dc.contributorPavas, Andrés
dc.contributorBlanco Castañeda, Ana María
dc.contributorPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.creatorAgudelo Martínez, Daniel
dc.date.accessioned2020-06-09T16:14:27Z
dc.date.available2020-06-09T16:14:27Z
dc.date.created2020-06-09T16:14:27Z
dc.date.issued2020-01-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77627
dc.description.abstractThis document presents a methodology for the identification of supraharmonic emissions (current and voltage conducted emissions between 2-150 kHz) at the end-user side of the distribution grid, using low power LED lamps as Equipment Under Test (EUT). First chapter presents a brief classification of power quality disturbances and describes those related to waveform distortion. Second chapter describes the measurement and experimental setups used to assess the supraharmonic emissions from selected EUT. Third chapter explains the methodology for the identification of supraharmonic emissions when EUT perform in single operation, and fourth chapter shows the interaction of such emissions for EUT in simultaneous operation. Along with a set of experimental combinations, supraharmonic emissions and their more relevant metrology aspects are discussed through the text. Results show how voltage and current supraharmonic emissions are (or not) affected by different variations in voltage source, equivalent network impedance, measurement setup and circuit topology of selected EUT. This research is aimed to contribute to the understanding and systematic assessment of supraharmonic emissions, with a special emphasis on metrological aspects and statistical methods for their identification.
dc.description.abstractEste documento presenta una metodología para la identificación de emisiones supraarmónicas (emisiones conducidas de tensión y corriente entre 2-150 kHz) en el lado del usuario final de la red de distribución, utilizando lámparas LED de baja potencia como Equipo Bajo Prueba (EBP). El primer capítulo presenta una breve clasificación de las perturbaciones de la calidad de potencia y describe aquellas relacionadas con la distorsión de la forma de onda. El segundo capítulo describe la configuración experimental y de medición utilizada para evaluar las emisiones supraarmónicas de los EBP seleccionados. El tercer capítulo explica la metodología usada para la identificación de las emisiones supraarmónicas cuando los EBP funcionan de manera individual, y el cuarto capítulo muestra la interacción de dichas emisiones en la operación simultánea de los EBP. Junto con un conjunto de combinaciones experimentales, las emisiones supraarmónicas y sus aspectos metrológicos más relevantes se analizan a través del texto. Los resultados muestran cómo las emisiones supraarmónicas de tensión y corriente se ven (o no) afectadas por diferentes variaciones en la fuente de tensión, la impedancia de red equivalente, el sistema de medición y la topología del circuito del EBP seleccionado. El objetivo de esta investigación es contribuir a la comprensión y el estudio sistemático de las emisiones supraarmónicas, con especial énfasis en los aspectos metrológicos y los métodos estadísticos para su identificación.
dc.languageeng
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationIEC, “International Electrotechnical Vocabulary (IEV) - Part 161: Electromagnetic compatibility," standard, International Electrotechnical Commission, Geneva, CH, 2017.
dc.relationM. H. J. Bollen and I. Y. H. Gu, Signal Processing of Power Quality Disturbances. Wiley-IEEE Press, 2006.
dc.relationIEC. Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods. Standard, International Electrotechnical Commission, Geneva, CH, 2003.
dc.relationM.H.J. Bollen. What is power quality? Electric Power Systems Research, 66(1):5 -14, 2003. ISSN 0378-7796. doi: https://doi.org/10.1016/S0378-7796(03)00067-1. Power Quality
dc.relationIEC. Electromagnetic compatibility (EMC) Part 1: General Section 1: Application and interpretation of fundamental definitions and terms. Standard, International Electrotechnical Commission, Geneva, CH, 2017.
dc.relationMath H. J. Bollen and Irene Y. H. Gu. Signal Processing of Power Quality Disturbances. Wiley-IEEE Press, 2006. ISBN 9780471731689.
dc.relationAnders Larsson. On High-Frequency Distortion in Low-Voltage Power Systems. Luleä University of Technology, 2011
dc.relationSarah Rönnberg. Emission and interaction from domestic installations in the low voltage electricity network, up to 150 kHz. Luleä University of Technology, Lulea, 2013. ISBN 978-91-7439-800-7.
dc.relationClayton Paul. Introduction to electromagnetic compatibility. Wiley-Interscience, Hoboken, N.J, 2006. ISBN 978-0-471-75500-5.
dc.relationNTC. NTC 5001: Calidad de la Potencia Eléctrica. Límites y metodología de evaluación en Punto de Conexión Común. Norma Técnica Colombiana, 2008.
dc.relationIEC. Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. Standard, International Electrotechnical Commission, Geneva, CH, 2002
dc.relationE. O. Anders Larsson, Math H. J. Bollen, Mats G. Wahlberg, C. Martin Lundmark, and Sarah K. Ronnberg. Measurements of high-frequency (2-150 kHz) distortion in low voltage networks. IEEE Transactions on Power Delivery, 25(3):1749-1757, jul 2010. doi: 10.1109/tpwrd.2010.2041371.
dc.relationSarah Karolina Ronnberg, Math H. J. Bollen, and Mats Wahlberg. Interaction between narrowband power-line communication and end-user equipment. IEEE Transactions on Power Delivery, 26(3):2034-2039, jul 2011. doi: 10.1109/tpwrd.2011.2130543.
dc.relationMath Bollen, Magnus Olofsson, Anders Larsson, Sarah Ronnberg, and Martin Lundmark. Standards for supraharmonics (2 to 150 kHz). IEEE Electromagnetic Compatibility Magazine, 3(1):114-119, 2014. doi: 10.1109/memc.2014.6798813.
dc.relationMath Bollen, Jan Meyer, Hortensia Amaris, Ana Maria Blanco, Aurora Gil de Castro, Jan Desmet, Matthias Klatt, Lukasz Kocewiak, Sarah Ronnberg, and Kai Yang. Future work on harmonics - some expert opinions part i - wind and solar power. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2014. doi: 10.1109/ichqp.2014.6842870.
dc.relationD. A. Martinez and A. Pavas. Current supraharmonics identification in commonly used low voltage devices. In 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pages 1-5, June 2015. doi: http://10.1109/PEPQA. 2015.7168230.
dc.relationL. Paulsson, B. Ekehov, S. Halen, T. Larsson, L. Palmqvist, A. Edris, D. Kidd, A.J.F. Keri, and B. Mehraban. High-frequency impacts in a converter-based back-to-back tie, the eagle pass installation. IEEE Transactions on Power Delivery, 18(4):1410-1415, oct 2003. doi: 10.1109/tpwrd.2003.817724.
dc.relationHani Vahedi, Abdolreza Sheikholeslami, Mohammad Tavakoli Bina, and Mahmood Vahedi. Review and simulation of fixed and adaptive hysteresis current control considering switching losses and high-frequency harmonics. Advances in Power Electronics, 2011: 1-6, 2011. doi: 10.1155/2011/397872.
dc.relationSarah K. Ronnberg, Math H.J. Bollen, Hortensia Amaris, Gary W. Chang, Irene Y.H. Gu, Lukasz H. Kocewiak, Jan Meyer, Magnus Olofsson, Paulo F. Ribeiro, and Jan Desmet. On waveform distortion in the frequency range of 2 kHz-150 kHz - review and research challenges. Electric Power Systems Research, 150:1-10, sep 2017. doi: 10.1016/j.epsr.2017.04.032
dc.relationSarah Ronnberg, Math Bollen, and Aurora Gil de Castro. Harmonic Distortion from Energy-Efficient Equipment and Production in the Low-Voltage Network. Luleä University of Technology, 2014.
dc.relationEnrique Jácome. Análisis de Compatibilidad Electromagnética y Calidad de Potencia entre dos tecnologías de lámparas de descarga que presentan bajo factor de potencia y coexisten en una instalación eléctrica. Universidad Nacional de Colombia, 2014.
dc.relationDaniel Agudelo-Martínez. Identificación de emisión de supraarmónicos asociada con algunos dispositivos de baja tensión. Universidad Nacional de Colombia, 2015.
dc.relationD. Agudelo-Martínez, M. Limas, A. Pavas, and J. Bacca. Supraharmonic bands detection for low voltage devices. In 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pages 1003-1009, Oct 2016. doi: 10.1109/ICHQP.2016.7783327.
dc.relationSarah Ronnberg, Math Bollen. Propagation of Supraharmonics in the Low Voltage Grid. Report, Energiforsk, Stockholm, Sweden, 2017.
dc.relationSarah Ronnberg, Anders Larsson, Math Bollen, and Jean-Luc Schanen. A simple model for interaction between equipment at a frequency of some tens of khz. In International Conference on Electricity Distribution: 06/06/2011-09/06/2011, 2011.
dc.relationMatthias Klatt, Jan Meyer, and Peter Schegner. Comparison of measurement methods for the frequency range of 2 kHz to 150 kHz. In 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2014. doi: 10.1109/ichqp.2014.6842791
dc.relationChristian Waniek, Thomas Wohlfahrt, Johanna M.A. Myrzik, Jan Meyer, Matthias Klatt, and Peter Schegner. Supraharmonics: Root causes and interactions between multiple devices and the low voltage grid. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, sep 2017. doi:10.1109/isgteurope.2017.8260267
dc.relationGrevener Anne, Meyer Jan, and Ronnberg Sarah. Comparison of measurement methods for the frequency range 2 -150 kHz supraharmonics). In 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS). IEEE, sep 2018. doi: 10.1109/amps.2018.8494879.
dc.relationI. Angulo, A. Arrinda, I. Fernandez, N. Uribe-Perez, I. Arechalde, and L. Hernandez. A review on measurement techniques for non-intentional emissions above 2 kHz. In 2016 IEEE International Energy Conference (ENERGYCON). IEEE, apr 2016. doi: 10.1109/energycon.2016.7513893.
dc.relationS. Subhani, V. Cuk, and J.F.G. Cobben. A literature survey on power quality disturbances in the frequency range of 2-150 kHz. Renewable Energy and Power Quality Journal, 1(15):405-410, apr 2017. doi: 10.24084/repqj15.333.
dc.relationI. Urdea-Marcus, A. Nestor, and P. Clarkson. The influence of the network impedance on the non-sinusoidal (harmonic) network current and flicker measurements. In CPEM 2010. IEEE, jun 2010. doi:10.1109/cpem.2010.5543785.
dc.relationDaniel Agudelo-Martinez, Camilo Garzon, and Andres Pavas. Interaction of power quality disturbances within 2-150 kHz (supraharmonics): Analytical framework. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2018. doi: 10.1109/ichqp.2018.8378859
dc.relationDaniel Agudelo-Martinez, Fabian Rios, and Andres Pavas. Interaction of some low power led lamps within 2-150 khz (supraharmonics). In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, may 2018. doi: 10.1109/ichqp.2018.8378815.
dc.relationD. Zhao and G. Rietveld. The influence of source impedance in electrical characterization of solid state lighting sources. In 2012 Conference on Precision electromagnetic Measurements. IEEE, jul 2012. doi: 10.1109/cpem.2012.6250921.
dc.relationS. Ronnberg and M. Bollen. Measurements of primary and secondary emission in the supraharmonic frequency range 2-150 khz. In -. CIRED, jun 2015.
dc.relationR Stiegler, J Meyer, J Drapela, T Hanzlik, M Hockel, K Scheida, and S Schory. Survey of network impedance in the frequency range 2-9 khz in public low voltage networks in at/ch/cz/ge. In (CIRED) 2019, Madrid. CIRED, jun 2019.
dc.relationHameg Instruments Germany. Line Impedance Stabilization Network, Technical Data. Rohde & Schwarz Germany, 2019.
dc.relationMatthias Klatt, Jan Meyer, Peter Schegner, Robert Wolf, and Bernhard Wittenberg. Filter for the measurement of supraharmonics in public low voltage networks. In 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). IEEE, August 2015. doi: 10.1109/isemc.2015.7256141.
dc.relationDewetron Inc. DEWE-3040 Data Acquisition System, Owner's Guide. Dewetron Inc,2019.
dc.relationAna-Maria Blanco, Ronny Gelleschus, Jan Meyer, and Peter Schegner. Impact of measurement setup and test load on the accuracy of harmonic current emission measurements. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, may 2015. doi: 10.1109/i2mtc.2015.7151245
dc.relationDaniel Agudelo-Martinez and Andres Pavas. Simulation of supraharmonics: A compact fluorescent lamp (CFL) in single operation. In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA). IEEE, may 2017. doi: 10.1109/pepqa.2017.7981682.
dc.relationAna Maria Blanco, Manish Gupta, Aurora Gil de Castro, Sarah Ronnberg, and Jan Meyer. Impact of at-top voltage waveform distortion on harmonic current emission and summation of electronic household appliances. Renewable Energy and Power Quality Journal, 1:698-703, apr 2018. doi: 10.24084/repqj16.437
dc.relationAnne Grevener, Jan Meyer, Sarah R onnberg, Math Bollen, and Johanna Myrzik. Survey of supraharmonic emission of household appliances. CIRED - Open Access Proceedings Journal, 2017(1):870-874, oct 2017. doi: 10.1049/oap-cired.2017.0458.
dc.relationBIPM. Evaluation of measurement data | Guide to the expression of uncertainty in measurement. Standard, Bureau International des Poids et Mesures - BIPM, 2008.
dc.relationPearson Electornics Inc. Pearson current monitor model 411, datasheet. Pearson Electronics Inc, 2019.
dc.relationSemyon G. Rabinovich. Evaluating Measurement Accuracy. Springer International Publishing, 2017. doi: 10.1007/978-3-319-60125-0
dc.relationICONTEC. Requisitos generales para la competencia de los laboratorios de ensayo y calibración. Standard, ICONTEC, 2005.
dc.relationD. Agudelo-Martinez, A.M. Blanco, R. Stiegler, F. Pavas, and J. Meyer. In uence of measurement setup on the emission of devices in the frequency range 2-150 khz. Power Tech 2019, 2019(1):to appear, 2019.
dc.relationS. K. Ronnberg, A. G. Castro, M. H. J. Bollen, A. Moreno-Munoz, and E. Romero-Cadaval. Supraharmonics from power electronics converters. In 2015 9th International Conference on Compatibility and Power Electronics (CPE), pages 539-544, June 2015. doi: 10.1109/CPE.2015.7231133.
dc.relationA. Moreno-Munoz, A. Gil-de-Castro, E. Romero-Cavadal, S. R onnberg, and M. Bollen. Supraharmonics (2 to 150 khz) and multi-level converters. In 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), pages 37-41, May 2015. doi:10.1109/PowerEng.2015.7266293
dc.relationAlan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing (2nd Edition) (Prentice-hall Signal Processing Series). Prentice Hall, 1999. ISBN 0137549202.
dc.relationMatlab. stft: Short-time fourier transform, 2019. Accessed in December 8, 2019.
dc.relationAna Maria Blanco, Sergey Yanchenko, Jan Meyer, and Peter Schegner. Impact of supply voltage distortion on the current harmonic emission of non-linear loads. DYNA, 82(192): 150-159, August 2015. doi:10.15446/dyna.v82n192.48591.
dc.relationA. M. Blanco, R. Stiegler, J. Meyer, and M. Schwenke. Implementation of harmonic phase angle measurement for power quality instruments. In 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), pages 1-6, Sep. 2016. doi: 10.1109/AMPS.2016.7602811.
dc.relationP. M. Korner, R. Stiegler, J. Meyer, T. Wohlfahrt, C. Waniek, and J. M. A. Myrzik. Acoustic noise of mass-market equipment caused by supraharmonics in the frequency range 2 to 20 khz. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), pages 1-6, May 2018. doi: 10.1109/ICHQP.2018.8378856.
dc.relationV. Khokhlov, J. Meyer, P. Schegner, D. AgudeloMartinez, A. Pavas: “Immunity assessment of hosehold appliances in the frequency range from 2 to 150 kHz”, 25th International Conference on Electricity Distribution, CIRED, Madrid, 2019
dc.relationRoy D. Yates and David J. Goodman. Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers. Wiley, 2004. ISBN 0471272140.
dc.relationNed Mohan, Tore M. Undeland, and William P. Robbins. Power Electronics: Converters, Applications, and Design. Wiley, 2002. ISBN 9780471226932.
dc.relationSarah K. Ronnberg, Aurora Gil de Castro, Antonio Moreno-Munoz, Math H.J. Bollen, and Joaquin Garrido. Solar PV inverter supraharmonics reduction with random PWM. In 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2017. doi: 10.1109/cpe.2017.7915248.
dc.relationDilini Darmawardana, Sarath Perera, Duane Robinson, Philip Ciufo, Jan Meyer, Matthias Klatt, and Upuli Jayatunga. Investigation of high frequency emissions (supraharmonics) from small, grid-tied, photovoltaic inverters of di erent topologies. In 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, May 2018. doi:10.1109/ichqp.2018.8378926.
dc.relationAndreas Mohos and Jozsef Ladanyi. Emission measurement of a solar park in the frequency range of 2 to 150 kHz. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). IEEE, August 2018. doi: 10.1109/emceurope.2018. 8485049.
dc.relationSimon Haykin and Michael Moher. Communication Systems. Wiley, 2009. ISBN 9780471697909.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSupraharmonics in low voltage networks
dc.typeOtro


Este ítem pertenece a la siguiente institución