dc.contributorOrjuela Londoño, Álvaro
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorRodríguez Flórez, Juan Sebastián
dc.date.accessioned2020-11-10T17:38:47Z
dc.date.available2020-11-10T17:38:47Z
dc.date.created2020-11-10T17:38:47Z
dc.date.issued2020-08-03
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78607
dc.description.abstractEl crecimiento de la población a nivel mundial conlleva varios retos, especialmente los correspondientes a la correcta gestión de residuos, y principalmente en áreas de gran concentración poblacional. Sin las adecuadas prácticas de disposición, los residuos pueden causar un gran número de problemas a nivel ambiental, económico y social. Entre los residuos más problemáticos en términos de manejo y disposición, el Aceite de Cocina Usado (ACU) es un residuo alimenticio que se produce en grandes volúmenes. El manejo inapropiado del ACU genera una gran variedad de inconvenientes tales como daños a la infraestructura, inundaciones, proliferación de pestes, polución en los ecosistemas e incluso problemas de salud pública por recolección y redistribución ilegal del residuo. Particularmente en Bogotá, la ciudad capital de Colombia, con aproximadamente 10 millones de habitantes en su área metropolitana, los ACU representan una gran problemática. En este aspecto, este trabajo se enfoca en el estudio, caracterización y optimización de la cadena de recolección del ACU en la ciudad de Bogotá para su posterior empleo como materia prima oleoquímica. Primero, se realizó la caracterización de la cadena logística del ACU en la ciudad de Bogotá. Esta tarea involucró la ubicación y naturaleza de los generadores, volúmenes disponibles, características del ACU, caracterización de las prácticas de recolección y rutas, y el inventario de consumo de recursos durante el proceso de recolección. Luego, se construyó e implementó un modelo computacional del esquema de recolección en software libre (Python). Para esto se utilizó una aproximación de problema de enrutamiento de vehículos empleando caminos hamiltonianos ponderados. Los pesos fueron definidos de acuerdo con indicadores económicos y ambientales calculados como costos en dinero y emisiones de CO2 equivalente, respectivamente. Empleando un algoritmo genético se logró identificar el conjunto de rutas de recolección que minimizan los costos y las emisiones de CO2, y la localización de un punto de acopio que minimizaría los costos de la cadena de recolección. Finalmente, se hizo una identificación preliminar de los derivados oleoquímicos con potencial para ser obtenidos a partir de los ACUs recolectados.
dc.description.abstractGlobal population growth involves a variety of challenges, especially those related to the correct management of waste, mainly in highly populated areas. Without the correct disposal practices, waste can cause a large number of environmental, economic and social problems. Among the most problematic wastes in terms of handling and disposal, Used Cooking Oil (ACU) standouts as a food waste that is produced in large volumes. The inadequate management of the ACU generates a wide variety of problems such as damage to infrastructure, floods, pest proliferation, pollution of ecosystems and even public health problems due to the illegal collection and redistribution of ACU as new edible oil. Particularly in Bogotá, the capital city of Colombia, with approximately 10 million inhabitants in its metropolitan area, the ACU represent a major problem. In this aspect, this work focuses on the study, characterization and optimization of the ACU collection chain in the city of Bogotá for its subsequent use as oleochemical raw material. First, the characterization of the ACU logistics chain in the city of Bogotá was carried out. This task involved the location and identification of ACUs generators, available volumes, characteristics of the ACU, characterization of collection practices and routes, and the inventory of resource consumption during the collection process. Then, a computational model of the supply chain was constructed in an open-source software (Python). For this, a vehicle routing problem approximation was used using weighted Hamiltonian roads. Weights were defined according to economic and environmental indicators calculated as costs and equivalent CO2 emissions, respectively. By the use of a genetic algorithm, it was possible to identify the set of collection routes that minimize costs and CO2 emissions, and the location of a collection point that would minimize the costs of the collection chain. Finally, a preliminary identification of the oleochemical derivatives with potential to be obtained from the collected ACUs was made.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationARPEL, & IICA. (2009). Manual de biocombustibles.
dc.relationBeyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing, 1, 3–52. https://doi.org/10.2146/130117
dc.relationAlcaldía mayor de Bogotá. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0.pdf
dc.relationBioEnergie. (2020). Öli problematik. https://www.bioenergie-aus-der-kueche.eu/sammelsystem/oeli-problematik.html
dc.relationBiogras. (2020). Recolección de Aceites Vegetales Usados. https://biogras.com.co/servicios/
dc.relationBloemhof-Ruwaard, J. M., Van Wassenhove, L. N., Gabel, H. L., & Weaver, P. M. (1996). An environmental life cycle optimization model for the European pulp and paper industry. Omega, 24(6), 615–629. https://doi.org/10.1016/S0305-0483(96)00026-6
dc.relationCaldeira, C., Queirós, J., & Freire, F. (2015). Biodiesel from Waste Cooking Oils in Portugal: Alternative Collection Systems. Waste and Biomass Valorization, 6(5), 771–779. https://doi.org/10.1007/s12649-015-9386-z
dc.relationCaldeira, Carla, Queirós, J., Noshadravan, A., & Freire, F. (2016). Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems. Resources, Conservation and Recycling, 112, 83–92. https://doi.org/10.1016/j.resconrec.2016.05.005
dc.relationChakrabarty, M. . (2003). Chemistry and Technology of Oils and Fats. Allied Publishers PVT. Limited.
dc.relationChoe, E., & Min, D. B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72(5). https://doi.org/10.1111/j.1750-3841.2007.00352.x
dc.relationChua, C. B. H., Lee, H. M., & Low, J. S. C. (2010). Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore. International Journal of Life Cycle Assessment, 15(4), 417–423. https://doi.org/10.1007/s11367-010-0166-5
dc.relationCroes, G. A. (1958). A Method for Solving Traveling-Salesman Problems. Operations Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791
dc.relationDANE. (2018). Censo nacional de población y vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/
dc.relationDinero. (2015). El aceite usado puede convertirse en el próximo biocombustible. Dinero.
dc.relationEchavarría Restrepo, J. (2012). El desarrollo sostenible y el reciclaje del aceite usado de cocina a la luz de la jurisprudencia y el ordenamiento jurídico colombiano. Producción + Limpia, 7(1), 109–122.
dc.relationEl Espectador. (2017). Conozca la velocidad a esta hora en las principales vías de Bogotá. El Espectador. https://www.elespectador.com/noticias/bogota/conozca-la-velocidad-a-esta-hora-en-las-principales-vias-de-bogota/
dc.relationEl Tiempo. (2014). Hasta con cloro revuelven aceites para venta ilegal; prenden alarmas. 14 de Mayo de 2014. https://www.eltiempo.com/archivo/documento/CMS-13989999
dc.relationEnweremadu, C. C., & Mbarawa, M. M. (2009). Technical aspects of production and analysis of biodiesel from used cooking oil-A review. Renewable and Sustainable Energy Reviews, 13(9), 2205–2224. https://doi.org/10.1016/j.rser.2009.06.007
dc.relationFedepalma. (2018). Informe de gestión Fedepalma 2018.
dc.relationFengqui, Y., Ling, T., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cullulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. Process Systems Engineering, 58(4), 1157–1180.
dc.relationGoldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning (1st ed.). Addison-Wesley Publishing Company.
dc.relationGomez, J. (2004). Self adaptation of operator rates in evolutionary algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3102(June 2004), 1162–1173. https://doi.org/10.1007/978-3-540-24854-5_113
dc.relationGreenea. (2019). Waste based market performance. https://www.greenea.com/en/market-analysis/
dc.relationGreenfuel. (2020). Greenfuel. https://www.greenfuel.com.co/
dc.relationGSI, & IISD. (2013). The EU Biofuel Policy and Palm Oil: Cutting subsidies or cutting rainforest? https://www.iisd.org/gsi/sites/default/files/bf_eupalmoil.pdf
dc.relationGunstone, F. D., & Hamilton, R. J. (2001). Oleochemical Manufacture and Applications. CRC Press.
dc.relationHoward, G., & Bartram, J. (2003). La cantidad de agua domiciliaria, el nivel del servicio y la salud. https://www.who.int/water_sanitation_health/diseases/wsh0302/es/
dc.relationHu, Y., Scarborough, M., Aguirre-Villegas, H., Larson, R. A., Noguera, D. R., & Zavala, V. M. (2018). A Supply Chain Framework for the Analysis of the Recovery of Biogas and Fatty Acids from Organic Waste. ACS Sustainable Chemistry and Engineering, 6(5), 6211–6222. https://doi.org/10.1021/acssuschemeng.7b04932
dc.relationIndex Mundi. (2020a). Colombia Palm Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=palm-oil&graph=domestic-consumption
dc.relationIndex Mundi. (2020b). Colombia Soybean Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=soybean-oil&graph=domestic-consumption
dc.relationIndex Mundi. (2020c). Colombia Sunflowerseed Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=sunflowerseed-oil&graph=domestic-consumption
dc.relationJalving, J., & Zavala, V. M. (2018). An Optimization-Based State Estimation Framework for Large-Scale Natural Gas Networks. Industrial and Engineering Chemistry Research, 57(17), 5966–5979. https://doi.org/10.1021/acs.iecr.7b04124
dc.relationKnothe, G., & Steidley, K. R. (2009). A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresource Technology, 100(23), 5796–5801. https://doi.org/10.1016/j.biortech.2008.11.064
dc.relationKrikke, H. R. (1998). Recovery strategies and reverse logistic network design. Tilburg University.
dc.relationLammel, G., & Graßl, H. (1995). Greenhouse effect of NOX. Environmental Science and Pollution Research, 2(1), 40–45. https://doi.org/10.1007/BF02987512
dc.relationMamajek, E. E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P. D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W. M., Haberreiter, M., Hekker, S., Hilton, J. L., Kostov, V., Kurtz, D. W., Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M. M., … Stewart, S. G. (2015). IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties. 1–6. http://arxiv.org/abs/1510.07674
dc.relationMandolesi De Araújo, C. D., De Andrade, C. C., De Souza E Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445–452. https://doi.org/10.1016/j.rser.2013.06.014
dc.relationMarkets and Markets. (2019). Oleochemicals market. https://www.marketsandmarkets.com/Market-Reports/oleochemicals-market-235516809.html?gclid=CjwKCAjwte71BRBCEiwAU_V9h6JlNjeXqa1wkC1zdLtkk8D1rQPvi7o6t5_nTYFunoiANEiMogG1BxoC0xkQAvD_BwE
dc.relationMincomercio Industria y Turismo, & Bancoldex. (2017). INTELLIGENT DIVERSIFICATION: Possibilities for the sophistication and diversification of the Oil Palm industry in Colombia. https://www.bancoldex.com/sites/default/files/documentos/intelligent_diversification_palm_oil.pdf
dc.relationMoazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181
dc.relationMordor Ingelligence. (2020). SURFACTANTS MARKET - GROWTH, TRENDS, AND FORECAST (2020 - 2025).
dc.relationMunguía-López, A. del C., Zavala, V. M., Santibañez-Aguilar, J. E., & Ponce-Ortega, J. M. (2020). Optimization of municipal solid waste management using a coordinated framework. Waste Management, 115, 15–24. https://doi.org/10.1016/j.wasman.2020.07.006
dc.relationNeiro, S. M. S., & Pinto, J. M. (2004). A general modeling framework for the operational planning of petroleum supply chains. Computers and Chemical Engineering, 28(6–7), 871–896. https://doi.org/10.1016/j.compchemeng.2003.09.018
dc.relationOEC. (2020). Palm Oil. https://oec.world/en/profile/hs92/31511#trade
dc.relationOrjuela, Á. (2020). Industrial Oleochemicals from Used Cooking Oils (UCOs) - Sustainability Benefits and Challenges. In S. Sidkar & F. Princiotta (Eds.), Advances in Carbon Management Technologies (pp. 74–96). CRC Press.
dc.relationOrtner, M. E., Müller, W., Schneider, I., & Bockreis, A. (2016). Environmental assessment of three different utilization paths of waste cooking oil from households. Resources, Conservation and Recycling, 106, 59–67. https://doi.org/10.1016/j.resconrec.2015.11.007
dc.relationPapageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain optimization for the pharmaceutical industries. Industrial and Engineering Chemistry Research, 40(1), 275–286. https://doi.org/10.1021/ie990870t
dc.relationRincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042
dc.relationRincón Vija, L. Á. (2018). Reutilización de aceites de cocina usados en la producción de aceites epoxidados. Universidad Nacional de Colombia.
dc.relationSemana. (2017). ¿Cómo y por qué deshacerse del aceite de cocina usado? https://sostenibilidad.semana.com/impacto/articulo/aceite-de-cocina-usado-como-botarlo-y-reciclarlo-en-colombia/38474
dc.relationSigra. (2014). El Cartel del Aceite Pirata. https://www.youtube.com/watch?v=jZ1UUUQnaWI
dc.relationSinghabhandhu, A., & Tezuka, T. (2010). The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics. Energy, 35(6), 2544–2551. https://doi.org/10.1016/j.energy.2010.03.001
dc.relationSipser, M. (2013). Introduction to the theory of computation (3rd ed.). Cengage Learning.
dc.relationSrivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80. https://doi.org/10.1111/j.1468-2370.2007.00202.x
dc.relationSTATISTA. (2019). Consumption of vegetable oils worldwide from 2013/14 to 2018/2019, by oil type (in million metric tons). https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/
dc.relationSTIN UCO. (2019). China exported more than 730000 tons of UCO in 2019,increased 26.7% than previous year. http://www.chinausedcookingoil.com/news/54.html
dc.relationSuaterna Hurtado, A. C. (2009). La fritura de los alimentos: el aceite de fritura. Perspectivas En Nutrición Humana, Vol. 11(No. 1).
dc.relationUSDA. (2019). Oilseeds: World Markets and Trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/n296xd515/w0892s45d/oilseeds.pdf
dc.relationVandermeersch, T., Alvarenga, R. A. F., Ragaert, P., & Dewulf, J. (2014). Environmental sustainability assessment of food waste valorization options. Resources, Conservation and Recycling, 87, 57–64. https://doi.org/10.1016/j.resconrec.2014.03.008
dc.relationWeisstein, E. W. (2020). Graph. Wolfram Math World. https://mathworld.wolfram.com/Graph.html
dc.relationWilkerson, T. (2005). Can one green deliver another? Harvard Business Review.
dc.relationXin-She, Y. (2014). Nature-Inspired Optimization Algorithms. In Studies in Systems, Decision and Control (First Edit, Vol. 118). Elsevier.
dc.relationZhou, Z., Cheng, S., & Hua, B. (2000). Supply chain optimization of continuous process industries with sustainability considerations. Computers and Chemical Engineering, 24(2–7), 1151–1158. https://doi.org/10.1016/S0098-1354(00)00496-8
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio de factibilidad para el aprovechamiento de ACUs en la ciudad de Bogotá
dc.typeOtro


Este ítem pertenece a la siguiente institución