dc.contributorMartínez Martínez, Roberto Enrique
dc.contributorGrupo de Física Teórica de Altas Energías
dc.creatorAlvarado Galeano, Juan Sebastián
dc.date.accessioned2021-01-25T14:13:09Z
dc.date.available2021-01-25T14:13:09Z
dc.date.created2021-01-25T14:13:09Z
dc.date.issued2020-07-13
dc.identifierAlvarado, J. (2020). Fermionic sector in a non-universal U(1)X extension to the MSSM [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78895
dc.description.abstractEn el siguiente trabajo, se realiza la construcción general de la teoría supersimétrica dándose por conocidos los fundamentos en teoría de grupos en relación a grupo de Poincaré y por lo tanto se inicia desde las propiedades más generales de los espinores. Se desarrolla la teoría a partir de su formalismo de álgebras graduadas, construyéndose el grupo de Super-Poincaré y a partir del manejo de variables de Grassmann se construye la teoría supersimétrica desde el formalismo de Supercampos y generándose los Lagrangianos escalares, vectoriales (abelianos y no abelianos) y mixtos más generales permitidos por la condición de renormalizabilidad. Finalmente los desarrollos de esta teoría se implementan en el modelo estándar, donde se encuentran todas las matrices de masa en relación a las Super-partículas, los escalares y fermiones del modelo estándar. Adicionalmente, se construye un modelo supersimétrico al incluir una simetría U(1)X adicional al MSSM de modo que sea libre de anomalías quirales e incluyendo las tres familias de fermiones y algunos fermiones exóticos. A partir de la asignación de cargas X se construye el superpotencial más general permitido por el criterio de renormalización, se construye el potencial escalar asociado y se obtienen las condiciones que permiten recrear la masa del bosón de Higgs observado, el cual en este escenario puede explicar de forma natural la masa de 125GeV . Finalmente, se obtienen expresiones analíticas para la masa de los fermiones y en particular se calcula la masa de los más ligeros (e, u, d y s) a nivel de un loop teniendo en cuenta las contribuciones debido a partículas y sus respectivos supercompañeros.
dc.description.abstractIn the following work, it is realized the general construction of the supersymmetric theory where the fundamentals in group theory is considered as known in relation to Poincaré group. Thus it begins from the most general properties of spinors. The theory is developed from its graded algebras formalism constructing then the super-Poincar´e group, and with the use of Grassmann variables the supersymmetric theory is built from the superfield formalism generating then the most general scalar, vectorial (abelian and non abelian) and mixed Lagrangians allowed by the renormalization condition. Finally the developments of this theory are applied to the standard model, where it has been found all the mass matrices related with superparticles, scalars and standard model fermions. Additionally, it is build a supersymemtric model by including an additional U(1)X symmetry to the MSSM in such a way that it is chiral anomaly free and including all three fermions families and some exotic fermions. From the X charge assignation the most general renormalizable superpotential is written, the associated scalar potential is consequently obtained and the condition for reproducing the SM Higgs boson , which can explain naturally ira 125GeV mass. Finally, analytic expression for scalars and fermions are given where all 1-loop contributions due to particles and superparticles are considered for the lightests fermions masses (e, u, d y s).
dc.languageeng
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationhttp://francis.naukas.com/2015/03/15/supersimetria-y-anomalias-\ experimentales-en-el-lhc/.
dc.relationhttps://globalfit.astroparticles.es/2018/07/03/neutrino-mass-ordering/.
dc.relationGeorges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.
dc.relationAdam Alloul, Neil D Christensen, C´eline Degrande, Claude Duhr, and Benjamin Fuks. Feynrules 2.0—a complete toolbox for tree-level phenomenology. Computer Physics Communications, 185(8):2250–2300, 2014.
dc.relationJS Alvarado, Carlos E Diaz, and R Martinez. Nonuniversal u (1) x extension to the mssm with three families. Physical Review D, 100(5):055037, 2019.
dc.relationJohn N Bahcall and HA Bethe. Solution of the solar-neutrino problem. Physical Review Letters, 65(18):2233, 1990.
dc.relationRiccardo Barbieri, Sergio Ferrara, Kellogg S Stelle, and Dimitri V Nanopoulos. Supergravity, r invariance and spontaneous supersymmetry breaking. Phys. Lett. B,113(CERN-TH-3243):219–222, 1982.
dc.relationGideon Bella, Erez Etzion, Noam Hod, Yaron Oz, Yiftah Silver, and Mark Sutton. A search for heavy kaluza-klein electroweak gauge bosons at the lhc. Journal of High Energy Physics, 2010(9):25, 2010.
dc.relationReinhold A Bertlmann. Anomalies in quantum field theory, volume 91. Oxford University Press, 2000.
dc.relationMatteo Bertolini. Lectures on supersymmetry.
dc.relationVA Beylin, VI Kuksa, RS Pasechnik, and GM Vereshkov. Diagonalization of the neutralino mass matrix and boson–neutralino interaction. The European Physical Journal C, 56(3):395–405, 2008.
dc.relationAdel Bilal. Lectures on anomalies. arXiv preprint arXiv:0802.0634, 2008. BIBLIOGRAPHY 89
dc.relationMary L Boas and Philip Peters. Mathematical methods in the physical sciences. American Journal of Physics, 52:572–573, 1984.
dc.relationJohn Browne. Grassmann algebra. Mebourne, Australia: Quantica Publishing, 2009.
dc.relationLuis G Cabral-Rosetti and Miguel A Sanchis-Lozano. Appell functions and the scalar one-loop three-point integrals in feynman diagrams. In Journal of Physics: Conference Series, volume 37, page 82. IOP Publishing, 2006.
dc.relationMoshe Carmeli and Shimon Malin. Theory of spinors: An introduction. World Scientific Publishing Company, 2000.
dc.relationLing-Lie Chau. Flavor mixing in weak interactions, volume 20. Springer Science & Business Media, 2012.
dc.relationDzh Chkareuli et al. Gell-mann-nishijima formula for elementary fermions. In Multiple generation processes at high energies. USSR: Metsniereba., 1979.
dc.relationSY Choi and Howard E Haber. The mathematics of fermion mass diagonalization.
dc.relationL Corwin, Yuval Neeman, and S Sternberg. Graded lie algebras in mathematics and physics (bose-fermi symmetry). Reviews of Modern Physics, 47(3):573, 1975.
dc.relationCsaba Csaki. The minimal supersymmetric standard model. Modern Physics Letters A, 11(08):599–613, 1996.
dc.relationA Dedes, M Paraskevas, J Rosiek, K Suxho, and K Tamvakis. Mass insertions vs. mass eigenstates calculations in flavour physics. Journal of High Energy Physics, 2015(6):151, 2015.
dc.relationAlex G Dias, CA de S Pires, PS Rodrigues da Silva, and Adriano Sampieri. Simple realization of the inverse seesaw mechanism. Physical Review D, 86(3):035007, 2012.
dc.relationJohn Earman and Doreen Fraser. Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64(3):305, 2006.
dc.relationIvan Esteban, MC Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, and Thomas Schwetzd. Nufit 4.1: Three-neutrino fit based on data available in july 2019.
dc.relationAlon E Faraggi and Marco Guzzi. Extra z’s and w’s in heterotic-string derived models. The European Physical Journal C, 75(11):537, 2015.
dc.relationJonathan L Feng, Konstantin T Matchev, and Frank Wilczek. Neutralino dark matter in focus point supersymmetry. Physics Letters B, 482(4):388–399, 2000. 90 BIBLIOGRAPHY
dc.relationHarald Fritzsch. Weak-interaction mixing in the six-quark theory. Phys. lett. B, 73(CERN-TH-2433):317–322, 1977.
dc.relationMasataka Fukugita, Morimitsu Tanimoto, and Tsutomu Yanagida. Phenomenological lepton mass matrix. Progress of Theoretical Physics, 89(1):263–267, 1993.
dc.relationClaudio Giganti, St´ephane Lavignac, and Marco Zito. Neutrino oscillations: the rise of the pmns paradigm. Progress in Particle and Nuclear Physics, 98:1–54, 2018.
dc.relationL Girardello and Marcus T Grisaru. Soft breaking of supersymmetry. Nuclear Physics B, 194(1):65–76, 1982.
dc.relationCarlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007.
dc.relationSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961.
dc.relationH Goldstein. Classical mechanics. Pearson Education India., 2011.
dc.relationGerald S Guralnik, TWB Kibble, and CR Hagen. Broken symmetries and the goldstone theorem. Adv. Part. Phys., 2(PRINT-68-492):567–708, 1967.
dc.relationArmin Wiedemann Harald J. W. Muller-Kirsten. Introduction to supersymmetry. World Scientific Lecture Notes in Physics, 80, 2010.
dc.relationStephen F King. Neutrino mass models. Reports on Progress in Physics, 67(2):107, 2003.
dc.relationJin-Yan Liu, Yong Tang, and Yue-Liang Wu. Searching for a z’ gauge boson in an anomaly-free u(1)’ gauge family model. Journal of Physics G: Nuclear and Particle Physics, 39(5):055003, 2012.
dc.relationErnest Ma, Subir Sarkar, and Utpal Sarkar. Scale of su(2)r symmetry breaking and leptogenesis. Physics Letters B, 458(1):73–78, 1999.
dc.relationKleber Daum Machado. Teoria do electromagnetismo, 2006.
dc.relationM. Maggiore. A modern introduction to quantum field theory. Oxford University Press, 12:13–41, 2005.
dc.relationLuciano Maiani. The gim mechanism: origin, predictions and recent uses. arXiv preprint arXiv:1303.6154, 2013.
dc.relationJeffrey E Mandula. Coleman-mandula theorem. Scholarpedia, 10(2):7476, 2015. BIBLIOGRAPHY 91.
dc.relationSF Mantilla, R Martinez, and F Ochoa. Neutrino and cp-even higgs boson masses in a nonuniversal u(1) extension. Physical Review D, 95(9):095037, 2017.
dc.relationS. Martin. A supersymmetry primer, 2016.
dc.relationAlexander Merle and Werner Rodejohann. Elements of the neutrino mass matrix: allowed ranges and implications of texture zeros. Physical Review D, 73(7):073012, 2006.
dc.relationA Mondragon and E Rodriguez-Jauregui. Breaking of the flavor permutational symmetry: Mass textures and the ckm matrix. Physical Review D, 59(9):093009, 1999.
dc.relationStefan Neumark. Solution of cubic and quartic equations. Elsevier, 2014.
dc.relationMurat Ozer. Gim mechanism and its consequences in the su (3) l × u (1) x models of electroweak interactions. Physical Review D, 54(7):4561, 1996.
dc.relationMichael Peskin. An introduction to quantum field theory. CRC press, 2018.
dc.relationStefano Profumo and Farinaldo S Queiroz. Constraining the z’ mass in 331 models using direct dark matter detection. The European Physical Journal C, 74(7):2960, 2014.
dc.relationWies law Pusz. Irreducible unitary representations of quantum lorentz group. Communications in mathematical physics, 152(3):591–626, 1993.
dc.relationP. Ramond. Field theory, a modern primer. Front. Phys., 74, 1981.
dc.relationM Roth and Ansgar Denner. High-energy approximation of one-loop feynman integrals. Nuclear Physics B, 479(1-2):495–514, 1996.
dc.relationProf. Dr. Ivo Sachs. Tv: Advanced quantum mechanics - material.
dc.relationA Salam. Elementary particle theory, ed. by n. Svartholm, Stockholm, 367, 1968.
dc.relationConrad Sanderson. Armadillo: An open source c++ linear algebra library for fast prototyping and computationally intensive experiments. Nicta, 2010.
dc.relationUtpal Sarkar and Rathin Adhikari. Baryogenesis through r-parity violation. Physical Review D, 55(6):3836, 1997.
dc.relationA Semenov. Lanhep—a package for automatic generation of feynman rules from the lagrangian. Computer physics communications, 115(2-3):124–139, 1998.
dc.relationLeonid Serkin. Top quarks and exotics at atlas and cms. arXiv preprint arXiv:1901.01765, 2019.
dc.relationPrem P Srivastava. Supersymmetry, superfields and supergravity: an introduction. United States: Adam Hilger Ltd., 1986. 92 BIBLIOGRAPHY
dc.relationGerard t Hooft and M Veltman. Scalar one-loop integrals. Nuclear Physics B, 153:365–401, 1979.
dc.relationMasaharu Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018.
dc.relationSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.
dc.relationJulius Wess and Jonathan Bagger. Supersymmetry and supergravity. Princeton university press, 1992.
dc.relationZhi-zhong Xing and Ye-Ling Zhou. A generic diagonalization of the 3× 3 neutrino mass matrix and its implications on the µ–τ flavor symmetry and maximal cp violation. Physics Letters B, 693(5):584–590, 2010.
dc.relationAlvarado, J. S., Diaz, C. E., & Martinez, R. (2019). Nonuniversal U (1) X extension to the MSSM with three families. Physical Review D, 100(5), 055037.
dc.relationAlvarado, J. S., & Martinez, R. (2020). PMNS matrix in a non-universal $ U (1) _ {X} $ extension to the MSSM with one massless neutrino. arXiv preprint arXiv:2007.14519.
dc.relationAlvarado, J. S., Bulla, M. A., Martinez, D. G., & Martinez, R. (2020). Explaining muon $ g-2$ anomaly in a non-universal $ U (1) _ {X} $ extended SUSY theory. arXiv preprint arXiv:2010.02373.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleFermionic sector in a non-universal U(1)X extension to the MSSM
dc.typeOtro


Este ítem pertenece a la siguiente institución