolates causing bacteremia in patients in South America was performed; previously reported and unreported changes associated with alterations in functions of regulatory systems, cell wall biogenesis, DNA/RNA processing, and membrane biosynthesis were detected, potentially explaining the phenotypic characteristics of hVISA. On another hand, the analysis of hVISA subpopulations showed that the changes detected were consistent with the genomes of the hVISA isolates, suggesting that the mechanisms for the development and regulation of heterogeneous resistance are additional to those reported in the VISA phenotype. | |
| dc.description.abstract | Vancomicina es la principal opción terapéutica para tratar infecciones severas por Staphylococcus aureus resistente a meticilina (MRSA); por lo tanto, la emergencia de aislamientos con susceptibilidad disminuida a este antibiótico es preocupante. Los aislamientos con resistencia intermedia heterogénea a vancomicina (hVISA) son un reto clínico y epidemiológico, pues están asociados con fallas terapéuticas y largas estancias hospitalarias, no es detectable por metodologías estándar, y el mecanismo genético de resistencia no está completamente elucidado. No obstante, numerosos genes y mutaciones han sido relacionados con este fenotipo. Por esta razón, el objetivo de este estudio fue identificar características genéticas asociadas al fenotipo hVISA, en aislamientos de MRSA causantes de bacteriemia en 9 países latinoamericanos. A partir de 538 aislamientos MRSA, 30 presentaron un resultado positivo para el fenotipo hVISA por métodos basados en E-test, sin embargo, de estos, solo 3 fueron confirmados mediante perfil de análisis poblacional/área bajo la curva (PAP/AUC). A los 30 aislamientos se les realizó secuenciación de genoma completo, con el fin de identificar sustituciones de aminoácidos en 46 proteínas que han sido asociadas a los fenotipos de resistencia intermedia (VISA/hVISA) en estudios previos. En total se encontraron 98 sustituciones, la mayoría relacionadas a biogénesis de pared celular, procesamiento de DNA/RNA, biosíntesis de membrana y sistemas reguladores, de las cuales, las mas comunes se presentaron en VraT (E156G), WalK (L14I) y Atl (Y38H). Adicionalmente, se exploraron cambios en las subpoblaciones de los aislamientos hVISA que crecieron a concentraciones ≥3μg/mL de vancomicina y mantuvieron el fenotipo hVISA (no hubo selección de colonias VISA). De forma consistente, no se detectaron sustituciones de aminoácidos diferentes a las de los aislamientos de donde se obtuvieron, excepto por el cambio Y121D en la proteína de transporte PotD. Así mismo, se detectó un número bajo de SNPs en las subpoblaciones cuando se compararon con los genomas de los aislamientos hVISA de donde provenían. En este estudio se realizó la caracterización genética de aislamientos hVISA causantes de bacteriemia en pacientes de Sur América; se detectaron cambios previamente reportados y cambios no reportados asociados a alteraciones en funciones de sistemas reguladores, biogénesis de pared celular, procesamiento de DNA/RNA, y biosíntesis de membrana, que potencialmente explican las características fenotípicas de hVISA. Por otro lado, el análisis de subpoblaciones de hVISA demostró que los cambios detectados fueron consistentes con los genomas de los aislamientos hVISA, lo cual sugiere que los mecanismos para el desarrollo y regulación de la resistencia heterogénea son adicionales a aquellos reportados en el fenotipo VISA. | |
| dc.language | spa | |
| dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
| dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.relation | Alam, M. T., Petit, R. A., Crispell, E. K., Thornton, T. A., Conneely, K. N., Jiang, Y., … Read, T. D. (2014). Dissecting vancomycin-intermediate resistance in staphylococcus aureus using genome-wide association. Genome Biology and Evolution, 6(5), 1174–1185. https://doi.org/10.1093/gbe/evu092 | |
| dc.relation | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410. | |
| dc.relation | Antony, S. J. (2014). Case Series Describing an Outbreak of Highly Resistant Vancomycin Staphylococcus aureus (Possible VISA/VRSA) Infections in Orthopedic Related Procedures in Guatemala. Infectious Disorders – Drug Targets, 14, 44–48. https://doi.org/10.2174/1871526514666140522115220 | |
| dc.relation | Appelbaum, P. C. (2007). Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Antimicrobial Agents, 30(5), 398–408. https://doi.org/10.1016/j.ijantimicag.2007.07.011 | |
| dc.relation | Arias, C. A., Reyes, J., Carvajal, L. P., Rincon, S., Diaz, L., Panesso, D., … Seas, C. (2017). A prospective cohort multicenter study of molecular epidemiology and phylogenomics of Staphylococcus aureus bacteremia in nine Latin American countries. Antimicrobial Agents and Chemotherapy, 61(10), 1–12. https://doi.org/10.1128/AAC.00816-17 | |
| dc.relation | Arias, C., Reyes, J., Zúñiga, M., Cortés, L., Cruz, C., Rico, C. L., … Perez, C. (2003). Multicentre surveillance of antimicrobial resistance in enterococci and staphylococci from Colombian hospitals, 2001-2002. Journal of Antimicrobial Chemotherapy, 51(1), 59–68. https://doi.org/10.1093/jac/dkg002 | |
| dc.relation | Askari, et al. (2013). VanA-Positive Vancomycin-Resistant Staphylococcus aureus. Infectious Diseases in Clinical Practice, 21(2), 91-93. | |
| dc.relation | Bae, I., Federspiel, J. J., Miró, J. M., Woods, C. W., Park, L., Rybak, M. J., … Fowler Jr, V. G. (2009). Heterogeneous Vancomycin‐Intermediate Susceptibility Phenotype in Bloodstream Methicillin‐Resistant Staphylococcus aureus Isolates from an International Cohort of Patients with Infective Endocarditis: Prevalence, Genotype, and Clinical Significance. The Journal of Infectious Diseases, 200(9), 1355–1366. https://doi.org/10.1086/606027 | |
| dc.relation | Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 | |
| dc.relation | Banniettis, N., Beekmann, S. E., Polgreen, P. M., Kaushik, S., Kohlhoff, S., Gilbert, D., … Hammerschlag, M. R. (2018). Management Practices for Methicillin-Resistant Staphylococcus aureus Bacteremia by Adult Infectious Diseases Physicians. Open Forum Infectious Diseases, 5(5), ofy093. https://doi.org/10.1093/ofid/ofy093 | |
| dc.relation | Berrio Pérez, Olga María. (2018). Caracterización de aislamientos clínicos de Staphylococcus aureus resistentes a meticilina, con susceptibilidad disminuida a vancomicina, de 3 países en Suramérica. Tesis de Maestría en Ciencias-Microbiología. Facultad de Ciencias, Universidad Nacional de Colombia. | |
| dc.relation | Binda, E., Marinelli, F., & Marcone, G. (2014). Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics, 3(4), 572–594. https://doi.org/10.3390/antibiotics3040572 | |
| dc.relation | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. | |
| dc.relation | Bor, D. H., Woolhandler, S., Nardin, R., Brusch, J., & Himmelstein, D. U. (2013). Infective Endocarditis in the U.S., 1998-2009: A Nationwide Study. PLoS ONE, 8(3), 1–8. https://doi.org/10.1371/journal.pone.0060033 | |
| dc.relation | Boucher, H. W., & Corey, G. R. (2008). Epidemiology of Methicillin‐Resistant Staphylococcus aureus. Clinical Infectious Diseases, 46(S5), S344–S349. https://doi.org/10.1086/533590 | |
| dc.relation | Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., … Bartlett, J. (2009). Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12. https://doi.org/10.1086/595011 | |
| dc.relation | Boyle-Vavra, S, Carey, R. B., & Daum, R. S. (2001). Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. The Journal of Antimicrobial Chemotherapy, 48(5), 617–625. https://doi.org/10.1093/jac/48.5.617 | |
| dc.relation | Boyle-Vavra, Susan, De Jonge, B. L. M., Ebert, C. C., & Daum, R. S. (1997). Cloning of the Staphylococcus aureus ddh gene encoding NAD+-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide- resistant isolate. Journal of Bacteriology, 179(21), 6756–6763. https://doi.org/10.1128/jb.179.21.6756-6763.1997 | |
| dc.relation | Boyle-Vavra, Susan, Yin, S., Jo, D. S., Montgomery, C. P., & Daum, R. S. (2013). VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01651-12 | |
| dc.relation | Cafiso, V., Bertuccio, T., Spina, D., Purrello, S., Campanile, F., Di Pietro, C., … Stefani, S. (2012). Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains. PLoS ONE, 7(1), 1–10. https://doi.org/10.1371/journal.pone.0029573 | |
| dc.relation | Campanile, F., Bongiorno, D., Falcone, M., Vailati, F., Pasticci, M. B., Perez, M., … Stefani, S. (2012). Changing Italian nosocomial-community trends and heteroresistance in Staphylococcus aureus from bacteremia and endocarditis. European Journal of Clinical Microbiology and Infectious Diseases, 31(5), 739–745. https://doi.org/10.1007/s10096-011-1367-y | |
| dc.relation | CDC. Centers for Disease Control and Prevention (2013). Antibiotic resistance threats in the United States, 2013. US Department of Health and Human Services. https://doi.org/CS239559-B | |
| dc.relation | Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., Downes, F. P., ... & Cardo, D. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. The New England Journal of Medicine, 348(14), 1342-1347. | |
| dc.relation | Chaudhari, C. N., Tandel, M. K., Grover, N., Sen, S., Bhatt, P., Sahni, A. K., & Praharaj, A. K. (2015). Heterogeneous vancomycin-intermediate among methicillin resistant Staphylococcus aureus. Medical Journal Armed Forces India, 71(1), 15–18. https://doi.org/10.1016/j.mjafi.2014.03.008 | |
| dc.relation | Chua, K. Y., Stinear, T. P., & Howden, B. P. (2013). Functional genomics of Staphylococcus aureus. Briefings in functional genomics, 12(4), 305-315. | |
| dc.relation | CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition. Clinical and Laboratory Standards Institute. Retrieved from www.clsi.org. | |
| dc.relation | Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881 | |
| dc.relation | Courvalin, P. (2005). Genetics of glycopeptide resistance in Gram-positive pathogens. International Journal of Medical Microbiology, 294(8), 479–486. https://doi.org/10.1016/j.ijmm.2004.10.002 | |
| dc.relation | Courvalin, P. (2006). Vancomycin Resistance in Gram-Positive Cocci, Clinical Infectious Diseases;42:S25–34. | |
| dc.relation | Cui, L., Isii, T., Fukuda, M., Ochiai, T., Neoh, H. M., Da Cunha Camargo, I. L. B., … Hiramatsu, K. (2010). An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 54(12), 5222–5233. https://doi.org/10.1128/AAC.00437-10 | |
| dc.relation | Cui, L., Iwamoto, A., Lian, J., Neoh, H., Maruyama, T., Horikawa, Y., & Hiramatsu, K. (2006). Novel Mechanism of Antibiotic Resistance Originating in Vancomycin-Intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(2), 428–438. https://doi.org/10.1128/AAC.50.2.428 | |
| dc.relation | Cui, L., Neoh, H. M., Shoji, M., & Hiramatsu, K. (2009). Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 53(3), 1231–1234. https://doi.org/10.1021/ct100102q | |
| dc.relation | Da Costa, T. M., Morgado, P. G. M., Cavalcante, F. S., Damasco, A. P., Nouér, S. A., & Dos Santos, K. R. N. (2016). Clinical and microbiological characteristics of heteroresistant and vancomycin-intermediate Staphylococcus aureus from bloodstream infections in a Brazilian teaching hospital. PLoS ONE. https://doi.org/10.1371/journal.pone.0160506 | |
| dc.relation | Dai, Y., Gao, C., Chen, L., Chang, W., Yu, W., Ma, X., & Li, J. (2019). Heterogeneous vancomycin-intermediate staphylococcus aureus uses the vrasr regulatory system to modulate autophagy for increased intracellular survival in macrophage-like cell line RAW264.7. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.01222 | |
| dc.relation | Dauner, D. G., Nelson, R. E., & Taketa, D. C. (2010). Ceftobiprole: A novel, broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus. American Journal of Health-System Pharmacy, 67(12), 983–993. https://doi.org/10.2146/ajhp090285 | |
| dc.relation | Di Gregorio, S., Perazzi, B., Martinez Ordoñez, A., De Gregorio, S., Foccoli, M., Lasala, M., … García, S. (2005). Clinical, Microbiological, and Genetic Characteristics of Heteroresistant Vancomycin-Intermediate Staphylococcus aureus Bacteremia in a Teaching Hospital. Microbial Drug Resistance, 21(1), 25-34. https://doi.org/10.1089/mdr.2014.0190 | |
| dc.relation | Deatherage, D. E., & Barrick, J. E. (2014). Identification of mutations in laboratory evolved microbes from next-generation sequencing data using breseq. Methods in Molecular Biology, 1151, 1–22. https://doi.org/10.1007/978-1-4939-0554-6 | |
| dc.relation | Delauné, A., Dubrac, S., Blanchet, C., Poupel, O., Mäder, U., Hiron, A., … Msadek, T. (2012). The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infection and Immunity, 80(10), 3438–3453. https://doi.org/10.1128/IAI.00195-12 | |
| dc.relation | Delgado, A., Riordan, J. T., Lamichhane-Khadka, R., Winnett, D. C., Jimenez, J., Robinson, K., … Gustafson, J. E. (2007). Hetero-vancomycin-intermediate methicillin-resistant Staphylococcus aureus isolate from a medical center in Las Graces, New Mexico. Journal of Clinical Microbiology, 45(4), 1325–1329. https://doi.org/10.1128/JCM.02437-06 | |
| dc.relation | Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E., & Courvalin, P. (2007). Modes and modulations of antibiotic resistance gene expression. Clinical Microbiology Reviews, 20(1), 79–114. https://doi.org/10.1128/CMR.00015-06 | |
| dc.relation | Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 | |
| dc.relation | Errecalde, L., Ceriana, P., Gagetti, P., Erbin, M., Duarte, A., M, J. R., … Kaufman, S. (2013). Primer aislamiento en Argentina de Staphylococcus aureus resistente a la meticilina adquirido en la comunidad con sensibilidad intermedia a la vancomicina y no sensibilidad a la daptomicina. Revista Argentina de Microbiologia, 45(2):99-103. | |
| dc.relation | EUCAST. (2019). Breakpoint tables for interpretation of MICs and zone diameters, version 9.0. European Committee on Antimicrobial Susceptibility Testing. Retrieved from www.eucast.org. | |
| dc.relation | Falord, M., Mäder, U., Hiron, A., Dbarbouillé, M., & Msadek, T. (2011). Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021323 | |
| dc.relation | Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., … Bateman, A. (2016). The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 44(D1), D279–D285. https://doi.org/10.1093/nar/gkv1344 | |
| dc.relation | Fong, R. K. C., Low, J., Koh, T. H., & Kurup, A. (2009). Clinical features and treatment outcomes of vancomycin-intermediate staphylococcus aureus (VISA) and heteroresistant vancomycin-intermediate staphylococcus aureus (hVISA) in a tertiary care institution in Singapore. European Journal of Clinical Microbiology and Infectious Diseases, 28(8), 983–987. https://doi.org/10.1007/s10096-009-0741-5 | |
| dc.relation | Foster, T. J. (2005). Immune evasion by staphylococci. Nature Reviews Microbiology, 3(12), 948–958. https://doi.org/10.1038/nrmicro1289 | |
| dc.relation | Foster, T. J., Geoghegan, J. A., Ganesh, V. K., & Höök, M. (2014). Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology, 12(1), 49–62. https://doi.org/10.1038/nrmicro3161 | |
| dc.relation | Gao, C., Dai, Y., Chang, W., Fang, C., Wang, Z., & Ma, X. (2019). VraSR has an important role in immune evasion of Staphylococcus aureus with low level vancomycin resistance. Microbes and Infection. https://doi.org/10.1016/j.micinf.2019.04.003 | |
| dc.relation | Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of Clinical Investigation, 124(7), 2836–2840. https://doi.org/10.1172/JCI68834.2836 | |
| dc.relation | Gilot, P., Lina, G., Cochard, T., & Poutrel, B. (2002). Analysis of the Genetic Variability of Genes Encoding the RNA III-Activating Components Agr and TRAP in a Population of Staphylococcus aureus Strains Isolated from Cows with Mastitis. Journal of Clinical Microbiology, 40(11), 4060–4067. https://doi.org/10.1128/JCM.40.11.4060 | |
| dc.relation | Gomes, D. M., Ward, K. E., & Laplante, K. L. (2015). Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy, 35(4), 424–432. https://doi.org/10.1002/phar.1577 | |
| dc.relation | Gomes, D. M., Ward, K. E., & LaPlante, K. L. (2015). Clinical Implications of Vancomycin Heteroresistant and Intermediately Susceptible Staphylococcus aureus. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(4), 424–432. https://doi.org/10.1002/phar.1577 | |
| dc.relation | Gordon, R. J., & Lowy, F. D. (2008). Pathogenesis of Methicillin‐Resistant Staphylococcus aureus Infection. Clinical Infectious Diseases, 46(S5), S350–S359. https://doi.org/10.1086/533591 | |
| dc.relation | Götz, F., Heilmann, C., & Stehle, T. (2014). Functional and structural analysis of the major amidase (Atl) in Staphylococcus. International Journal of Medical Microbiology, 304(2), 156–163. https://doi.org/10.1016/j.ijmm.2013.11.006 | |
| dc.relation | Gould, I. M. (2008). Clinical relevance of increasing glycopeptide MICs against Staphylococcus aureus. International Journal of Antimicrobial Agents, 31(SUPPL. 2), 1–9. https://doi.org/10.1016/S0924-8579(08)70002-5 | |
| dc.relation | Gould, I. M., David, M. Z., Esposito, S., Garau, J., Lina, G., Mazzei, T., & Peters, G. (2012). New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. International Journal of Antimicrobial Agents, 39(2), 96–104. https://doi.org/10.1016/j.ijantimicag.2011.09.028 | |
| dc.relation | GREBO. (2015). Boletín informativo: Infecciones micóticas en nuestros hospitales. Resultados de a vigilancia de la Resistencia bacteriana año 2014. Número 7. | |
| dc.relation | Grilo, I. R., Ludovice, A. M., Tomasz, A., de Lencastre, H., & Sobral, R. G. (2014). The glucosaminidase domain of Atl - the major Staphylococcus aureus autolysin - has DNA-binding activity. MicrobiologyOpen, 3(2), 247–256. https://doi.org/10.1002/mbo3.165 | |
| dc.relation | Grinholc, M., Rodziewicz, A., Forys, K., Rapacka-Zdonczyk, A., Kawiak, A., Domachowska, A., … Bielawski, K. P. (2015). Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Applied Microbiology and Biotechnology, 99(21), 9161–9176. https://doi.org/10.1007/s00253-015-6863-z | |
| dc.relation | Groth, A. C., & Calos, M. P. (2004). Phage integrases: Biology and applications. Journal of Molecular Biology, 335(3), 667–678. https://doi.org/10.1016/j.jmb.2003.09.082 | |
| dc.relation | Gurevich, A., & Saveliev, V. Vyahhi and, N., Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072-1075. https://doi.org/ 10.1093/bioinformatics/btt086 | |
| dc.relation | Guzmán-Blanco, M., Mejía, C., Isturiz, R., Alvarez, C., Bavestrello, L., Gotuzzo, E., … Seas, C. (2009). Epidemiology of meticillin-resistant Staphylococcus aureus (MRSA) in Latin America. International Journal of Antimicrobial Agents, 34(4), 304–308. https://doi.org/10.1016/j.ijantimicag.2009.06.005 | |
| dc.relation | Haag, & Bagnoli. (2015). The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Current Topics in Microbiology and Immunology, 409. https://doi.org/10.1007/82 | |
| dc.relation | Hafer, C., Lin, Y., Kornblum, J., Lowy, F. D., & Uhlemann, A. C. (2012). Contribution of selected gene mutations to resistance in clinical isolates of vancomycin-intermediate staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 56(11), 5845–5851. https://doi.org/10.1128/AAC.01139-12 | |
| dc.relation | Hanaki, H., Cui, L., Ikeda-Dantsuji, Y., Nakae, T., Honda, J., Yanagihara, K., … Niki, Y. (2014). Antibiotic susceptibility survey of blood-borne MRSA isolates in Japan from 2008 through 2011. Journal of Infection and Chemotherapy, 20(9), 527–534. https://doi.org/10.1016/j.jiac.2014.06.012 | |
| dc.relation | Hiramatsu, K. (1997). Dissemination in Japenese hospital strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet, 350, 1670–1673. | |
| dc.relation | Hiramatsu, K., Ito, T., Tsubakishita, S., Sasaki, T., Takeuchi, F., Morimoto, Y., … Baba, T. (2013). Genomic basis for methicillin resistance in Staphylococcus aureus. Infect.Chemother., 45(2093-2340), 117–136. https://doi.org/10.3947/ic.2013.45.2.117 | |
| dc.relation | Hiramatsu, K, Kayayama, Y., Matsuo, M., Aiba, Y., Saito, M., Hishinuma, T., & Iwamoto, A. (2014a). Vancomycin-intermediate resistance in Staphylococcus aureus. Journal of Global Antimicrobial Resistance, 2(4), 213–224. | |
| dc.relation | Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T. (2014b). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. Journal of Infection and Chemotherapy, 20(10), 593–601. https://doi.org/10.1016/j.jiac.2014.08.001 | |
| dc.relation | Ho, C. M., Hsueh, P. R., Liu, C. Y., Lee, S. Y., Chiueh, T. S., Shyr, J. M., … Lu, J. J. (2010). Prevalence and accessory gene regulator (agr) analysis of vancomycin-intermediate Staphylococcus aureus among methicillin-resistant isolates in Taiwan-SMART program, 2003. European Journal of Clinical Microbiology and Infectious Diseases, 29(4), 383–389. https://doi.org/10.1007/s10096-009-0868-4 | |
| dc.relation | Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., … Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 | |
| dc.relation | Howden, B. P., Davies, J. K., Johnson, P. D. R., Stinear, T. P., & Grayson, M. L. (2010). Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clinical Microbiology Reviews, 23(1), 99–139. https://doi.org/10.1128/CMR.00042-09 | |
| dc.relation | Howden, B. P., McEvoy, C. R. E., Allen, D. L., Chua, K., Gao, W., Harrison, P. F., … Stinear, T. P. (2011). Evolution of multidrug resistance during staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathogens, 7(11). https://doi.org/10.1371/journal.ppat.1002359 | |
| dc.relation | Howden, B. P., Peleg, A. Y., & Stinear, T. P. (2014). The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infection, Genetics and Evolution, 21, 575–582. https://doi.org/10.1016/j.meegid.2013.03.047 | |
| dc.relation | Howden, B. P., Stinear, T. P., Allen, D. L., Johnson, P. D. R., Ward, P. B., & Davies, J. K. (2008). Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 52(10), 3755–3762.
https://doi.org/10.1128/AAC.01613-07 | |
| dc.relation | Hu, J., Ma, X., Tian, Y., Pang, L., Cui, L. Z., & Shang, H. (2013). Reduced Vancomycin Susceptibility Found in Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Isolates in Northeast China. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0073300 | |
| dc.relation | Hu, Jinfeng, Zhang, X., Liu, X., Chen, C., & Suna, B. (2015). Mechanism of reduced vancomycin susceptibility conferred by walK mutation in community-acquired methicillin-resistant staphylococcus aureus strain mw2. Antimicrobial Agents and Chemotherapy, 59(2), 1352–1355. https://doi.org/10.1128/AAC.04290-14 | |
| dc.relation | Hu, Q., Peng, H., & Rao, X. (2016). Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Frontiers in Microbiology, 7(OCT). https://doi.org/10.3389/fmicb.2016.01601 | |
| dc.relation | Hübscher, J., McCallum, N., Sifri, C. D., Majcherczyk, P. A., Entenza, J. M., Heusser, R., … Stutzmann Meier, P. (2009). MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus. FEMS Microbiology Letters, 295(2), 251–260. https://doi.org/10.1111/j.1574-6968.2009.01603.x | |
| dc.relation | Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., … Yeats, C. (2009). InterPro: The integrative protein signature database. Nucleic Acids Research, 37(SUPPL. 1), 211–215. https://doi.org/10.1093/nar/gkn785 | |
| dc.relation | Ilczyszyn, W. M., Sabat, A. J., Akkerboom, V., Szkarlat, A., Klepacka, J., Sowa-Sierant, I., ... & Friedrich, A. W. (2016). Clonal structure and characterization of Staphylococcus aureus strains from invasive infections in paediatric patients from South Poland: association between age, spa types, clonal complexes, and genetic markers. PloS one, 11(3), e0151937. | |
| dc.relation | Ishii, K., Tabuchi, F., Matsuo, M., Tatsuno, K., Sato, T., Okazaki, M., … Sekimizu, K. (2015). Phenotypic and genomic comparisons of highly vancomycin-resistant Staphylococcus aureus strains developed from multiple clinical MRSA strains by in vitro mutagenesis. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep17092 | |
| dc.relation | Jacob-Dubuisson, F., Mechaly, A., Betton, J. M., & Antoine, R. (2018). Structural insights into the signalling mechanisms of two-component systems. Nature Reviews Microbiology, 16(10), 585–593. https://doi.org/10.1038/s41579-018-0055-7 | |
| dc.relation | Jacob, J. T., & Diaz Granados, C. A. (2013). High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections: A meta-analysis. International Journal of Infectious Diseases, 17(2), e93–e100. https://doi.org/10.1016/j.ijid.2012.08.005 | |
| dc.relation | Jevons, M. P. (1961). “Celbenin”-resistant Staphylococci. Br Med J, 1, 124–125. | |
| dc.relation | Kang, H. K., & Park, Y. (2015). Glycopeptide Antibiotics: Structure and Mechanisms of Action. Journal of Bacteriology and Virology, 45(2), 67–78. https://doi.org/10.4167/jbv.2015.45.2.67 | |
| dc.relation | Katayama, Y., Sekine, M., Hishinuma, T., Aiba, Y., & Hiramatsu, K. (2016). Complete reconstitution of the vancomycin-intermediate staphylococcus aureus phenotype of strain mu50 in vancomycin-susceptible s. aureus. Antimicrobial Agents and Chemotherapy, 60(6), 3730–3742. https://doi.org/10.1128/AAC.00420-16 | |
| dc.relation | Khatib, R., Riederer, K., Sharma, M., Shemes, S., Iyer, S. P., & Szpunar, S. (2015). Screening for intermediately vancomycin-susceptible and vancomycin-heteroresistant staphylococcus aureus by use of vancomycin-supplemented brain heart infusion agar biplates: Defining growth interpretation criteria based on gold standard confirmation. Journal of Clinical Microbiology, 53(11), 3543–3546. https://doi.org/10.1128/JCM.01620-15 | |
| dc.relation | Kirby, A., Graham, R., Williams, N. J., Wootton, M., Broughton, C. M., Alanazi, M., … Parry, C. M. (2010). Staphylococcus aureus with reduced glycopeptide susceptibility in Liverpool, UK. Journal of Antimicrobial Chemotherapy, 65(4), 721–724. https://doi.org/10.1093/jac/dkq009 | |
| dc.relation | Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H., & Hiramatsu, K. (2003). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Molecular Microbiology. https://doi.org/10.1046/j.1365-2958.2003.03599.x | |
| dc.relation | Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., … Lund, O. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. Journal of Clinical Microbiology. https://doi.org/10.1128/JCM.06094-11 | |
| dc.relation | Leonard, S. N., Rossi, K. L., Newton, K. L., & Rybak, M. J. (2009). Evaluation of the Etest GRD for the detection of Staphylococcus aureus with reduced susceptibility to glycopeptides. Journal of Antimicrobial Chemotherapy, 63(3), 489–492. https://doi.org/10.1093/jac/dkn520 | |
| dc.relation | Lin, L. C., Chang, S. C., Ge, M. C., Liu, T. P., & Lu, J. J. (2018). Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infection and Drug Resistance, 11, 113–123. https://doi.org/10.2147/IDR.S148335 | |
| dc.relation | Lin, S. Y., Chen, T. C., Chen, F. J., Chen, Y. H., Lin, Y. I., Kristopher Siu, L., & Lu, P. L. (2012). Molecular epidemiology and clinical characteristics of hetero-resistant vancomycin intermediate Staphylococcus aureus bacteremia in a Taiwan Medical Center. Journal of Microbiology, Immunology and Infection, 45(6), 435–441. https://doi.org/10.1016/j.jmii.2012.05.004 | |
| dc.relation | Lindsay, J. A. (2014). Staphylococcus aureus genomics and the impact of horizontal gene transfer. International Journal of Medical Microbiology, 304(2), 103–109. https://doi.org/10.1016/j.ijmm.2013.11.010 | |
| dc.relation | Liu, & Chambers. (2003). Staphylococcus aureus infections. The New England Journal of Medicine, 339(27), 2026–2027. https://doi.org/10.1128/AAC.47.10.3040 | |
| dc.relation | Lowy, F. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806 | |
| dc.relation | Maki, H., McCallum, N., Bischoff, M., Wada, A., & Berger-bachi, B. (2004). tcaA Inactivation Increases Glycopeptide Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 48(6), 1953–1959. https://doi.org/10.1128/AAC.48.6.1953 | |
| dc.relation | Matsuo, M., Cui, L., Kim, J., & Hiramatsu, K. (2013). Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3. Antimicrobial Agents and Chemotherapy, 57(12), 5843–5853. https://doi.org/10.1128/AAC.00425-13 | |
| dc.relation | Matsuo, M., Hishinuma, T., Katayama, Y., Cui, L., Kapi, M., & Hiramatsu, K. (2011). Mutation of RNA Polymerase β Subunit ( rpoB ) Promotes hVISA-to-VISA Phenotypic Conversion of Strain Mu3. Antimicrobial Agents and Chemotherapy, 55(9), 4188–4195. https://doi.org/10.1128/aac.00398-11 | |
| dc.relation | Matsuo, M., Hishinuma, T., Katayama, Y., & Hiramatsu, K. (2015). A mutation of RNA polymerase β′ subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into “slow VISA.” Antimicrobial Agents and Chemotherapy, 59(7), 4215–4225. https://doi.org/10.1128/AAC.00135-15 | |
| dc.relation | Mccormick, J. K., Yarwood, J. M., & Schlievert, P. M. (2001). Toxic Shock Syndrome And Bacterial Superantigens: An Update. Ann. Rev. Microbiol., 55, 77–104. | |
| dc.relation | Melo-Cristino, J., Resina, C., Manuel, V., Lito, L., & Ramirez, M. (2013). First case of infection with vancomycin-resistant Staphylococcus aureus in Europe. The Lancet, 382(9888), 205. https://doi.org/10.1016/S0140-6736(13)61219-2 | |
| dc.relation | Mendes, R. E., Sader, H. S., Deshpande, L. M., Diep, B. A., Chambers, H. F., & Jones, R. N. (2010). Characterization of baseline methicillin-resistant Staphylococcus aureus isolates recovered from phase IV clinical trial for linezolid. Journal of Clinical Microbiology, 48(2), 568–574. https://doi.org/10.1128/JCM.01384-09 | |
| dc.relation | Mishra, N. N., Bayer, A. S., Weidenmaier, C., Grau, T., Wanner, S., Stefani, A., … Yang, S. J. (2014). Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: Relative roles of mprF and dlt operons. PLoS ONE, 9(9), 13–18. https://doi.org/10.1371/journal.pone.0107426 | |
| dc.relation | Moise-Broder, P. A., Sakoulas, G., Eliopoulos, G. M., Schentag, J. J., Forrest, A., & Moellering, R. C. (2004). Accessory Gene Regulator Group II Polymorphism in Methicillin-Resistant Staphylococcus aureus Is Predictive of Failure of Vancomycin Therapy. Clinical Infectious Diseases, 38(12), 1700–1705. https://doi.org/10.1086/421092 | |
| dc.relation | Munita, J. M., Bayer, A. S., & Arias, C. A. (2015). Evolving Resistance among Gram-positive Pathogens. Clinical Infectious Diseases, 61(Suppl 2), S48–S57. https://doi.org/10.1093/cid/civ523 | |
| dc.relation | Nannini, E., Murray, B. E., & Arias, C. A. (2010). Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Current Opinion in Pharmacology, 10(5), 516–521. https://doi.org/10.1016/j.coph.2010.06.006 | |
| dc.relation | Neoh, H. M., Cui, L., Yuzawa, H., Takeuchi, F., Matsuo, M., & Hiramatsu, K. (2008).
Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrobial Agents and Chemotherapy, 52(1), 45–53. https://doi.org/10.1128/AAC.00534-07 | |
| dc.relation | Nigo, M., Diaz, L., Carvajal, L. P., Tran, T. T., Rios, R., Panesso, D., … Chambers, H. F. (2017). Ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus causing infective endocarditis. Antimicrobial Agents and Chemotherapy, 61: e01235-16. https://doi.org/10.1128/AAC.01235-16 | |
| dc.relation | O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Retrieved from https://amr-review.org. https://doi.org/10.1016/j.jpha.2015.11.005 | |
| dc.relation | Oliveira, D. C., & de Lencastre, H. (2002). Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46(7), 2155–2161. https://doi.org/10.1128/AAC.46.7.2155 | |
| dc.relation | Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), 206–214. https://doi.org/10.1093/nar/gkt1226 | |
| dc.relation | Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., … Parkhill, J. (2015). Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/bioinformatics/btv421 | |
| dc.relation | Panesso, D., Planet, P. J., Diaz, L., Hugonnet, J. E., Tran, T. T., Narechania, A., ... & Londoño, A. (2015). Methicillin-susceptible, vancomycin-resistant Staphylococcus aureus, Brazil. Emerging infectious diseases, 21(10), 1844-1848. | |
| dc.relation | Passalacqua, K. D., Satola, S. W., Crispell, E. K., & Read, T. D. (2012). A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin. Antimicrobial Agents and Chemotherapy, 56(10): 5212-23. https://doi.org/10.1128/AAC.05770-11 | |
| dc.relation | Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. | |
| dc.relation | Peng, H., Hu, Q., Shang, W., Yuan, J., Zhang, X., Liu, H., … Rao, X. (2017). WalK(S221P), a naturally occurring mutation, confers vancomycin resistance in VISA strain XN108. Journal of Antimicrobial Chemotherapy, 72(4), 1006–1013. https://doi.org/10.1093/jac/dkw518 | |
| dc.relation | Périchon, B., & Courvalin, P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 53(11), 4580–4587. https://doi.org/10.1128/AAC.00346-09 | |
| dc.relation | Pfeltz, R. F., Schmidt, J. L., & Wilkinson, B. J. (2001). A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microbial Drug Resistance, 7(3), 289–295. https://doi.org/10.1089/10766290152652846 | |
| dc.relation | Pitz, A. M., Yu, F., Hermsen, E. D., Rupp, M. E., Fey, P. D., & Olsen, K. M. (2011). Vancomycin susceptibility trends and prevalence of heterogeneous vancomycin-intermediate Staphylococcus aureus in clinical methicillin-resistant S. aureus isolates. Journal of Clinical Microbiology, 49(1), 269–274. https://doi.org/10.1128/JCM.00914-10 | |
| dc.relation | Raǧbetli, C., Parlak, M., Bayram, Y., Guducuoglu, H., & Ceylan, N. (2016). Evaluation of Antimicrobial Resistance in Staphylococcus aureus Isolates by Years. Interdisciplinary Perspectives on Infectious Diseases, 2016. https://doi.org/10.1155/2016/9171395 | |
| dc.relation | Reipert, A., Ehlert, K., Kast, T., & Bierbaum, G. (2003). Morphological and Genetic Differences in Two Isogenic Staphylococcus aureus Strains with Decreased Susceptibilities to Vancomycin. Antimicrobial Agents and Chemotherapy, 47(2), 568–576. https://doi.org/10.1128/AAC.47.2.568 | |
| dc.relation | Reyes, J., Rincón, S., Díaz, L., Panesso, D., Contreras, G. A., Zurita, J., … Arias, C. A. (2009). Dissemination of Methicillin‐Resistant Staphylococcus aureus USA300 Sequence Type 8 Lineage in Latin America. Clinical Infectious Diseases, 49(12), 1861–1867. https://doi.org/10.1086/648426 | |
| dc.relation | Richter, S. S., Satola, S. W., Crispell, E. K., Heilmann, K. P., Dohrn, C. L., Riahi, F., … Doern, G. V. (2011). Detection of Staphylococcus aureus isolates with heterogeneous intermediate-level resistance to vancomycin in the United States. Journal of Clinical Microbiology, 49(12), 4203–4207. https://doi.org/10.1128/JCM.01152-11 | |
| dc.relation | Riederer, K., Shemes, S., Chase, P., Musta, A., Mar, A., & Khatib, R. (2011). Detection of intermediately vancomycin-susceptible and heterogeneous Staphylococcus aureus isolates: Comparison of etest and agar screening methods. Journal of Clinical Microbiology, 49(6), 2147–2150. https://doi.org/10.1128/JCM.01435-10 | |
| dc.relation | Rodríguez-Noriega, E., Seas, C., Guzmán-Blanco, M., Mejía, C., Alvarez, C., Bavestrello, L., … Gotuzzo, E. (2010). Evolution of methicillin-resistant Staphylococcus aureus clones in Latin America. International Journal of Infectious Diseases, 14(7), 560–566. https://doi.org/10.1016/j.ijid.2009.08.018 | |
| dc.relation | Rossi, F., Diaz, L., Wollam, A., Panesso, D., Zhou, Y., Rincon, S., … Arias, C. A. (2014). Transferable Vancomycin Resistance in a Community-Associated MRSA Lineage. New England Journal of Medicine, 370(16), 1524–1531. https://doi.org/10.1056/NEJMoa1303359 | |
| dc.relation | Rybak, M. J. (2006). The Pharmacokinetic and Pharmacodynamic Properties of Vancomycin. Clinical Infectious Diseases, 42(Supplement 1), S35–S39. https://doi.org/10.1086/491712 | |
| dc.relation | Sabat, A. J., Tinelli, M., Grundmann, H., Akkerboom, V., Monaco, M., Grosso, M. Del, … Friedrich, A. W. (2018). Daptomycin resistant staphylococcus aureus clinical strain with novel non-synonymous mutations in the mprF and vraS genes: A new insight into daptomycin resistance. Frontiers in Microbiology, 9, 1–10. https://doi.org/10.3389/fmicb.2018.02705 | |
| dc.relation | Saito, M., Katayama, Y., Hishinuma, T., Iwamoto, A., Aiba, Y., Kuwahara-Arai, K., … Hiramatsu, K. (2014). “Slow VISA,” a novel phenotype of vancomycin resistance, found in vitro in heterogeneous vancomycin-intermediate staphylococcus aureus strain Mu3. Antimicrobial Agents and Chemotherapy, 58(9), 5024–5035. https://doi.org/10.1128/AAC.02470-13 | |
| dc.relation | Samanta, D., & Elasri, M. O. (2014). The msaABCR operon regulates resistance in vancomycin-intermediate Staphylococcus aureus strains. Antimicrobial Agents and Chemotherapy, 58(11), 6685–6695. https://doi.org/10.1128/AAC.03280-14 | |
| dc.relation | Satola, S. W., Farley, M. M., Anderson, K. F., & Patel, J. B. (2011). Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. Journal of Clinical Microbiology, 49(1): 177-183. https://doi.org/10.1128/JCM.01128-10 | |
| dc.relation | Shoji, M., Cui, L., Iizuka, R., Komoto, A., Neoh, H., Watanabe, Y., … Hiramatsu, K. (2011). walK and clpP Mutations Confer Reduced Vancomycin Susceptibility in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3870–3881. https://doi.org/10.1128/aac.01563-10 | |
| dc.relation | Sievert, D. M., Rudrik, J. T., Patel, J. B., McDonald, L. C., Wilkins, M. J., & Hageman, J. C. (2008). Vancomycin-Resistant Staphylococcus aureus in the United States, 2002-2006. Clinical Infectious Diseases, 46(5), 668–674. https://doi.org/10.1086/527392 | |
| dc.relation | Silveira, A. C., da Cunha, G. R., Caierão, J., de Cordova, C. M., & d’Azevedo, P. A. (2015). Molecular epidemiology of heteroresistant vancomycin-intermediate Staphylococcus aureus in Brazil. Brazilian Journal of Infectious Diseases, 19(5), 466–472. https://doi.org/10.1016/j.bjid.2015.06.013 | |
| dc.relation | Singh, V. K., Schmidt, J. L., Jayaswal, R. K., & Wilkinson, B. J. (2003). Impact of sigB mutation on Staphylococcus aureus oxacillin and vancomycin resistance varies with parental background and method of assessment. International Journal of Antimicrobial Agents, 21(3), 256–261. https://doi.org/10.1016/S0924-8579(02)00359-X | |
| dc.relation | Sirijan, S., & Nitaya, I. (2016). Mechanisms of antimicrobial resistance in bacteria in ESKAPE pahogens. BioMed Research International, 2016, 1–8. https://doi.org/10.1016/j.ajic.2006.05.219 | |
| dc.relation | Song, Y., Rubio, A., Jayaswal, R. K., Silverman, J. A., & Wilkinson, B. J. (2013). Additional Routes to Staphylococcus aureus Daptomycin Resistance as Revealed by Comparative Genome Sequencing, Transcriptional Profiling, and Phenotypic Studies. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058469 | |
| dc.relation | Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 | |
| dc.relation | Strommenger, B., Cuny, C., Werner, G., & Witte, W. (2004). Obvious Lack of Association between Dynamics of Epidemic Methicillin-Resistant Staphylococcus aureus in Central Europe and agr Specificity Groups. European Journal of Clinical Microbiology and Infectious Diseases, 23(1), 15–19. https://doi.org/10.1007/s10096-003-1046-8 | |
| dc.relation | Stryjewski, M. E., & Corey, G. R. (2014). Methicillin-resistant staphylococcus aureus: An evolving pathogen. Clinical Infectious Diseases, 58(SUPPL. 1). https://doi.org/10.1093/cid/cit613 | |
| dc.relation | Sugiyama, S., Matsu, I. Y. O., Maenaka, K., & Vassylyev, D. G. (1996). PotD protein complexed with spermidine and the mechanism of polyamine binding. Protein Science, 5(1984), 1984–1990. | |
| dc.relation | Tenover, F. C., Arbeit, R. D., Goering, R. V, Mickelsen, P. A., Murray, B. E., Persing, D. H., & Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33(9), 2233–2239. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7494007 | |
| dc.relation | The UniProt Consortium. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45(D1), D158–D169. https://doi.org/10.1093/nar/gkw1099 | |
| dc.relation | Turnidge J, Lawson P, Munro R, Benn R. (1989). A national survey of antimi- crobial resistance in Staphylococcus aureus in Australian teaching hos- pitals. Med J Aust, 150(65), 69–72. | |
| dc.relation | Vandenesch, F., Lina, G., & Henry, T. (2012). Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors? Frontiers in Cellular and Infection Microbiology, 2, 1–15. https://doi.org/10.3389/fcimb.2012.00012 | |
| dc.relation | Vega, F., Domínguez, M., Bello, H., González-Rocha, G., Riedel, G., Mella, S., … Alarcón, P. (2015). Isolation of Staphylococcus aureus hetero-resistant to vancomycin (hVISA) in the Regional Hospital of Concepción, Chile. Revista Chilena de Infectologia. https://doi.org/10.4067/S0716-10182015000600017 | |
| dc.relation | Verdier, I., Reverdy, M. E., Etienne, J., Lina, G., Bes, M., & Vandenesch, F. (2004). Staphylococcus aureus Isolates with Reduced Susceptibility to Glycopeptides Belong to Accessory Gene Regulator Group I or II. Antimicrobial Agents and Chemotherapy, 48(3), 1024–1027. https://doi.org/10.1128/AAC.48.3.1024-1027.2004 | |
| dc.relation | Walsh, T. R., Bolmstro, A., Qwärnsröm, A., Ho, P., Wootton, M., Howe, R. A., … Diekema, D. (2001). Evaluation of Current Methods for Detection of Staphylococci with Reduced Susceptibility to Glycopeptides. Journal of Clinical Microbiology, 39(7), 2439–2444. https://doi.org/10.1128/JCM.39.7.2439 | |
| dc.relation | Walters, M. S., Eggers, P., Albrecht, V., Travis, T., Lonsway, D., Hovan, G., … Kallen, A. (2015). Vancomycin-Resistant Staphylococcus aureus - Delaware, 2015. Morbidity and Mortality Weekly Report, 64(37). | |
| dc.relation | Wang, J. L., Lai, C. H., Lin, H. H., Chen, W. F., Shih, Y. C., & Hung, C. H. (2013). High vancomycin minimum inhibitory concentrations with heteroresistant vancomycin-intermediate Staphylococcus aureus in meticillin-resistant S. aureus bacteraemia patients. International Journal of Antimicrobial Agents, 42(5), 390–394. https://doi.org/10.1016/j.ijantimicag.2013.07.010 | |
| dc.relation | Wang, Y., Li, X., Jiang, L., Han, W., Xie, X., Jin, Y., … Wu, R. (2017). Novel mutation sites in the development of vancomycin- intermediate resistance in staphylococcus aureus. Frontiers in Microbiology, 7, 1–12. https://doi.org/10.3389/fmicb.2016.02163 | |
| dc.relation | Wenzel R.P., Nettleman M.D., Jones R.N., Pfaller M.A. (1991). Methicillin- resistant Staphylococcus aureus: implications for the 1990s and effective control measures. Am J Med, 91, 221S–7S. | |
| dc.relation | Wielders, C. L., Vriens, M. R., Brisse, S., De Graaf-Miltenburg, L. A., Troelstra, A., Fleer, A., … Fluit, A. C. (2001). Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet, 357(9269), 1674–1675. https://doi.org/10.1016/S0140-6736(00)04832-7 | |
| dc.relation | Wijesekara, P. N. K., Kumbukgolla, W. W., Jayaweera, J. A. A. S., & Rawat, D. (2017). Review on usage of vancomycin in livestock and humans: Maintaining its efficacy, prevention of resistance and alternative therapy. Veterinary Sciences. https://doi.org/10.3390/vetsci4010006 | |
| dc.relation | Wootton, M. (2001). A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. Journal of Antimicrobial Chemotherapy, 47(4), 399–403. https://doi.org/10.1093/jac/47.4.399 | |
| dc.relation | Wootton, M., Macgowan, A. P., & Walsh, T. R. (2005). Expression of tcaA and mprF and glycopeptide resistance in clinical glycopeptide-intermediate Staphylococcus aureus (GISA) and heteroGISA strains. Biochimica et Biophysica Acta - General Subjects, 1726(3), 326–327. https://doi.org/10.1016/j.bbagen.2005.09.002 | |
| dc.relation | Wootton, Mandy, Bennett, P. M., MacGowan, A. P., & Walsh, T. R. (2005). Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. Journal of Antimicrobial Chemotherapy, 56(5), 944–947. https://doi.org/10.1093/jac/dki289 | |
| dc.relation | Yang, C. C., Sy, C. L., Huang, Y. C., Shie, S. S., Shu, J. C., Hsieh, P. H., … Chen, C. J. (2018). Risk factors of treatment failure and 30-day mortality in patients with bacteremia due to MRSA with reduced vancomycin susceptibility. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-26277-9 | |
| dc.relation | Yim, G., Thaker, M. N., Koteva, K., & Wright, G. (2014). Glycopeptide antibiotic biosynthesis. Journal of Antibiotics, 67(1), 31–41. https://doi.org/10.1038/ja.2013.117 | |
| dc.relation | Yoo, J. Il, Kim, J. W., Kang, G. S., Kim, H. S., Yoo, J. S., & Lee, Y. S. (2013). Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus. Journal of Microbiology,
51(2), 160–165. https://doi.org/10.1007/s12275-013-3088-7 | |
| dc.relation | Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., … Larsen, M. V. (2012). Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 67(11), 2640–2644. https://doi.org/10.1093/jac/dks261 | |
| dc.relation | Zhang, S., Sun, X., Chang, W., Dai, Y., & Ma, X. (2015). Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS ONE, 10(8), e0136082. https://doi.org/10.1371/journal.pone.0136082 | |
| dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights | Acceso abierto | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
| dc.title | Exploración de características genéticas asociadas al desarrollo del fenotipo de resistencia intermedia heterogénea a vancomicina (hVISA), en aislamientos de Staphylococcus aureus resistente a meticilina (MRSA) causantes de bacteriemia | |
| dc.type | Otro | |